

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

REVISIÓN DEL PERFIL DEL AGUA EN EL CANAL RÁPIDO DE ALIVIADEROS RECTOS DE DESCARGA LIBRE, CON EL NIVEL DE AGUA EN EL EMBALSE A LA COTA DE CRESTA DE LA PRESA

REALIZADO POR: CLAUDIO J. LUNA G.

PROFESOR GUÍA: ING. LUIS A. ROTUNDO L.

FECHA: SEPTIEMBRE 2017

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

REVISIÓN DEL PERFIL DEL AGUA EN EL CANAL RÁPIDO DE ALIVIADEROS RECTOS DE DESCARGA LIBRE, CON EL NIVEL DE AGUA EN EL EMBALSE A LA COTA DE CRESTA DE LA PRESA

TRABAJO ESPECIAL DE GRADO

Presentado ante la

UNIVERSIDAD CATÓLICA ANDRÉS BELLO

Como parte de los requisitos para optar al título de

ESCUELA DE INGENIERÍA CIVIL

REALIZADO POR: CLAUDIO J. LUNA G.

PROFESOR GUÍA: ING. LUIS A. ROTUNDO L.

FECHA: SEPTIEMBRE 2017

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

REVISIÓN DEL PERFIL DEL AGUA EN EL CANAL RÁPIDO DE ALIVIADEROS RECTOS DE DESCARGA LIBRE, CON EL NIVEL DE AGUA EN EL EMBALSE A LA COTA DE CRESTA DE LA PRESA

Este Jurado; una vez realizado el examen del presente trabajo ha evaluado su contenido con el resultado: JURADO EXAMINADOR Firma: Firma: Firma:				
ha evaluado	JURADO EXAMINADOR Tma: Firma: Firma: Nombre: Nombre: Nombre:			
	JURADO EX	AMINADOR		
	LIZADO POR: FESOR GUÍA:	CLAUDIO J. LUNA G. ING. LUIS A. ROTUNDO L.		
FECH		SEPTIEMBRE 2017		

"A mis padres y hermanos."

Claudio José Luna Guerra

Agradecimientos

A la Universidad Católica Andrés Bello, por haberme formado como Ingeniero Civil, darme todas las herramientas y criterios para poder enfrentar cualquier tipo de problema con la mayor disposición y criterio.

A mis padres y hermanos, que siempre me han dado su apoyo y ayudado en lo posible durante todo el proceso, sin ellos esto habría sido imposible.

A los ingenieros Alejandro Rincón, José Divassón y mi tutor Luis Rotundo, ya que me guiaron durante todas las etapas del desarrollo de esta investigación.

A Vanessa Marrero, que siempre estuvo a mi lado y me apoyó durante todo el proceso, que de alguna manera fue mi compañera de tesis aún sin tener que serlo.

A mis amigos Andrés, Franchesca, Luis Fernando, Oriana y Tito durante el transcurso de la carrera, porque ingeniería no se estudia solo, y con una gran compañía toda la carga se hace más ligera.

PRÓLOGO

Al momento de considerar la seguridad de una presa, el ingeniero proyectista determinará su capacidad máxima de almacenamiento sobre la base de los cálculos realizados al evaluar el entorno y los daños que pudieran sucederse en caso de falla y por supuesto las condiciones hidrológicas dominantes en el río que se desea regular.

Se deberá formar un criterio para la escogencia de los eventos a que serán sometidas las obras con la seguridad deseada.

Por supuesto que existen recomendaciones y lineamientos que guían al Consultor para su correcta o adecuada escogencia. Por solo mencionar dos: Comisión Internacional de Grandes Presas (ICOLD, por sus siglas en inglés), o las Oficinas de Reclamaciones de los Estados Unidos (USBR, por sus siglas en inglés).

Dentro de estas recomendaciones o lineamientos está la utilización de la Creciente Máxima Probable (CMP) que supone sea, de acuerdo a estudios estadísticos, la mayor que pueda ocurrir. Esto se traduce en una disminución de los riesgos de colapso de las presas por esta causa.

Podría pensarse que si el diseño de las obras de alivio se hace para estas condiciones, la seguridad de las obras estará suficientemente garantizada a "todo evento razonable". Se determina así el Nivel de Aguas Máximas (NAM)

Sin embargo, adicional a esto, se diseña un borde libre seco, para así asegurar que la presa no falle o se dañe por desbordamiento debido a oleajes, terremotos u otros eventos extraordinarios que puedan representar un riesgo adicional a la integridad de la estructura del embalse. Eventos por lo demás ajenos al régimen del río controlado,

La presencia de este volumen de almacenamiento adicional, comprendido entre el NAM esperado y la Cota de Cresta de la Presa (CCP), podría permitir el manejo de eventos climáticos extraordinarios sometiendo a las obras de alivio a condiciones operativas extremas que pudieran afectar el funcionamiento de éstas y, eventualmente, provocar su colapso.

Esta suposición podría parecer improcedente, tomando en cuenta que al haber utilizado la creciente máxima considerada por el ingeniero proyectista, los riesgos admisibles ya deben haber sido cubiertos, más pudiera ser viable si la data climática adoptada para el desarrollo del estudio hidrológico es nula o insuficiente o nos encontramos en áreas donde la alteración climática por otras circunstancias ha alterado significativamente el régimen de lluvias.

El Trabajo Especial de Grado, que a continuación se presenta, analiza el efecto que tendría en las obras de alivio la ocurrencia de eventos extraordinarios que invadan el denominado Borde Libre Seco del embalse.

Para el desarrollo del estudio se deben evaluar las consecuencias del funcionamiento de los diferentes componentes de obras de alivio construidas o diseñadas en diversos embalses venezolanos definiendo las modificaciones que deberían llevarse a cabo para que ese evento pueda ser manejado sin deterioro alguno del embalse y sus obras complementarias.

En esta oportunidad se ha limitado el estudio a lo que pueda ocurrir en el canal rápido de seis embalses escogidos.

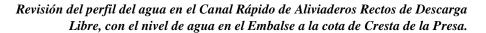
Es oportuno aclarar que en ninguna forma se cuestiona o se pretende revisar el diseño original de las obras escogidas, incluyendo esto las estimaciones hidrológicas y otras consideraciones. Tampoco se han realizado análisis comparativos acerca de la cuantía de la mayor seguridad o confiabilidad de las obras que eventualmente se sugiere su modificación.

Resumen

En este trabajo, se evaluó el comportamiento de la lámina de agua sobre seis (6) rápidos de aliviaderos en embalses de Venezuela, siendo los embalses de Hueque (Estado Falcón), Alto Tocuyo (Estado Lara), Matícora (Estado Falcón), Manuelote (Estado Zulia), Taguay (Estado Aragua) y El Guapo (Estado Miranda), suponiendo en todos los casos una cota de aguas a nivel de crestas de la presa. Se determinó el coeficiente de descarga utilizado para el diseño del rápido y su variación para la descarga con la lámina de aguas a la Cota de Cresta de la Presa.

Sobre la base de la geometría de cada caso se determinó el perfil del agua para las condiciones de diseño y para las nuevas condiciones a estudiar. El análisis hidráulico de los perfiles de aguas sobre el rápido se hizo considerando el régimen del flujo como gradualmente variado en toda su longitud. Todos los aliviaderos son rectos, de descarga libre, ya que así se pudieron obtener resultados más concluyentes respecto al comportamiento de la lámina sin otras variables que la afecten adicionales a su altura. El análisis se realizó desde el enfoque bidimensional del perfil de aguas, originalmente, este fue el criterio que se utilizó para el diseño de estos proyectos.

Al final, se compararon los resultados del perfil del agua sobre cada aliviadero, para el caudal de descarga, de la condición de diseño original y de la condición actual de estudio.



ÍNDICE DE CONTENIDO

CAPÍT	ULO 1: INTRODUCCIÓN	1
1.1 P	Planteamiento del Problema	2
1.2 (Objetivos	2
1.2	2.1 Objetivo General	2
1.2	2.2 Objetivos Específicos	2
1.3 A	Antecedentes	3
1.4 A	Alcance y limitaciones	4
1.5 N	Metodología	4
CAPÍT	ULO 2: RÁPIDOS DE ALIVIADEROS EN EMBALSES	5
2.1 F	Función y descripción general	5
2.2 F	Rápido como componente del vertedero	6
2.3 P	Perfil del agua en el rápido	8
2.4 E	Eventos conocidos por mal funcionamiento del rápido	8
2.4	4.1 Embalse El Guapo. Desborde de muros	9
2.5 R	Rápidos a estudiar en Venezuela	9
2.5	5.1 Embalse Hueque (Estado Falcón)	9
2.5	5.2 Embalse Alto Tocuyo (Dos Cerritos) (Estado Lara)	10
2.5	5.3 Embalse Matícora (Estado Falcón)	10
2.5	5.4 Embalse Manuelote (Estado Zulia)	10
2.5	5.5 Embalse Taguay (Estado Aragua)	11
2.5	5.6 Embalse El Guapo (Estado Miranda)	12
CAPÍT	ULO 3: HIDRÁULICA DEL RÁPIDO	13
3.1	Parámetros de diseño en el rápido	13
3.2	Aspectos hidráulicos que definen el comportamiento	13
3.3 E	Borde libre del canal	15
3.4 (Consecuencias en otros componentes de las obras de alivio por desborde del rá	pido15
3.5 N	Metodología empleada de cálculo del perfil de aguas en el rápido	16
3.5	5.1 Cálculo del caudal de descarga	16

3.5.2 Calculo del tirante de agua al inicio del rapido en ambos casos	1 /
3.5.3 Cálculo del perfil del agua sobre el rápido para ambos casos	18
3.5.4 Altura de muro del rápido para descarga de diseño	18
CAPÍTULO 4: ANÁLISIS DEL COMPORTAMIENTO DEL PERFIL DE AGUAS	
LOS RÁPIDOS SELECCIONADOS	19
4.1 Generalidades	19
4.2 Análisis del embalse Hueque	19
4.2.1 Cambio del coeficiente de descarga	19
4.2.2 Caudal de descarga a la CCP	19
4.2.3 Perfil de agua sobre el rápido.	19
4.3 Análisis del embalse Alto Tocuyo	22
4.3.1 Cambio del coeficiente de descarga	22
4.3.2 Caudal de descarga a CCP	22
4.3.3 Perfil del agua sobre el rápido	22
4.4 Análisis del Embalse Matícora	25
4.4.1 Cambio del coeficiente de descarga	25
4.4.2 Caudal de descarga a CCP	25
4.4.3 Perfil del agua sobre el rápido	25
4.5 Análisis en el rápido del Embalse Manuelote	28
4.5.1 Cambio del coeficiente de descarga	28
4.5.2 Caudal de descarga a CCP	28
4.5.3 Perfil del agua sobre el rápido	28
4.6 Análisis en el rápido del Embalse Taguay	31
4.6.1 Cambio del coeficiente de descarga	31
4.6.2 Caudal de descarga a CCP	31
4.6.3 Perfil del agua sobre el rápido	31
4.7 Análisis en el rápido del Embalse El Guapo	34
4.7.1 Cambio del coeficiente de descarga	34
4.7.2 Caudal de descarga a CCP	34
4.7.3 Perfil del agua sobre el rápido	34
CAPÍTULO 5: CONCLUSIONES Y RECOMENDACIONES	37

5.1 Conclusiones	37
5.2 Recomendaciones	38
BIBLIOGRAFÍA	39
ANEXOS	40

ÍNDICE DE TABLAS

Tabla 1: Datos iniciales del vertedero en cada aliviadero. Fuente: Propia16
Tabla 2: Cálculo del coeficiente de descarga en aliviadero Hueque. Fuente: Propia 19
Tabla 3: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre
teórico respecto a los muros en el rápido del embalse Hueque. Fuente: Propia20
Tabla 4: Cálculo del coeficiente de descarga en el embalse Alto Tocuyo. Fuente: Propia 22
Tabla 5: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre
teórico respecto a los muros en el rápido del embalse Alto Tocuyo. Fuente: Propia23
Tabla 6: Cálculo del coeficiente de descarga en el embalse Matícora. Fuente: Propia 25
Tabla 7: Perfil del agua para la descarga de diseño y la descarga a CCP y borde libre teórico
respecto a los muros en el rápido del embalse Matícora. Fuente: Propia
Tabla 8: Cálculo del coeficiente de descarga en el embalse Manuelote. Fuente: Propia 28
Tabla 9: Perfil del agua para la descarga de diseño, la descarga a CCP y borde libre teórico
respecto a los muros en el rápido del embalse Manuelote. Fuente: Propia29
Tabla 10: Cálculo del coeficiente de descarga en el embalse Taguay. Fuente: Propia31
Tabla 11: Perfil del agua para la descarga de diseño y la descarga a CCP y borde libre
teórico respecto a los muros en el rápido del embalse Taguay. Fuente: Propia32
Tabla 12: Cálculo del coeficiente de descarga en el embalse El Guapo. Fuente: Propia34
Tabla 13: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre
teórico respecto a los muros en el rápido del embalse El Guapo. Fuente: Propia35
Tabla 14: Valores para determinar el gráfico Cd/Cdo vs H/Hd
Tabla 15: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse Hueque
Tabla 16: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse Alto Tocuyo
Tabla 17: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse Matícora
Tabla 18: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse Manuelote

Tabla 19: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse Taguay
Tabla 20: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el
Embalse El Guapo
Tabla 21: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse
Hueque45
Tabla 22: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Alto
Tocuyo46
Tabla 23: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse
Matícora47
Tabla 24: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse
Manuelote
Tabla 25: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse
Taguay
Tabla 26: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse El
Guapo
Tabla 27: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse Hueque
Tabla 28: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse Alto Tocuyo
Tabla 29: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse Matícora
Tabla 30: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse Manuelote
Tabla 31: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse Taguay
T. 1. 22 C/L 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tabla 32: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el
Embalse El Guapo

Tabla 34: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Alto	
Тосиуо	. 54
Tabla 35: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse	
Matícora	. 55
Tabla 36: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse	
Manuelote	. 56
Tabla 37: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Tagu	ıay
	.57
Tabla 38: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse El	
Guapo	. 58

ÍNDICE DE FIGURAS

Figura 1: Coeficientes de gasto (Cd) para un vertedero de lámina vertiente con paramento	ļ
aguas arriba vertical y para la carga de diseño (Hd). Fuente: U.S. Bureau of Reclamation.	.6
Figura 2: Efecto del paramento aguas arriba en el valor de Cd. Fuente: U.S. Bureau of	
Reclamation	7
Figura 3: Valores de (Cd) para cargas diferentes de la de diseño. Fuente: U.S. Bureau Of	
Reclamation.	7
Figura 4: Flujo en canales abiertos. Fuente: US Bureau of Reclamation	14
Figura 5: Perfil del aliviadero del embalse Hueque	40
Figura 6: Perfil del aliviadero del Embalse Alto Tocuyo	40
Figura 7: Perfil del aliviadero del Embalse Matícora	40
Figura 8: Perfil del aliviadero del Embalse Manuelote	41
Figura 9: Perfil del aliviadero del Embalse Taguay	41
Figura 10: Perfil del aliviadero del Embalse El Guapo	41

ÍNDICE DE GRÁFICOS

Grafico 1: Aproximación de la curva del grafico H/Hd contra Cd/Cdo, con la ecuación
polinómica de segundo grado. Fuente: Propia
Gráfico 2: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCF
y el borde libre teórico respecto a los muros en el rápido del embalse Hueque. Fuente:
Propia21
Gráfico 3: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y
el borde libre teórico respecto a los muros en el rápido del embalse Hueque. Fuente: Propia
21
Gráfico 4: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCF
y el borde libre teórico respecto a los muros en el rápido del embalse Alto Tocuyo. Fuente:
Propia24
Gráfico 5: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y
el borde libre teórico respecto a los muros en el rápido del embalse Alto Tocuyo Fuente:
Propia24
Gráfico 6: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCF
y el borde libre teórico respecto a los muros en el rápido del embalse Matícora. Fuente:
Propia27
Gráfico 7: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y
el borde libre teórico respecto a los muros en el rápido del embalse Matícora. Fuente:
Propia27
Gráfico 8: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCF
y el borde libre teórico respecto a los muros en el rápido del embalse Manuelote. Fuente:
Propia30
Gráfico 9: Comparativa del perfil del agua para la descarga de diseño y la descarga a CCP y
borde libre teórico respecto a los muros en el rápido del embalse Manuelote. Fuente: Propia
Gráfico 10: Comparativa entre alturas del agua para la descarga de diseño, la descarga a
CCP y el borde libre teórico respecto a los muros en el rápido del embalse Taguay. Fuente:
Propia

Gráfico 11: Comparativa del perfil del agua para la descarga de diseño y la descarga a CC	P
y borde libre teórico respecto a los muros en el rápido del embalse Taguay. Fuente: Propia	Ļ
	33
Gráfico 12: Comparativa entre alturas del agua para la descarga de diseño, la descarga a	
CCP y el borde libre teórico respecto a los muros en el rápido del embalse El Guapo.	
Fuente: Propia	36
Gráfico 13: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP	у
el borde libre teórico respecto a los muros en el rápido del embalse El Guapo. Fuente:	
Propia3	36

GLOSARIO

Eo Energía Inicial

BL Borde Libre

NAN Nivel de aguas normales

NAM Nivel de aguas máximas

Hd Carga de diseño

H Carga de agua

Y Tirante de agua

Cdo Coeficiente de descarga de diseño

Cd Coeficiente de descarga

CMP Creciente Máxima Probable
USBR U.S. Bureau of Reclamation

CCP Cota de Cresta de la Presa

CAPÍTULO 1: INTRODUCCIÓN

Al momento de considerar la seguridad de una presa, el ingeniero proyectista realiza los cálculos de su capacidad máxima de almacenamiento, considerando una creciente de diseño que se estima pueda ocurrir en la zona, adicional a esto, se diseña un borde libre seco, para así asegurar que la presa no falle por desbordamiento debido a oleajes, terremotos u otros eventos extraordinarios que representen un riesgo para la integridad de la estructura del embalse.

Es lógico considerar que dentro de este borde libre de la presa, se pueda almacenar un volumen mayor al establecido por la creciente de diseño, sin que la misma falle por desbordamiento.

Se evaluaron los rápidos de los aliviaderos de varios embalses, ubicados en la República Bolivariana de Venezuela, los cuales son rectos y de descarga libre, para las descargas correspondientes a la condición original de diseño (agua en el embalse al NAM), y para la condición investigada (nivel del agua en el embalse a la CCP). En cada caso se determinó el Coeficiente de descarga correspondiente. Los resultados así obtenidos se compararon determinando los casos en los cuales los muros del rápido resultaban desbordados.

De esta investigación se desprende una sugerencia, que es la de incorporar en el diseño de los aliviaderos un criterio adicional para aumentar su seguridad.

1.1 Planteamiento del Problema

El diseño de los aliviaderos se hace para el tránsito de la creciente de diseño (usualmente la CMP). La altura de la presa queda determinada por la altura de la lámina vertiente (Nivel de aguas máximas), más alturas adicionales (borde libre seco) determinada por factores como viento, oleaje, entre otros; y ocurrencia de posibles sismos, es decir, en el embalse existe una capacidad adicional de almacenaje, por encima de NAM, la cual podrá ser ocupada por el agua en eventos extraordinarios mayores a los considerados, de ocurrir estos, los aliviaderos deben funcionar sin que se causen daños importantes a la estabilidad de la obra; como ejemplo, cabe mencionar lo sucedido en el embalse El Guapo (16 de diciembre de 1999), ya que durante este evento la lámina vertiente sobre el aliviadero llegó muy cerca al nivel de cresta de presa, ocasionando el desborde de los muros del aliviadero, socavación del terreno por detrás de éstos y de la fundación de los muros del pozo disipador de energía y finalmente la destrucción de la estructura de alivio. Durante este acontecimiento, se debe resaltar que la estructura de presa no sufrió ningún tipo de daños por efecto del agua embalsada a CCP, previo al colapso del aliviadero, y que según las observaciones hechas a los registros existentes, se presume que justo antes de colapsar el aliviadero el nivel de aguas del embalse comenzó a descender, por lo que el evento conocido como la "Falla de la represa El Guapo" pudo evitarse de no haberse destruido el aliviadero en ese momento.

1.2 Objetivos

1.2.1 Objetivo General

Simular el funcionamiento del canal rápido de aliviaderos rectos, de descarga libre, sin control, por efectos de una lámina vertiente equivalente al agua embalsada a la cota de cresta de la presa y de ser el caso, aportar posibles recomendaciones para mejorar el diseño de los mismos.

1.2.2 Objetivos Específicos

 Evaluar el comportamiento de la lámina de agua en los rápidos de los aliviaderos seleccionados, con el nivel del agua en el embalse a la cota de cresta de la presa

 Emitir recomendaciones, en los casos donde sean necesarias, para mejorar las condiciones de seguridad de las obras.

1.3 Antecedentes

A continuación, se mencionan publicaciones anteriores a este trabajo, en donde se estudian fallas en presas y análisis del funcionamiento de los aliviaderos de presa., mencionándose en algunos de éstos la falla por desbordamiento de los muros del rápido

- Suarez Barrera, Diego y Vethencourt, José Luis (1997). "Incidentes en las presas de Venezuela. Problemas, soluciones y lecciones". Universidad Católica Andrés Bello. Tutor: Ing. Suarez, Luis Miguel. Resumen actualizado (hasta la fecha de publicación) de distintas fallas en presas de Venezuela, datos de los motivos de la falla y explicaciones detalladas de las mismas.
- Flammer, Gordon H. y Israelsen C. Earl. (1961) "Model Analysis and Stilling Basin of Porcupine Dam". Utah Water Research Laboratory, Utah State University. Modelo analítico del funcionamiento del aliviadero y pozo disipador de la presa de Porcupine, ubicada en el estado de Utah de EEUU.
- Chanson, H. (2000). "A Review of Accidents and Failures of Stepped Spillways and Weirs." Proc. Instn Civ. Engrs Water and Maritime Engrg, UK, Vol. 142, Dec., pp. 177-188 (ISSN 0965-0946). Estudio de fallas en aliviaderos escalonados en Australia, Eslovenia, Rusia, EEUU, India y Taiwán
- Rotundo Liendo, Luis Alejandro. (2000). "El guapo. Por qué falló." Vertiente. Hidrocapital. pp. 14-16 N° 3. Análisis y explicación detallada de la falla en el aliviadero de la represa de El Guapo, ubicada en el estado Miranda de Venezuela.
- Carrillo Sánchez, José M. "Evaluación de La Seguridad Hidrológico-Hidráulica de La Presa de Compuerto (T.M. de Velilla del Río Carrión, Provincia de Palencia) Perteneciente a La Cuenca Hidrográfica del Duero". Universidad Politécnica de Valencia. Tutor: Dr. Escuder Bueno, Ignacio. Evaluación de seguridad de la presa, empleando distintas alternativas a través de fórmulas, modelos a escala y modelos matemáticos en computadora utilizando los criterios de seguridad actuales.

1.4 Alcance y limitaciones

Se analizaron los resultados obtenidos para optimizar presas con proyecto definitivo, construidas o no. No se analizaron comportamientos hidrológicos dentro de la presa, estabilidad de la misma, ante fuerzas actuantes en ella, ajenas al aliviadero, así como tampoco se incluyó el análisis del pozo disipador de energía, ni fallas en presas distintas a las ocurridas en el aliviadero de las mismas. Los cálculos del perfil de agua sobre el canal se realizaron bajo los mismos criterios de diseño originales de los rápidos.

La selección de las presas a trabajar dependió de la información disponible en la planoteca del Ministerio del Poder Popular para el Ecosocialismo y Aguas (MINEA), la Biblioteca Nacional, ROYGA consultores y diferentes entes públicos y privados que disponen de información respecto a presas nacionales con aliviaderos rectos, de descarga libre, sin control.

1.5 Metodología

A continuación, se enumeran los pasos que se siguieron para la realización de este Trabajo Especial de Grado:

- Obtener los datos necesarios de las presas a trabajar: geometría y datos relevantes de aliviaderos, cota de niveles de aguas normales, aguas máximas y cota de cresta de la presa.
- 2. Modelar el perfil del tirante de agua sobre el rápido de los aliviaderos utilizando una hoja de cálculo (Excel). A través de este método se tiene una visualización más clara de los resultados del perfil del agua, además de su sencilla aplicación para el estudio realizado y es el método implementado para el análisis de aliviaderos en las materias de Ingeniería Hidráulica, de la Universidad Católica Andrés Bello. No se utilizaron otros programas especializados para el cálculo del perfil de aguas del aliviadero, ya que están preparados para casos más complejos que el que se estudia.
- **3.** Evaluar el funcionamiento, sea óptimo o no, de los aliviaderos para una descarga con una lámina de agua a nivel de cresta de la presa.
- **4.** Evaluar las mejoras en el diseño del canal del aliviadero para lograr un funcionamiento aceptablemente seguro, bajo las condiciones ya mencionadas.

CAPÍTULO 2: RÁPIDOS DE ALIVIADEROS EN EMBALSES

2.1 Función y descripción general

Según el manual "Desing of Small Dams" del USBR, su función principal es conducir la descarga de agua desde el reservorio hasta el nivel aguas abajo en el río, generalmente a través de un canal abierto. Suele estar ubicado en uno de los estribos de la presa. Los factores que influyen mayormente en la elección de este tipo de estructura de alivio son: la simplicidad de su diseño y construcción, su adaptabilidad a casi todo tipo de condición de fundación, y el costo total obtenido, ya que siendo muy comunes en presas de tierra suele ser factible la utilización de los materiales excavado para la construcción de la presa.

Los aliviaderos de canal abierto normalmente consisten en un canal de aproximación, una estructura de control, canal de descarga, una estructura terminal y un canal de salida. La forma más simple del canal de este tipo de aliviaderos es un eje en línea recta y un ancho uniforme. Comúnmente, tanto del eje del canal de entrada o el canal de descarga deben ser curvos para alinearse con la topografía del terreno, de ser posible, la curvatura está confinada por la entrada del canal, debido a las bajas velocidades del canal de aproximación. Los perfiles del aliviadero siempre están influenciados por la topografía del sitio y la condición de la subsuperficie de fundación. El cimacio generalmente se ubica alineado o aguas arriba del eje de la presa. El flujo aguas arriba de la cresta es generalmente de velocidad subcrítica, con una condición crítica cuando el agua supera la estructura de control.

El flujo en el canal se mantiene en un estado supercrítico hasta alcanzar la estructura terminal, en un régimen gradualmente variado. Para un buen comportamiento hidráulico deben ser evitados, cambios verticales u horizontales abruptos, o curvas cóncavas muy pronunciadas en el canal.

2.2 Rápido como componente del vertedero

Para un aliviadero con una estructura de control de cimacio, es posible tener varios tipos de componentes para llevar el agua desde este tipo de control hasta el nivel aguas abajo del río o sitio de descarga. Se debe tomar en cuenta que se presente un vertedero con un canal abierto de descarga, debe existir una estructura de control que regule la descarga de agua sobre el canal, ya sea un cimacio, compuertas, o cualquier otro tipo que convenga desde el punto de vista económico, topográfico y las condiciones aguas abajo del canal.

Para determinar el caudal de descarga a través del cimacio hasta el canal del rápido, se debe analizar el coeficiente de descarga (Cd) del vertedero, el cual depende de la altura de carga de agua sobre el cimacio.

Cd será entonces función de la geometría (altura del vertedero de la lámina vertiente e inclinación del paramento aguas arriba) y del número de Froude (velocidad de aproximación y altura de agua sobre el vertedero). Esto indica, que la forma del cimacio (lámina vertiente) afecta el valor del coeficiente, y como ésta se define con base a Hd, el problema se convierte en uno de aproximaciones sucesivas.

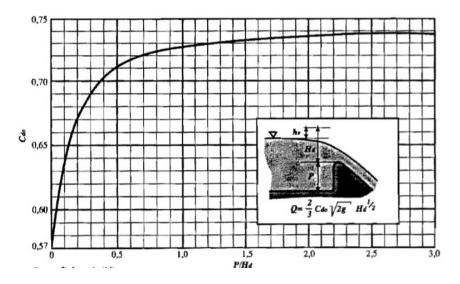


Figura 1: Coeficientes de gasto (Cd) para un vertedero de lámina vertiente con paramento aguas arriba vertical y para la carga de diseño (Hd). Fuente: U.S. Bureau of Reclamation.

Para los cimacios que poseen una inclinación del paramento aguas arriba, se utilizó la siguiente curva de corrección para el Cdo.

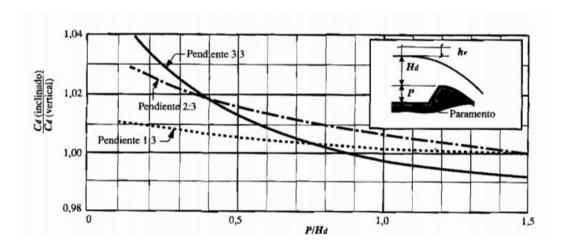


Figura 2: Efecto del paramento aguas arriba en el valor de Cd. Fuente: U.S. Bureau of Reclamation

A través de ensayos en cimacios de vertederos de distintas presas de los Estados Unidos, se determinó una línea de tendencia para el comportamiento del coeficiente de descarga, para cargas distintas a la de diseño.

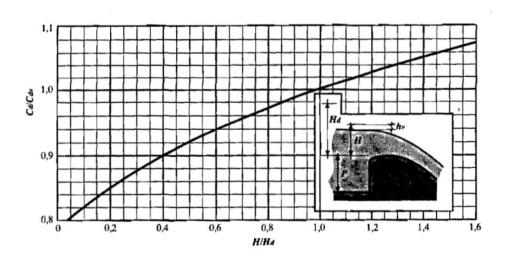


Figura 3: Valores de (Cd) para cargas diferentes de la de diseño. Fuente: U.S. Bureau Of Reclamation.

Para los casos en los cuales el coeficiente H/Hd excediera el límite de la figura (valores superiores a 1.6), se llevó una curva aproximada a Excel y se adaptó a la curva una línea de tendencia polinómica de segundo grado, para obtener un valor de Cd/Cdo adecuado.

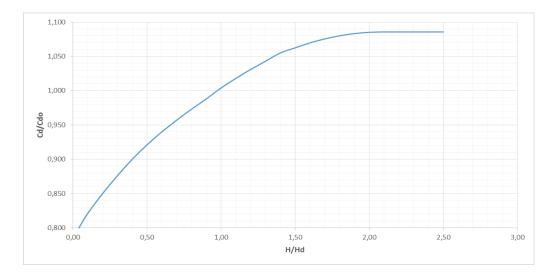


Gráfico 1: Aproximación de la curva del gráfico H/Hd contra Cd/Cdo, con la ecuación polinómica de segundo grado. Fuente: Propia

2.3 Perfil del agua en el rápido

El perfil del agua se determina a partir de la premisa de que la energía total en cada punto del recorrido del rápido es la misma que se encuentra al inicio del cimacio, menos las pérdidas de energía hasta dicho punto.

El régimen de flujo bajo el cual se realizó el análisis del comportamiento del perfil del agua sobre el rápido es gradualmente variado.

El flujo, durante toda la descarga del rápido, es supercrítico hasta llegar a las estructuras disipadoras de energía, ya que durante el alivio, el flujo va descendiendo por altas pendientes. Este parámetro es importante, ya que para la altura del perfil de aguas en la ecuación de energía existen dos posibles soluciones, por ser una ecuación cuadrática sólo se considera la altura de aguas para la cual el flujo es supercrítico.

2.4 Eventos conocidos por mal funcionamiento del rápido

Los eventos más conocidos por mal funcionamiento del rápido en Venezuela están documentados en el libro "Lecciones Aprendidas de los Incidentes y Fallas en las Presas de Venezuela" de Luis Miguel Suarez, donde se detallan las fallas sobre los aliviaderos del embalse Guri, causada por presiones negativas sobre el rápido; en el embalse Cují, por desborde de los muros del pozo disipador y en el embalse Mapará, donde ocurrió una

socavación regresiva al descargar mucho mayor al que circula por el río sobre el cual descarga el aliviadero, así como la falla del aliviadero del Oroville en California, EEUU, que según las investigaciones, falló debido a efectos de cavitación sobre el canal del rápido.

El evento más conocido por desborde de aguas en el rápido fue el ocurrido en el embalse El Guapo.

2.4.1 Embalse El Guapo. Desborde de muros

A pesar de que la presa no fue desbordada al llegar el nivel de agua hasta la cota de cresta de la presa, el flujo desbordó los muros del aliviadero, causando su destrucción. La falla ocurrió por la erosión de los rellenos detrás de los muros del rápido, seguidamente el colapso de la estructura de concreto del pozo y del canal a causa de la socavación regresiva y finalmente la erosión regresiva, originada por el flujo en la fundación del aliviadero. El terraplén de la presa quedó sin apoyo en su contacto con el estribo izquierdo debido a la gran cárcava que se formó en el sitio en el que estaba ubicado el aliviadero, pero la presa propiamente dicha quedó intacta en su mayor parte. El gasto de diseño que se determino era de $101,80 \ m^3/s$ y el que se estima que ocurrió antes del colapso fue de $372,00 \ m^3/s$.

2.5 Rápidos a estudiar en Venezuela

La siguiente información ha sido extraída de los libros de proyectos de cada embalse, del Ministerio del Ecosocialismo y Aguas, otras entidades públicas y privadas. Se eligieron estos rápidos de embalse, ya que todos son aliviaderos rectos, de descarga libre y sección cuadrada, con suficiente información.

2.5.1 Embalse Hueque (Estado Falcón)

El aliviadero de este embalse es una estructura del tipo convencional que tiene un ancho uniforme de 15 metros en toda su longitud, la cual está integrada básicamente por: el canal de aproximación, el elemento estructural de concreto que conforma en sí el aliviadero y el canal de descarga que conduce las aguas al río Hueque. Posee un gasto de diseño de $55,10 \, m^3/s$.

El embalse tiene una cota de aguas normales de 93,50 msnm, una cota de NAM de 95,00 msnm y una cota de cresta de 97,00 msnm.

2.5.2 Embalse Alto Tocuyo (Dos Cerritos) (Estado Lara)

"Está compuesto por:

- 1) Una sección vertedora de 15 m. de ancho está situada entre las progresivas 0+00,31 y la progresiva 0+10,11.
- 2) El rápido se extiende entre la progresiva 0+10,11, donde es tangente a la curva vertical del cimacio y la progresiva 2+33,40 donde comienza el pozo disipador, tiene un ancho de 15 metros y está dividido en dos tramos rectos: el primero con una pendiente de 2% y muros de encauzamiento de 3,5 metros de altura y el segundo con una pendiente del 57,73 % y muros de 3,00 metros de altura.
- 3) Los tramos se enlazan con una curva vertical de 145,805 metros de radio. Los muros en esta curva tienen una altura que varía de 3,50 a 3,00 metros." (OTEHA, C.A., 1967)

Posee un gasto máximo de descarga de $425,00 \text{ } m^3/\text{s}$.

El embalse posee una cota de aguas normales de 666,80 msnm, una cota de NAM de 672.70 msnm y una cota de cresta de presa de 673,30 msnm.

2.5.3 Embalse Matícora (Estado Falcón)

"Es un aliviadero recto, de descarga libre, con un ancho de 20 metros durante toda su longitud, con muros de 2 metros de altura hasta la progresiva 1+45,359. En esta progresiva comienza una transición de altura de los muros, hasta alcanzar la altura de los muros del pozo de 10,00 metros del pozo". (OTEHA, C.A., 1974)

Posee un gasto de diseño de 191.67 m^3/s . Y un Cdo de 0,64

La presa tiene una cota de aguas normales de 120,00 msnm, un NAM de 122,84 msnm y una cota de cresta de 125,00 msnm.

2.5.4 Embalse Manuelote (Estado Zulia)

Posee un aliviadero con un ancho de 12 metros, diseñado para una lámina de diseño de 4.10 metros, un gasto de diseño de 197,20 m^3/s . Y un coeficiente de gasto de 2,0.

La curva del cimacio se calculó siguiendo el método expuesto en "Studies of Crest for Overfall Dams" del USBR. Ampliamente usada y comprobada en aliviaderos ya construidos.

El rápido posee un primer tramo con pendiente de 2% y un segundo tramo con una del 70%, ambos tramos se enlazan mediante una curva vertical de 65,732 metros de radio y ángulo al centro de 33°50'46''. Los muros de encauzamiento tienen una altura de 3,00 metros.

La presa tiene una cota de NAN de 49,60 msnm, un NAM de 53,70 msnm y una cota de cresta de 56,00 msnm.

2.5.5 Embalse Taguay (Estado Aragua)

"Posee un aliviadero recto, de descarga libre, con un ancho constante de 20,00 m. durante toda su longitud.

La estructura del vertedero está situada en la progresiva 0+00,96 y a la cota 333,00 msnm (NAN). La estructura del vertedero tiene un largo total de 9,00 metros y está conformada básicamente por el cimacio y los muros laterales.

La colocación de los muros estará en la cota 337.00 msnm hasta la progresiva 0+02,50 y de allí comenzarán a bajar hasta la cota 326.59 msnm en la progresiva 0+29,00 del rápido.

El rápido posee un primer tramo con pendiente 0,3103 hasta la progresiva 0+19,00 y un segundo tramo con pendiente 9,4% hasta su finalización. El primer tramo empalma con el cimacio y el segundo con sendas curvaturas circulares de 9,07 m y 20,30 de radio. Los muros laterales tendrán una altura de 2,00 metros hasta la progresiva 2+98,05 y de allí hasta el final del rápido variables entre 2,00 m y 6,80 m de altura." (Oficina ROYGA, 1987)

Posee una lámina de diseño de 1,84 m y un gasto de diseño de 243,89 m^3/s

La presa posee un NAN de 333,00 msnm, un NAM de 334,83 msnm y una cota de cresta de 337,00 msnm.

2.5.6 Embalse El Guapo (Estado Miranda)

"Para un nivel de aguas normales de 101,00 msnm se utilizó un ancho de vertedero de cresta libre de 12,00 metros, obteniendo una lámina vertiente de 2,62 m.

La curva del cimacio se calculó siguiendo el método contenido en el manual de diseño para presas pequeñas, del USBR. La estructura del vertedero se extiende entre las progresivas 0+00,00 y 0+05,60 y está formado básicamente por el cimacio y los muros guías; posee un tramo recto que comienza en la progresiva 0+03,03 con la misma pendiente del rápido.

El rápido comienza en la progresiva 0+05,60 y se extiende hasta la progresiva 1+24,32, posee una pendiente de 49,86%. Los muros laterales tienen una altura de 2,00 metros con excepción de los tramo correspondientes a las transiciones que los unen a los muros de mayor altura del cimacio y del pozo." (Isava Carbonell, Proyecto Embalse El Guapo (Estado Miranda). Informe y Planos, 1975)

Posee una cota de cresta de 107,00 msnm.

CAPÍTULO 3: HIDRÁULICA DEL RÁPIDO

3.1 Parámetros de diseño en el rápido

Los parámetros principales que influencian a la construcción y diseño del rápido son:

- El régimen del flujo sobre el rápido es gradualmente variado
- La geología del sitio de excavación para la construcción de la estructura del aliviadero, ya que se debe considerar la calidad del suelo de fundación, la disponibilidad del terreno para construir el aliviadero, ya que la geometría del aliviadero (curvas, pendientes, etc.) debe adaptarse a la topografía del terreno.
- El aspecto económico, ya que la construcción del aliviadero debe ser económicamente justificado, no incurrir en excesos de costos que no sean necesarios, como en altura de los muros, espesor de losas, longitud del rápido, drenajes y otras estructuras necesarias para la óptima operación del rápido
- El comportamiento del perfil del agua sobre el rápido.

3.2 Aspectos hidráulicos que definen el comportamiento

"Para evitar un salto hidráulico debajo del control, el flujo debe mantenerse en un estado supercrítico a través de la longitud del canal.

El flujo en algún punto del canal del rápido dependerá de la energía específica d+hv disponible en dicho punto, esta energía será igual a la energía en el nivel del reservorio de agua hasta la superficie del canal, en el punto a considerar, menos las pérdidas de energía acumuladas hasta ese tramo. Las velocidades y las profundidades del flujo a superficie libre en el canal, se comportan según lo dictado por el principio de la conservación de la energía, expresado por el teorema de Bernoulli, que dice "La energía absoluta de un flujo en cualquier sección transversal será igual a la energía absoluta en una sección aguas abajo, más las pérdidas de energía que intervienen". Esta relación puede ser expresada como:

$$\Delta Z + d_1 + hv_2 = d_2 + hv_2 + \Delta hl$$

El término Δhl incluye todas las pérdidas que pueden ocurrir en el tramo del rápido, como, fricción, turbulencia, impacto y pérdidas en la transición. Debido a que la mayoría

de los cambios en el canal son realizados de manera gradual, todas las pérdidas, excepto las que están relacionadas con la fricción, pueden ser despreciadas.

La pérdida por fricción se calcula de la siguiente manera:

$$\Delta hl = s\Delta L$$

Donde "s" es el promedio de la fricción por la pendiente expresada con la fórmula de Chezy o la de Manning. Para el término Δhl , la pérdida de carga puede ser expresada de la siguiente manera:

$$\Delta hl = (\frac{s_1 + s_2}{2})\Delta L$$

De la fórmula de Manning:

$$s = (vn/1.486r^{2/3})^2$$

El coeficiente de rugosidad, n, dependerá de la naturaleza de la superficie del canal. Para un diseño más conservador, la pérdida por fricción debe ser maximizada cuando se evalúan las profundidades del flujo y minimizada cuando se evalúa la energía contenida en el flujo, por lo que se asume una n de 0.014 aproximadamente." (United States Bureau Of Reclamation, 1987)

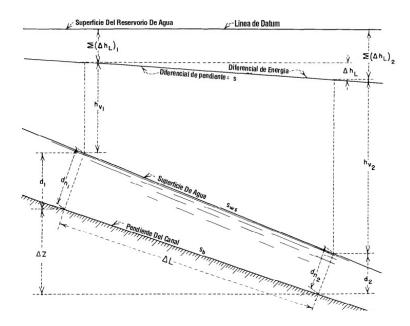


Figura 4: Flujo en canales abiertos. Fuente: US Bureau of Reclamation.

3.3 Borde libre del canal

"En un canal que conduce un flujo supercrítico existen condiciones que están relacionados con la velocidad y la energía contenida en el flujo, es decir, la rugosidad de la superficie, la acción del oleaje, cúmulos de aire, salpicado y rocío.

La energía por metro de profundidad es expresada en términos de velocidad "v" y la profundidad del canal "d", $qhv = \frac{v^3d}{2g}$. Por lo tanto, la relación de la velocidad con la profundidad de la energía del flujo también puede ser expresada en términos de velocidad y $d^{\frac{1}{3}}$. Una expresión basada en estas relaciones da una indicación razonable del borde libre deseado (en pies) = $2.0 + 0.025v\sqrt[3]{d}$

Normalmente el flujo es supercrítico, debido a los altos desniveles a vencer. Es usual, particularmente en aliviaderos de cielo abierto e independientes de la presa, que exista un tramo rápido mucho más inclinado que el otro, pero ambos funcionando a un régimen supercrítico." (United States Bureau Of Reclamation, 1987)

3.4 Consecuencias en otros componentes de las obras de alivio por desborde del rápido

La estructura del aliviadero que se vería mayormente afectada por una desbordamiento en el rápido con una descarga a la cota de agua a CCP sería el pozo disipador, debido a la alta energía con la que llega el flujo a la estructura disipadora, el resalto hidráulico que se debe generar comprometería a la estructura de disipación de energía, así como se debe considerar que el flujo varía de régimen supercrítico a subcrítico en la estructura del pozo disipador y la altura del perfil del agua probablemente supere la altura de los muros de la estructura del pozo.

La fundación de la estructura del rápido se vería particularmente comprometida debido a la erosión que se genera cuando el agua que rebase los muros del rápido caiga sobre el terreno, por lo que eventualmente el tipo de suelo sobre el cual está fundado el aliviadero fallaría y, en consecuencia, el aliviadero se destruiría.

3.5 Metodología empleada de cálculo del perfil de aguas en el rápido

Conocido el nivel del agua para la descarga a NAM, y el caudal de descarga de diseño, se determinó el perfil original.

Se utilizó un coeficiente de rugosidad (n) igual a 0.014, ya que fue el utilizado para el cáculo de diseño original en los proyectos de los rápidos estudiados.

Luego, teniendo como datos la geometría del rápido y el nivel de aguas a la CCP, se determinó el caudal de descarga y, posteriormente, el perfil de aguas para esta condición.

Se debe considerar que es un estudio de proyectos de embalses ya ejecutados, por lo cual los cálculos deben ser realizados bajo los mismos criterios utilizados originalmente, bajo un análisis bidimensional, sin considerar los efectos de cavitación u otros que impliquen un enfoque distinto al perfil del agua en el rápido.

Se utilizó el método del paso estandar, ya que se realizan cálculos de estación a estación sobre el canal del rápido de los aliviaderos, en las cuales se determinaron las características hidráulicas, siendo conocida la distancia entre estaciones y se inicia un proceso iterativo para determinar la profundidad del agua sobre el canal (Y).+

3.5.1 Cálculo del caudal de descarga

El tirante de agua al inicio del rápido corresponde al tirante al pie del cimacio.

Previo a la realización de los cálculos pertinentes, se tomaron en cuenta los datos suministrados de los proyectos mediante la información anteriormente descrita.

Embalse	NAN (msnm)	NAM (msnm)	CCP (msnm)	Hd (m)	P (m)	H (m)	Ancho (m)	Cdo
Hueque	93,50	95,00	97,00	1,50	0,50	3,50	15,00	0,6300
Alto Tocuyo	666,80	672,70	673,33	5,90	1,22	6,53	15,00	0,6770
Matícora	120,00	122,84	125,00	2,84	0,59	5,00	20,00	0,6760
Manuelote	49,60	53,70	56,00	4,10	0,85	6,40	12,00	0,6831
Taguay	333,00	334,83	337,00	1,83	1,00	4,00	20,00	0,7186
El Guapo	101,00	103,62	107,00	2,62	1,00	6,00	12,00	0,6850

Tabla 1: Datos iniciales del vertedero en cada aliviadero. Fuente: Propia

Para los casos en donde existe inclinación aguas arriba del cimacio, y afecta el valor de Cd, se utilizó el valor de corrección obtenido a partir de la figura 2.

Utilizando la ecuación de curva de gastos en el vertedero:

$$Q = \frac{2}{3} \, Cd \, L \, \sqrt{2g} H^{3/2}$$

Donde:

L: Ancho del vertedero

H: Altura del agua sobre el cimacio.

Cd: Coeficiente de descarga

Para la descarga de diseño, se utilizó el caudal de descarga, proporcionado como dato en los libros de proyectos de cada embalse.

Para el cálculo del caudal para la descarga a CCP, se obtuvo el Cd a partir de las estimaciones con la figura 3.

3.5.2 Cálculo del tirante de agua al inicio del rápido en ambos casos.

El tirante de agua al inicio del rápido, corresponde al tirante al pie del cimacio.

Posterior a la obtención del caudal de descarga, se utilizaron los criterios de cálculo hidráulico para un flujo gradualmente variado, y considerando que no hay pérdidas en la estructura, se utilizó la siguiente fórmula:

$$E = Y + \frac{V^2}{2g}\alpha + Z$$

Dónde:

• E: Energía del agua en el punto de estudio (m)

• Y: Tirante de agua o altura del agua, medida desde el fondo del canal (m)

• V: Velocidad $(\frac{m}{s})$

• Z: Cota del punto a estudiar, en metros sobre el nivel del mar (msnm)

 α: Coeficiente de Coriolis, para la corrección de la distribución de velocidad en una sección, para canales abiertos.

La velocidad se obtuvo a partir del caudal, dividido entre el área del canal al pie del cimacio. Se tomó en cuenta que el área está en función de la Y, la cual es la incógnita de la ecuación y se tomó perpendicular al canal para los efectos del cálculo de la energía, por lo que se debe tomar en cuenta el ángulo de inclinación del canal rápido de los aliviaderos estudiados.

Por lo que se hace necesario realizar un proceso iterativo, en el cual se varia el valor de Y hasta obtener que el valor de la energía de entrada al cimacio (Eo), sea coincidente con el NAM de la presa, para la descarga de diseño, y para el caso de estudio coincidente con CCP. Por ser una ecuación de segundo grado, se toma el valor de Y, tal que, al calcular el número de Froude, se obtuviera un valor mayor a 1, correspondiente a un flujo en régimen supercrítico. Este procedimiento se realizó para todos los aliviaderos, para la descarga de diseño y la descarga a CCP.

3.5.3 Cálculo del perfil del agua sobre el rápido para ambos casos.

A través de un proceso similar al realizado anteriormente, se iteró el valor del tirante de agua, considerando que la energía en el canal se mantiene. Aplicando la misma ecuación de energía, descrita en el punto anterior:

$$E = Y + \frac{V^2}{2g}\alpha + Z + hf$$

Donde se añade el término hf, el cual representa la energía perdida por fricción en el canal. Se debe resaltar que se desprecian las pérdidas sobre el canal que no están relacionadas con la fricción, ya que los cambios en este se realizan de manera progresiva.

Nuevamente se realiza el proceso iterativo para el valor de Y hasta obtener el valor de la energía Eo, para un flujo de régimen supercrítico.

3.5.4 Altura de muro del rápido para descarga de diseño

Para el cálculo de la altura de los muros del rápido, se utiliza el criterio de borde libre mencionado anteriormente por el USBR, donde se añade la altura determinada por la relación $2.0 + 0.025v\sqrt[3]{d}$, más el tirante de agua calculado (Y).

CAPÍTULO 4: ANÁLISIS DEL COMPORTAMIENTO DEL PERFIL DE AGUAS EN LOS RÁPIDOS SELECCIONADOS

4.1 Generalidades

Aplicando la metodología anterior, se procedió a determinar los perfiles del agua en los rápidos seleccionados, tanto para la descarga de diseño como para la descarga a la CCP

4.2Análisis del embalse Hueque

4.2.1 Cambio del coeficiente de descarga

Para el análisis del cambio del coeficiente de descarga, se obtuvieron los siguientes resultados:

Hd (m)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
1,5	0,5	0,333	0,63	vertical	0,63	3,5	2,333	1,0860	0,6842

Tabla 2: Cálculo del coeficiente de descarga en aliviadero Hueque. Fuente: Propia

El coeficiente de descarga aumentó un 8,60% respecto al coeficiente de descarga de diseño, esto se debe a que el Cd depende de la altura de agua en la descarga sobre el cimacio.

4.2.2 Caudal de descarga a la CCP

Con un ancho de 15,00 metros y un coeficiente de descarga de 0,6842 se obtuvo un caudal de 198,44 m^3/s , lo cual representa un aumento de 260,15% respecto al caudal de descarga a NAM sobre el vertedero, que es de 55,10 m^3/s .

4.2.3 Perfil de agua sobre el rápido.

A continuación, se presentan la tabla comparativa del perfil del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (msnm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+000,00	0,00	93,50	95,00	97,00	3,50	1,50	97,00	95,00	0,00
0+002,80	2,80	92,79	93,45	94,10	2,00	1,12	94,79	93,91	0,69
0+013,40	13,40	89,69	90,14	90,77	1,50	1,12	91,19	90,81	0,42
0+024,00	24,00	86,59	86,92	87,55	1,50	1,12	88,09	87,71	0,54
0+034,60	36,60	83,49	83,81	84,38	1,50	1,12	84,99	84,61	0,62
0+045,20	45,20	80,39	80,69	81,22	1,50	1,12	81,89	81,51	0,67
0+055,80	55,80	77,29	77,58	78,09	1,50	1,12	78,79	78,41	0,71
0+066,40	66,40	74,19	74,48	74,96	1,50	1,12	75,69	75,31	0,73
0+077,00	77,00	71,09	71,37	71,84	1,50	1,12	72,59	72,21	0,76
0+087,60	87,60	67,99	68,27	68,72	1,50	1,12	69,49	69,11	0,78
0+098,33	98,30	64,86	65,13	65,58	1,50	1,12	66,36	65,98	0,78

Tabla 3: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Hueque. Fuente: Propia

A partir de los resultados obtenidos, se puede observar el comportamiento del perfil del agua sobre el rápido. Se puede resaltar que la altura del agua no supera los 2,00 metros durante toda la longitud del rápido, por lo que no ocurren desbordes sobre el mismo. Para la progresiva 0+13,40 el agua sigue sin superar la altura de 1,50 metros de los muros del rápido.

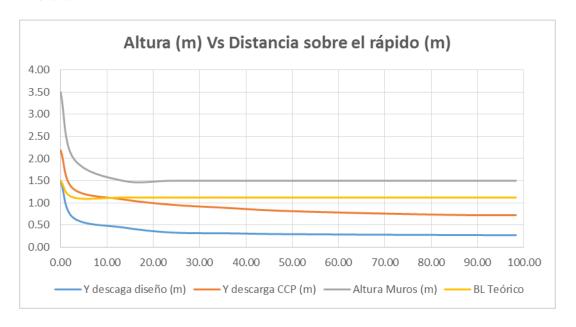


Gráfico 2: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Hueque.

Fuente: Propia

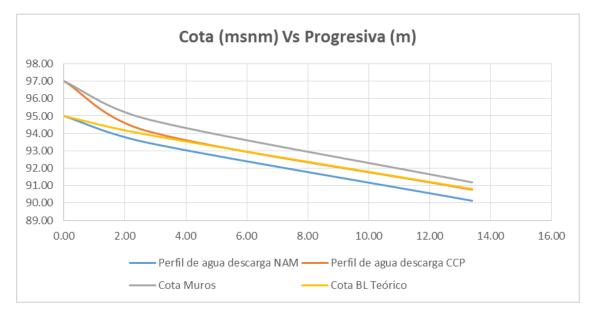


Gráfico 3: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Hueque.

Fuente: Propia

4.3 Análisis del embalse Alto Tocuyo

4.3.1 Cambio del coeficiente de descarga

Para el cálculo del coeficiente de descarga, se realizó la siguiente tabla de cálculo:

Hd (m)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
5,9	1,22	0,2068	0,671	1 a 3	0,6770	6,53	1,107	1,016	0,6878

Tabla 4: Cálculo del coeficiente de descarga en el embalse Alto Tocuyo. Fuente: Propia

El coeficiente de descarga aumentó un 2,50% respecto al coeficiente de descarga para la lámina máxima de diseño.

4.3.2 Caudal de descarga a CCP

Para un ancho de 15 metros en la estructura del cimacio y un coeficiente de descarga final de 0,6878, se obtuvo un caudal de 503,37 m^3/s lo que representa un aumento del 19,62% respecto al caudal máximo de diseño de 425,00 m^3/s

4.3.3 Perfil del agua sobre el rápido

A continuación, se presentan la comparativa del perfil del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (msnm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+000,00	0,00	666,80	672,70	673,33	6,53	5,90	673,33	672,70	0,00
0+010,11	10,11	662,70	665,01	665,42	3,50	2,96	666,20	665,66	0,78
0+020,12	20,12	662,50	664,79	665,20	3,50	2,96	666,00	665,46	0,80
0+030,12	30,12	662,30	664,54	664,95	3,50	2,96	665,80	665,26	0,86
0+040,12	40,12	662,10	664,31	664,71	3,50	2,96	665,60	665,06	0,89
0+050,12	50,12	661,90	664,08	664,47	3,50	2,96	665,40	664,86	0,93
0+060,12	60,12	661,70	663,85	664,24	3,50	2,96	665,20	664,66	0,96
0+070,12	70,12	661,50	663,63	664,01	3,50	2,96	665,00	664,46	0,99
0+080,12	80,12	661,30	663,40	663,78	3,50	2,96	664,80	664,26	1,02
0+090,12	90,12	661,10	663,18	663,55	3,50	2,96	664,60	664,06	1,05
0+100,12	100,12	660,90	662,95	663,32	3,50	2,96	664,40	663,86	1,08
0+110,12	110,12	660,70	662,73	663,10	3,50	2,96	664,20	663,66	1,10
0+120,12	120,12	660,50	662,51	662,87	3,50	2,96	664,00	663,46	1,13
0+121,12	121,12	660,42	662,41	662,77	3,50	2,96	663,92	663,38	1,14
0+125,12	125,12	660,16	662,13	662,49	3,50	2,96	663,66	663,12	1,17
0+130,12	130,12	659,73	661,66	662,01	3,50	2,96	663,23	662,69	1,23
0+135,12	135,12	659,13	661,00	661,34	3,50	2,96	662,63	662,09	1,29
0+140,12	140,12	658,34	660,15	660,48	3,50	2,96	661,84	661,31	1,36
0+145,12	145,12	657,38	659,12	659,44	3,50	2,96	660,88	660,35	1,45
0+150,12	150,12	656,24	657,90	658,21	3,50	2,96	659,74	659,21	1,53
0+155,12	155,12	654,91	656,50	656,79	3,00	2,96	657,91	657,87	1,12
0+160,12	160,12	653,39	654,90	655,18	3,00	2,96	656,39	656,35	1,20
0+165,12	165,12	651,66	653,11	653,38	3,00	2,96	654,66	654,63	1,29
0+170,12	170,12	649,73	651,11	651,37	3,00	2,96	652,73	652,70	1,37
0+175,12	175,12	647,59	648,90	649,14	3,00	2,96	650,59	650,55	1,44
0+180,12	180,12	645,21	646,46	646,70	3,00	2,96	648,21	648,18	1,52
0+181,06	181,06	642,60	643,79	644,02	3,00	2,96	645,60	645,57	1,59

Tabla 5: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Alto Tocuyo. Fuente: Propia

Se pudo verificar a través de la hoja de cálculo que la Y del tirante del agua sobre el rápido del aliviadero no sobrepasa en ningún momento los 3,00 metros, por lo que bajo la condición de estudio el agua no supera la altura de los muros y el rápido trabaja de manera adecuada.

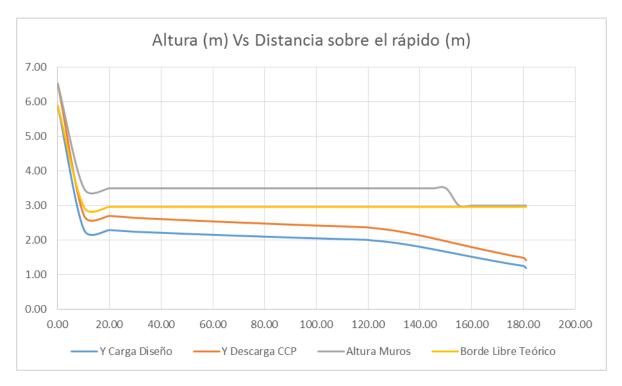


Gráfico 4: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Alto Tocuyo. Fuente: Propia

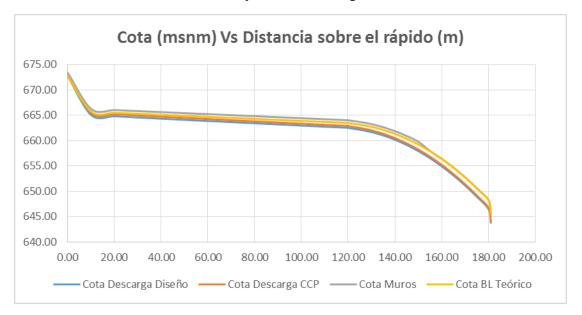


Gráfico 5: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Alto Tocuyo Fuente: Propia

4.4 Análisis del Embalse Matícora

4.4.1 Cambio del coeficiente de descarga

El coeficiente de descarga para la altura del agua a la cota de cresta de la presa se obtuvo a través de la siguiente hoja de cálculo:

I	Hd (m)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
ĺ	2,84	0,59	0,2077	0,67	1 a 3	0,6760	5	1,7606	1,0780	0,7287

Tabla 6: Cálculo del coeficiente de descarga en el embalse Matícora. Fuente: Propia

Según los resultados obtenidos, el coeficiente de descarga para la nueva altura del agua es 0,7287, lo que representa un aumento del 8,76%.

4.4.2 Caudal de descarga a CCP

Para un ancho del canal en el vertedero de 20,00 metros y un coeficiente de descarga de 0,7287, se obtuvo un caudal de descarga de 481,16 m^3/s , representando un aumento de 151,04% respecto al caudal máximo de diseño para el canal que fue de 191,67 m^3/s .

4.4.3 Perfil del agua sobre el rápido

A continuación, se presentan la comparativa del perfil del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (ms nm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+001,24	1,25	120,00	122,84	125,00	5,00	2,84	125,00	122,84	0,00
0+005,71	5,71	117,76	118,84	120,24	2,00	1,46	119,76	119,23	(0,48)
0+015,19	15,19	115,97	116,88	118,06	2,00	1,46	117,97	117,44	(0,09)
0+025,19	25,19	114,18	114,97	116,03	2,00	1,46	116,18	115,65	0,16
0+035,19	35,19	112,39	113,11	114,07	2,00	1,46	114,39	113,86	0,32
0+045,19	45,19	110,60	111,26	112,16	2,00	1,46	112,60	112,07	0,45
0+055,19	55,19	108,81	109,43	110,27	2,00	1,46	110,81	110,28	0,55
0+065,19	65,19	107,02	107,60	108,40	2,00	1,46	109,02	108,49	0,63
0+075,19	75,19	105,23	105,78	106,56	2,00	1,46	107,23	106,70	0,68
0+085,19	85,19	103,44	103,96	104,69	2,00	1,46	105,44	104,91	0,75
0+095,19	95,19	101,65	102,15	102,85	2,00	1,46	103,65	103,12	0,81
0+097,19	97,19	101,64	102,12	102,80	2,00	1,46	103,64	103,10	0,84
0+099,19	99,19	101,61	102,09	102,77	2,00	1,46	103,61	103,07	0,84
0+101,19	101,90	101,56	102,04	102,72	2,00	1,46	103,56	103,02	0,84
0+103,19	103,19	101,49	101,97	102,65	2,00	1,46	103,49	102,96	0,84
0+105,19	105,19	101,41	101,89	102,56	2,00	1,46	103,41	102,87	0,84
0+107,19	107,19	101,31	101,78	102,46	2,00	1,46	103,31	102,77	0,85
0+109,19	109,19	101,19	101,66	102,33	2,00	1,46	103,19	102,65	0,85
0+111,19	111,19	101,05	101,52	102,19	2,00	1,46	103,05	102,51	0,85
0+113,19	113,19	100,89	101,36	102,03	2,00	1,46	102,89	102,35	0,86
0+115,19	115,19	100,71	101,18	101,85	2,00	1,46	102,71	102,17	0,86
0+117,19	117,19	100,52	100,98	101,65	2,00	1,46	102,52	101,98	0,87
1+118,00	118,00	100,31	100,78	101,44	2,00	1,46	102,31	101,77	0,87
0+118,10	118,10	100,12	100,58	101,23	2,00	1,46	102,12	101,58	0,89
0+164,75	164,75	76,00	76,39	76,93	2,00	1,46	78,00	77,46	1,08

Tabla 7: Perfil del agua para la descarga de diseño y la descarga a CCP y borde libre teórico respecto a los muros en el rápido del embalse Matícora. Fuente: Propia

Al inicio de la estructura del rápido, se puede observar una altura del perfil de agua de 2,48 metros, la cual supera a la altura de los muros de 2,00 metros del canal del rápido. El perfil del agua está por debajo de la altura de los muros del rápido en la progresiva 0+25,19, a 19,48 metros del inicio del rápido.

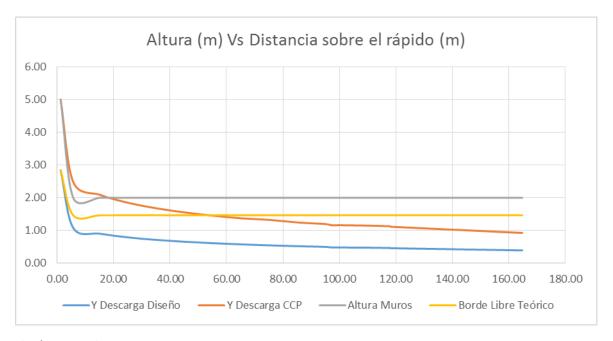


Gráfico 6: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Matícora. Fuente: Propia

Gráfico 7: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Matícora. Fuente: Propia

4.5 Análisis en el rápido del Embalse Manuelote

4.5.1 Cambio del coeficiente de descarga

El coeficiente de descarga para la altura del agua a la cota de cresta de la presa se obtuvo a través de la siguiente hoja de cálculo:

Hd (m)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
4,1	0,85	0,2073	0,677	1 a 3	0,6831	6,4	1,5610	1,07	0,7309

Tabla 8: Cálculo del coeficiente de descarga en el embalse Manuelote. Fuente: Propia

Se obtuvo un coeficiente de descarga, para una altura del agua a nivel de cota de cresta de la presa de 0,7309, lo que representa un aumento del Cd de 7,96% respecto al coeficiente de descarga para la cota de aguas a NAM.

4.5.2 Caudal de descarga a CCP

Para un Cd de 0,7309 y un ancho de vertedero de 12,00 metros, se tiene un caudal de descarga de 419,34 m^3/s , lo que se representa un aumento del 112,65% respecto al caudal de descarga máximo para el cual fue diseñado el canal, que fue de 197,20 m^3/s .

4.5.3 Perfil del agua sobre el rápido

A continuación, se presentan la comparativa del tirante del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (ms nm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+000,00	0,00	49,60	53,70	56,00	6,40	4,10	56,00	53,70	0,00
0+007,83	7,28	46,62	48,20	49,78	3,00	2,19	49,62	48,81	(0,16)
0+018,50	18,50	46,41	47,97	49,54	3,00	2,19	49,41	48,60	(0,13)
0+028,50	28,50	46,21	47,73	49,25	3,00	2,19	49,21	48,40	(0,04)
0+038,50	38,50	46,01	47,50	48,99	3,00	2,19	49,01	48,20	0,02
0+048,50	48,50	45,81	47,27	48,74	3,00	2,19	48,81	48,00	0,07
0+058,50	58,50	45,61	47,05	48,49	3,00	2,19	48,61	47,80	0,12
0+068,50	68,50	45,41	46,82	48,24	3,00	2,19	48,41	47,60	0,16
0+078,50	78,50	45,21	46,60	48,00	3,00	2,19	48,21	47,40	0,21
0+088,50	88,50	45,01	46,38	47,76	3,00	2,19	48,01	47,20	0,25
0+090,54	90,54	44,98	46,35	47,73	3,00	2,19	47,98	47,18	0,26
0+092,54	92,54	44,93	46,29	47,66	3,00	2,19	47,93	47,12	0,27
0+094,54	94,54	44,85	46,20	47,56	3,00	2,19	47,85	47,04	0,28
0+096,54	96,54	44,73	46,08	47,43	3,00	2,19	47,73	46,93	0,31
0+098,54	98,54	44,59	45,92	47,25	3,00	2,19	47,59	46,78	0,33
0+100,54	100,54	44,41	45,72	47,04	3,00	2,19	47,41	46,60	0,36
0+102,54	102,54	44,20	45,49	46,80	3,00	2,19	47,20	46,39	0,40
0+104,54	104,54	43,95	45,23	46,52	3,00	2,19	46,95	46,15	0,44
0+106,54	106,54	43,68	44,93	46,20	3,00	2,19	46,68	45,87	0,48
0+108,54	108,54	43,37	44,60	45,84	3,00	2,19	46,37	45,56	0,52
0+110,54	110,54	43,02	44,23	45,45	3,00	2,19	46,02	45,22	0,57
0+112,54	112,54	42,64	43,82	45,02	3,00	2,19	45,64	44,83	0,62
0+114,54	114,54	42,22	43,37	44,55	3,00	2,19	45,22	44,41	0,67
0+116,54	116,54	41,76	42,88	44,04	3,00	2,19	44,76	43,95	0,72
0+118,54	118,54	41,46	42,58	43,71	3,00	2,19	44,46	43,66	0,75
0+120,54	120,54	40,92	42,00	43,12	3,00	2,19	43,92	43,11	0,80
0+122,54	122,54	40,33	41,38	42,47	3,00	2,19	43,33	42,52	0,85
0+124,54	124,54	39,68	40,71	41,78	3,00	2,19	42,68	41,88	0,91
0+126,54	126,54	38,99	39,99	41,03	3,00	2,19	41,99	41,18	0,96
0+127,37	127,37	38,39	39,37	40,39	3,00	2,19	41,39	40,58	1,00

Tabla 9: Perfil del agua para la descarga de diseño, la descarga a CCP y borde libre teórico respecto a los muros en el rápido del embalse Manuelote. Fuente: Propia

En el inicio del rápido, en la progresiva 0+07,828, se obtuvo un tirante de agua sobre el canal de 3,164 metros, superando los 3 metros de altura de los muros del canal.

A partir de la progresiva 0+38,504 del canal del rápido, la altura del agua sobre el canal es de 2,985 metros, donde el agua se encuentra por debajo de los muros del aliviadero.

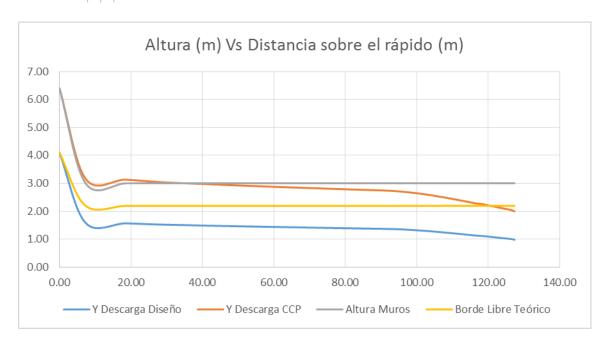


Gráfico 8: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Manuelote. Fuente: Propia

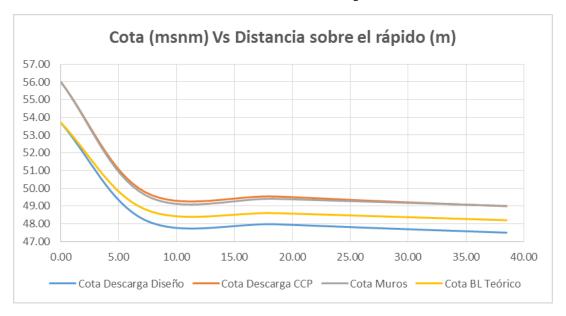


Gráfico 9: Comparativa del perfil del agua para la descarga de diseño y la descarga a CCP y borde libre teórico respecto a los muros en el rápido del embalse Manuelote.

Fuente: Propia

4.6 Análisis en el rápido del Embalse Taguay

4.6.1 Cambio del coeficiente de descarga

A partir de la siguiente tabla, se obtuvo el Cd para el nivel de agua a cota de cresta de la presa.

Hd (m)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
1,83	1	0,5464	0,715	1 a 3	0,7186	4	2,1858	1,0860	0,7804

Tabla 10: Cálculo del coeficiente de descarga en el embalse Taguay. Fuente: Propia

Se obtuvo un Cd de 0.7804, lo que representa un aumento del 9,15% respecto al Cd con el nivel de aguas a NAM.

4.6.2 Caudal de descarga a CCP

Para un ancho de canal en el vertedero de 20 metros y un Cd de 0,7804, se obtuvo un caudal de descarga de 368,72 m^3/s , aumentando un 51,18% respecto al caudal bajo el cual fue diseñado el canal del rápido, que fue de 243,89 m^3/s .

4.6.3 Perfil del agua sobre el rápido

A continuación, se presentan la comparativa del perfil del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (msnm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+000,00	0,00	333,00	334,83	337,00	4,00	1,83	337,00	334,83	0,00
0+009,00	9,00	328,16	329,33	329,69	6,29	1,16	334,45	329,32	4,76
0+019,00	19,00	325,53	326,49	326,85	5,00	1,16	330,53	326,69	3,68
0+029,00	29,00	324,59	325,51	325,85	2,00	1,16	326,59	325,75	0,74
0+039,00	39,00	323,65	324,53	324,86	2,00	1,16	325,65	324,81	0,79
0+049,00	49,00	322,71	323,55	323,88	2,00	1,16	324,71	323,87	0,83
0+059,00	59,00	321,77	322,58	322,90	2,00	1,16	323,77	322,93	0,87
0+069,00	69,00	320,84	321,61	321,93	2,00	1,16	322,84	321,99	0,91
0+079,00	79,00	319,90	320,65	320,95	2,00	1,16	321,90	321,06	0,94
0+089,00	89,00	318,96	319,69	319,98	2,00	1,16	320,96	320,12	0,97
0+099,00	99,00	318,02	318,73	319,02	2,00	1,16	320,02	319,18	1,00
0+109,00	109,00	317,08	317,77	318,05	2,00	1,16	319,08	318,24	1,02
0+119,00	119,00	316,14	316,81	317,09	2,00	1,16	318,14	317,30	1,05
0+129,00	129,00	315,20	315,85	316,13	2,00	1,16	317,20	316,36	1,07
0+139,00	139,00	314,26	314,90	315,17	2,00	1,16	316,26	315,42	1,09
0+149,00	149,00	313,32	313,95	314,22	2,00	1,16	315,32	314,48	1,11
0+159,00	159,00	312,38	313,00	313,26	2,00	1,16	314,38	313,54	1,13
0+169,00	169,00	311,45	312,04	312,30	2,00	1,16	313,45	312,60	1,14
0+179,00	179,00	310,51	311,09	311,35	2,00	1,16	312,51	311,67	1,16
0+189,00	189,00	309,57	310,14	310,39	2,00	1,16	311,57	310,73	1,17
0+199,00	199,00	308,63	309,19	309,44	2,00	1,16	310,63	309,79	1,19
0+209,00	209,00	307,69	308,25	308,49	2,00	1,16	309,69	308,85	1,20
0+219,00	219,00	306,75	307,30	307,54	2,00	1,16	308,75	307,91	1,21
0+229,00	229,00	305,81	306,35	306,59	2,00	1,16	307,81	306,97	1,23
0+239,00	239,00	304,87	305,40	305,64	2,00	1,16	306,87	306,03	1,24
0+249,00	249,00	303,93	304,46	304,69	2,00	1,16	305,93	305,09	1,25
0+259,00	259,00	302,99	303,51	303,74	2,00	1,16	304,99	304,15	1,26
0+269,00	269,00	302,06	302,56	302,79	2,00	1,16	304,06	303,21	1,27
0+279,00	279,00	301,12	301,62	301,84	2,00	1,16	303,12	302,28	1,28
0+289,00	289,00	300,18	300,67	300,89	2,00	1,16	302,18	301,34	1,29
0+299,00	299,00	299,24	299,73	299,94	2,00	1,16	301,24	300,40	1,30
0+309,00	309,00	298,30	298,78	299,00	2,00	1,16	300,30	299,46	1,30
0+319,00	319,00	297,36	297,84	298,05	2,00	1,16	299,36	298,52	1,31
0+329,00	329,00	296,42	296,89	297,10	2,00	1,16	298,42	297,58	1,32
0+339,00	339,00	295,48	295,95	296,16	2,00	1,16	297,48	296,64	1,33
0+349,00	349,00	294,54	295,00	295,21	2,00	1,16	296,54	295,70	1,33

Tabla 11: Perfil del agua para la descarga de diseño y la descarga a CCP y borde libre teórico respecto a los muros en el rápido del embalse Taguay. Fuente: Propia

Según los cálculos realizados, se pudo observar que el nivel de aguas sobre el rápido nunca supera la altura de los muros. En el inicio del rápido, en la progresiva 0+09,00, la altura de los muros es de 6,28 metros, y la altura del agua para esta progresiva es de 1,53 metros, por debajo de los muros. No se llegan a superar los 2,00 metros de los muros, altura que se da a partir de la progresiva 0+29,00 y la altura del perfil de aguas es de 1,26 m.

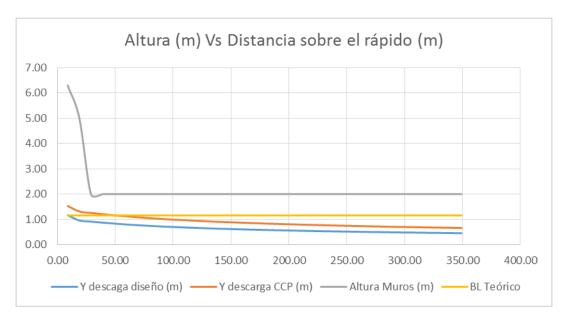


Gráfico 10: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse Taguay. Fuente: Propia

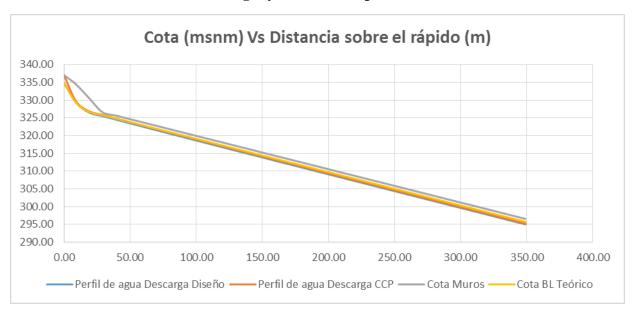


Gráfico 11: Comparativa del perfil del agua para la descarga de diseño y la descarga a CCP y borde libre teórico respecto a los muros en el rápido del embalse Taguay.

Fuente: Propia

4.7 Análisis en el rápido del Embalse El Guapo

4.7.1 Cambio del coeficiente de descarga

A partir de la siguiente tabla, se obtuvo el Cd para el nivel de aguas a cota de cresta de la presa.

Hd (n	ı)	P (m)	P/Hd	Cdo	Inclinación	Cd corregido	H (m)	H/Hd	Cd/Cdo	Cd
2,	52	1	0,382	0,685	1 a 3	0,6898	6	2,290	1,086	0,7491

Tabla 12: Cálculo del coeficiente de descarga en el embalse El Guapo. Fuente: Propia

Se obtuvo un Cd de 0,7491, representando un aumento del 9,36% respecto al Cd para la descarga del agua a NAM.

4.7.2 Caudal de descarga a CCP

Para el Cd obtenido anteriormente de 0,7491 y un ancho de canal de 12,00 metros, el caudal resultante para la condición a estudiar fue de 390,13 m^3/s , aumentando 283,23% respecto al caudal con el nivel de aguas a NAM, parámetro para el cual se diseñó el rápido del aliviadero.

4.7.3 Perfil del agua sobre el rápido

A continuación, se presentan la comparativa del tirante del agua sobre el rápido para la descarga de diseño y la descarga a CCP, respecto a la altura de los muros y el criterio del borde libre más el tirante de agua para la descarga de diseño al inicio del rápido.

Progres	X (m)	Z Fondo Canal (msnm)	Perfil de agua Descarga NAM (msnm)	Perfil de agua Descarga CCP (msnm)	Altura Muros (m)	BL Teórico (m)	Cota Muros (msnm)	Cota BL Teórico (msnm)	Muros - Descarga
0+001,15	1,15	101,00	103,62	107,00	6,00	2,26	107,00	103,26	0,00
0+005,60	5,60	99,20	100,23	102,66	5,90	1,12	105,10	100,32	2,44
0+010,00	10,00	97,00	98,01	99,70	4,85	1,12	101,85	98,12	2,15
0+020,00	20,00	92,02	92,61	94,07	2,00	1,12	94,02	93,14	(0,05)
0+030,00	30,00	87,24	87,74	88,98	2,00	1,12	89,24	88,36	0,26
0+040,00	40,00	82,46	82,90	84,00	2,00	1,12	84,46	83,58	0,45
0+050,00	50,00	77,67	78,08	79,08	2,00	1,12	79,67	78,79	0,59
0+060,00	60,00	72,89	73,26	74,19	2,00	1,12	74,89	74,01	0,70
0+070,00	70,00	68,11	68,46	69,33	2,00	1,12	70,11	69,23	0,78
0+080,00	80,00	63,33	63,66	64,47	2,00	1,12	65,33	64,45	0,86
0+090,00	90,00	58,55	58,86	59,63	2,00	1,12	60,55	59,67	0,91
0+100,00	100,00	53,76	54,06	54,80	2,00	1,12	55,76	54,88	0,96
0+110,00	110,00	48,98	49,27	49,98	2,00	1,12	50,98	50,10	1,01
0+120,00	120,00	44,20	44,47	45,15	2,00	1,12	46,20	45,32	1,05

Tabla 13: Perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse El Guapo. Fuente: Propia

A partir de los resultados del tirante de agua calculado en la longitud del rápido, se pudo observar que para el inicio del rápido, en la progresiva 0+05,60, la altura del perfil del agua es de 3.46 metros, lo cual no representa un riesgo en la descarga en este punto, ya que los muros del canal de descarga tienen una altura de 5,9 metros. Para la progresiva 0+20,00, la altura de los muros de 2.00 metros, se ve rebasada por la altura del agua, de 2.05 metros. Ya en la progresiva 0+30,00 la altura del agua sobre el rápido es de 1.74 metros, estando por debajo de la altura de los muros del rápido.

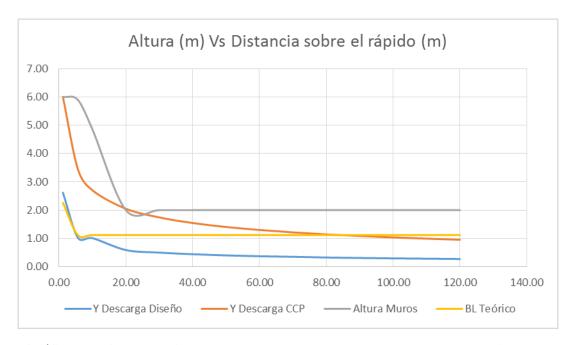


Gráfico 12: Comparativa entre alturas del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse El Guapo. Fuente: Propia

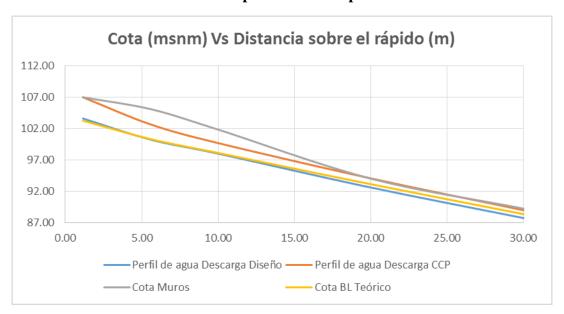


Gráfico 13: Comparativa del perfil del agua para la descarga de diseño, la descarga a CCP y el borde libre teórico respecto a los muros en el rápido del embalse El Guapo. Fuente: Propia

CAPÍTULO 5: CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

En todos los casos, el diseño de los muros se hace colocando una transición de altura desde el cimacio donde coincide con la CCP hasta el pie o poco más adelante, donde la lámina es mucho menor. Luego de esta transición, la altura de los muros suele conservarse hasta el pozo disipador de energía. Para los casos de Matícora y Manuelote, el agua circulante no desciende lo suficientemente rápido y se desbordan los muros, en tanto ocurre la transición de altura en la estructura del cimacio. En los embalses Hueque, Alto Tocuyo y Taguay, sólo se invadió el espacio del BL sin que eventualmente se puedan avizorar mayores problemas en dichos rápidos.

Para los rápidos de los embalses Matícora, Manuelote y El Guapo, el agua circulante excedería la altura prevista de los muros, por lo que se puede suponer que se ocasionarían daños, tales como los ocurridos en El Guapo.

En esos casos de haberse considerado un criterio diferente para la determinación del BL los muros se hubiesen proyectado un poco más altos en las secciones críticas y se podría suponer que las condiciones de funcionamiento del rápido, aunque no ideales, no deberían presentar mayores problemas.

No se evidencia una relación entre el valor del Cd y el desborde de aguas sobre el canal del rápido de los aliviaderos estudiados, ya que si bien los valores de Cd para los aliviaderos que se desbordan (Matícora, Manuelote y El Guapo) varían entre los 0.72 y 0.74, para taguay el valor de Cd es de 0.7804, por lo que se confirma que el Cd varía en mayor medida respecto a la geometría del canal del rápido.

En un principio se propuso el uso de programas como HEC-RAS y Flow 3D para este análisis, pero la aplicación de una tabla de cálculo excel fue más eficiente y rápido para obtener resultados fiables y coherentes del perfil de aguas sobre el rápido, ya que no arroja resultados erroneos, generados por problemas de calibración para determinar la energía específica en puntos donde el valor de Y coincida con puntos singulares de la gráfica del comportamiento de la energía específica

En general las modificaciones en la altura de muros que se hubiesen requerido significaría incurrir en costos adicionales, que sin lugar a ningún tipo de dudas, hubiesen significado costos marginales comparados a las inversiones globales de la obra,

Se debe resaltar que solo se ha investigado el funcionamiento de los rápidos de aliviaderos rectos y descarga libre, lo cual no da garantía de que el aliviadero pueda tener mayor seguridad ante la circulación de estos gastos extraordinarios, toda vez que podrían presentarse problemas en otros de sus componentes.

5.2 Recomendaciones

Se recomienda incluir el perfil del agua en el rápido, originado por la descarga correspondiente a un nivel de agua en el embalse igual a la cota de cresta de la presa, como criterio adicional en la definición el Borde Libre correspondiente.

Realizar investigaciones análogas a esta, para determinar el funcionamiento en condiciones extremas similares del pozo amortiguador de energía y del canal de descarga aguas abajo de dicho pozo amortiguador.

Siendo que los embalses de Matícora y Manuelote son, con El Guapo, los únicos construidos en los cuales se detectó la posibilidad de eventuales problemas, se recomienda poner en conocimiento de lo encontrado al Ministerio del Ecosicialismo y Aguas de suerte que de considerarlo procedente, se investiguen más detalladamente dichos embalses, exceptuando el embalse de El Guapo, que ya fue reconstruido.

BIBLIOGRAFÍA

- I., J. J. (1999). Proyectos de Ingeniería Hidráulica. Caracas: Fundación Polar.
- Isava Carbonell, I. M. (1975). *Proyecto Embalse El Guapo (Estado Miranda). Informe y Planos.* Caracas: Instituto Nacional de Obras Sanitarias.
- Isava Carbonell, I. M. (1978). *Proyecto Embalse Hueque (Estado Falcón). Informe y Planos*. Caracas: Instituto Nacional de Obras Sanitarias.
- Mendez, M. V. (2009). *Elementos de Hidráulica de Canales*. Caracas: Universidad Católica Andrés Bello.
- Oficina ROYGA. (1987). *Proyecto Embalse Taguay (Estado Aragua). Informe y Planos.* Caracas: Ministerio del Ambiente y de los Recursos Naturales Renovables.
- OTEHA, C.A. (1967). *Proyecto Embalse Alto Tocuyo (Estado Lara). Informe y Planos.* Caracas: Instituto Nacional de Obras Públicas.
- OTEHA, C.A. (1971). *Proyecto Socuy Embalse Manuelote (Estado Zulia). Informe y Planos.* Caracas: Ministerio de Obras Públicas.
- OTEHA, C.A. (1974). *Proyecto Embalse Matícora (Estado Falcón). Informe y Planos.* Caracas: Ministerio de Obras Públicas.
- United States Bureau Of Reclamation. (1987). Desing of Small Dams.
- Ven Te Chow, P. D. (2004). *Hidráulica de Canales Abiertos*. Bogotá: McGRAW-HILL INTERAMERICANA S.A.
- Villar, L. M. (2016). Lecciones Aprendidas de los Incidentes y Fallas en las Presas de Venezuela. Caracas.

ANEXOS

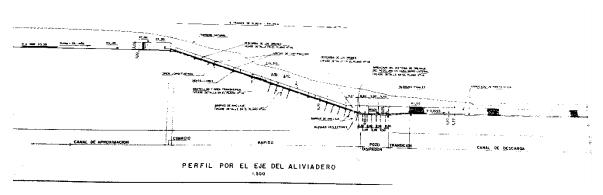


Figura 5: Perfil del aliviadero del embalse Hueque

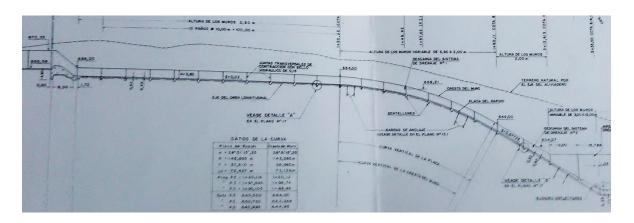


Figura 6: Perfil del aliviadero del Embalse Alto Tocuyo

Figura 7: Perfil del aliviadero del Embalse Matícora

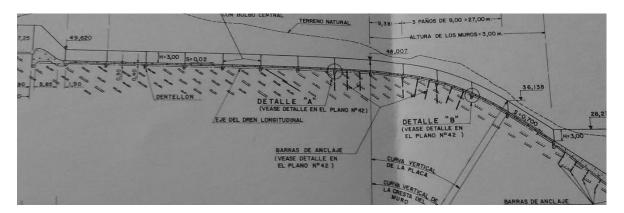


Figura 8: Perfil del aliviadero del Embalse Manuelote

Figura 9: Perfil del aliviadero del Embalse Taguay

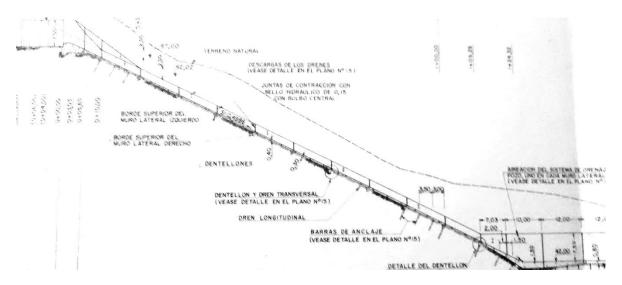


Figura 10: Perfil del aliviadero del Embalse El Guapo

H/Hd	Cd/Cdo
0,04	0,800
0,10	0,821
0,20	0,850
0,30	0,876
0,40	0,900
0,50	0,921
0,60	0,940
0,70	0,957
0,80	0,973
0,90	0,988
1,00	1,004
1,10	1,018
1,20	1,031
1,30	1,043
1,40	1,055
1,50	1,062
1,60	1,070
1,70	1,076
1,80	1,080
1,90	1,083
2,00	1,085
2,10	1,086
2,20	1,086
2,30	1,086
2,40	1,086
2,50	1,086

$$y = -0.0634x^2 + 0.2718x + 0.7968$$

 $R^2 = 0.9991$

Tabla 14: Valores para determinar el gráfico Cd/Cdo vs H/Hd

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
1,000	0,9538	15,000	3,673	0,688	94,432	0,9940	1,173
2,000	1,9076	30,000	1,837	0,172	94,870	0,9986	0,415
3,000	2,8614	45,000	1,224	0,076	95,727	1,0077	0,226
0,100	0,0954	1,500	36,733	68,772	161,657	1,7017	37,087
0,200	0,1908	3,000	18,367	17,194	110,175	1,1597	13,113
0,300	0,2861	4,500	12,244	7,641	100,717	1,0602	7,137
0,400	0,3815	6,000	9,183	4,298	97,470	1,0260	4,636
0,659	0,6286	9,885	5,574	1,584	95,003	1,0000	2,192

Tabla 15: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse Hueque

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
1,000	0,9998	15,00	28,333	40,915	704,615	1,04744	9,046
1,500	1,4997	22,50	18,889	18,185	682,385	1,01440	4,924
2,000	1,9996	30,00	14,167	10,230	674,930	1,00331	3,198
2,100	2,0996	31,50	13,492	9,278	674,078	1,00205	2,973
2,200	2,1996	33,00	12,879	8,454	673,354	1,00097	2,772
2,300	2,2995	34,50	12,319	7,735	672,735	1,00005	2,593
2,302	2,3015	34,53	12,308	7,721	672,723	1,00003	2,590
2,308	2,3075	34,62	12,276	7,681	672,689	0,99998	2,580
2,305	2,3045	34,58	12,290	7,698	672,703	1,00000	2,585
2,301	2,3005	34,52	12,312	7,726	672,727	1,00004	2,591
2,306	2,3055	34,59	12,287	7,695	672,701	1,00000	2,583

Tabla 16: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse Alto Tocuyo

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
2,000	1,9684	40	4,792	1,170	120,902	0,9842	1,082
1,500	1,4763	30	6,389	2,080	121,320	0,9876	1,666
1,400	1,3779	28	6,845	2,388	121,530	0,9893	1,847
1,000	0,9842	20	9,584	4,682	123,430	1,0048	3,060
1,100	1,0826	22	8,712	3,868	122,715	0,9990	2,652
1,090	1,0728	21,8	8,792	3,940	122,777	0,9995	2,689
1,080	1,0629	21,6	8,874	4,014	122,841	1,0000	2,726
1,080	1,0629	21,6	8,874	4,014	122,841	1,0000	2,726
1,088	1,0708	21,76	8,808	3,954	122,789	0,9996	2,696
1,085	1,0678	21,7	8,833	3,977	122,809	0,9997	2,707

Tabla 17: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse Matícora

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
1,000	0,9998	12	16,433	13,764	61,384	1,14309	5,247
2,000	1,9996	24	8,217	3,441	52,061	0,96948	1,855
1,580	1,5797	18,96	10,401	5,514	53,714	1,00026	2,642
3,500	3,4993	42	4,695	1,123	51,242	0,95423	0,801
3,100	3,0994	37,2	5,301	1,432	51,151	0,95253	0,961
3,150	3,1494	37,8	5,217	1,387	51,156	0,95263	0,938
3,140	3,1394	37,68	5,234	1,396	51,155	0,95261	0,943
3,130	3,1294	37,56	5,250	1,405	51,154	0,95259	0,947
3,120	3,1194	37,44	5,267	1,414	51,153	0,95257	0,952
3,120	3,1194	37,44	5,267	1,414	51,153	0,95257	0,952
1,582	1,5817	18,984	10,388	5,500	53,702	1,00004	2,637

Tabla 18: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse Manuelote

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	$\mathbf{E_1/E_0}$	Froude
1,000	0,955	20,00	12,195	7,580	336,695	1,0056	3,894
2,000	1,910	40,00	6,097	1,895	331,965	0,9914	1,376
1,100	1,051	22,00	11,086	6,264	335,475	1,0019	3,375
1,200	1,146	24,00	10,162	5,263	334,569	0,9992	2,962
1,190	1,137	23,80	10,247	5,352	334,649	0,9995	2,999
1,180	1,127	23,60	10,334	5,443	334,730	0,9997	3,037
1,170	1,117	23,40	10,423	5,537	334,814	1,0000	3,077
1,169	1,116	23,38	10,432	5,547	334,823	1,0000	3,081

Tabla 19: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse Taguay

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E ₁ /E ₀	Froude
1,000	0,9538	12,000	8,483	3,668	103,822	1,0019	2,708
2,000	1,9076	24,000	4,242	0,917	102,025	0,9846	0,958
1,100	1,0492	13,200	7,712	3,031	103,280	0,9967	2,348
1,200	1,1446	14,400	7,069	2,547	102,892	0,9930	2,060
1,010	0,9633	12,120	8,399	3,595	103,758	1,0013	2,668
1,020	0,9729	12,240	8,317	3,526	103,699	1,0008	2,629
1,033	0,9853	12,396	8,212	3,437	103,622	1,0000	2,580

Tabla 20: Cálculo del tirante de agua al inicio del rápido para descarga de diseño en el Embalse El Guapo

progres	X (m)	$\mathbf{Z}(\mathbf{m})$	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+002,80	2,80	92,790	0,00	9,885	16,318	5,574	1,584	0,6058	0,0119	0,0119	0,659	0,6286	0,0000	95,0026	1,0000	2,1922
0+013,40	13,40	89,690	13,40	6,690	15,892	8,236	3,457	0,4210	0,0420	0,0270	0,446	1,5000	0,3618	95,0088	1,0001	3,9374
0+024,00	24,00	86,591	24,00	4,965	15,662	11,098	6,278	0,3170	0,1113	0,0767	0,331	0,3157	1,8408	95,0255	1,0003	6,1588
0+034,60	36,60	83,492	34,60	4,695	15,626	11,736	7,020	0,3005	0,1336	0,1225	0,313	0,2985	4,2385	95,0490	1,0005	6,6975
0+045,20	45,20	80,392	45,20	4,455	15,594	12,368	7,797	0,2857	0,1587	0,1462	0,297	0,2833	6,6082	95,0805	1,0008	7,2458
0+055,80	55,80	77,293	55,80	4,335	15,578	12,710	8,234	0,2783	0,1735	0,1661	0,289	0,2756	9,2684	95,0710	1,0007	7,5485
0+066,40	66,40	74,193	66,40	4,230	15,564	13,026	8,648	0,2718	0,1881	0,1808	0,282	0,2690	12,0051	95,1151	1,0012	7,8316
0+077,00	77,00	71,094	77,00	4,170	15,556	13,213	8,898	0,2681	0,1971	0,1926	0,278	0,2652	14,8302	95,0874	1,0009	8,0010
0+087,60	87,60	67,994	87,60	4,110	15,548	13,406	9,160	0,2643	0,2068	0,2020	0,274	0,2613	17,6952	95,1105	1,0012	8,1769
0+098,33	98,30	64,857	98,33	4,065	15,542	13,555	9,365	0,2615	0,2144	0,2106	0,271	0,2585	20,7083	95,1888	1,0020	8,3134

Tabla 21: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Hueque

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v²/2g	R (m)	S	S media	v (m)	Y vertical	hf	E (m)	E/Eo	F
0+010.11	10.110	662,700	0.00	34,590	19.612	12.287	7.695	1.76372	0.020000	0.02000	2,306	2,3055	0.0000	672,7005	1,0000	2,5833
0+020.12	20,120	662,500	10.01	34,350	19,580	12,373	7,803	1,75434	0.014208	0.01710	2,290	2,2895	0,1712	672,7637	1,0001	2,6105
0+030.12	30,120	662,300	10,00	33,630	19,484	12,638	8.141	1.72603	0.015147	0.01468	2,242	2,2416	0,1468	672,8294	1,0001	2,6948
0+040.12	40.120	662,100	10,00	33,165	19,422	12,815	8,370	1,70760	0.015799	0.01547	2,211	2,2106	0.1547	672,8353	1,0002	2,7516
0+050,12	50,120	661,900	10.00	32,715	19,362	12,991	8,602	1,68965	0.016465	0,01613	2,181	2,1806	0.1613	672,8439	1,0002	2,8085
0+060,12	60,120	661,700	10.00	32,295	19,306	13,160	8.827	1,67280	0.017123	0.01679	2,153	2,1526	0.1679	672,8475	1,0002	2,8635
0+070.12	70,120	661,500	10.00	31,890	19,252	13,327	9.052	1,65645	0,017792	0.01746	2,126	2,1256	0.1746	672,8522	1,0002	2.9182
0+080,12	80,120	661,300	10.00	31,500	19,200	13,492	9,278	1.64063	0.018469	0.01813	2,100	2,0996	0.1813	672.8589	1,0002	2,9726
0+090.12	90,120	661,100	10.00	31,125	19,150	13,655	9,504	1.62533	0.019155	0.01881	2,075	2,0746	0.1881	672,8667	1.0002	3,0266
0+100,12	100,120	660,900	10,00	30,765	19,102	13,814	9,726	1,61056	0,019843	0,01950	2,051	2,0506	0,1950	672,8716	1,0003	3,0797
0+110,12	110,120	660,700	10,00	30,420	19,056	13,971	9,948	1,59635	0,020538	0,02019	2,028	2,0276	0,2019	672,8775	1,0003	3,1323
0+120,12	120,120	660,500	10,00	30,090	19,012	14,124	10,168	1,58268	0,021231	0,02088	2,006	2,0056	0,2088	672,8824	1,0003	3,1839
0+121,12	121,120	660,418	1,00	29,910	18,988	14,209	10,290	1,57521	0,021623	0,02143	1,994	1,9936	0,0214	672,7230	1,0000	3,2127
0+125,12	125,120	660,160	5,00	29,520	18,936	14,397	10,564	1,55894	0,022508	0,02207	1,968	1,9676	0,1104	672,8020	1,0002	3,2766
0+130,12	130,120	659,730	5,00	28,875	18,850	14,719	11,042	1,53183	0,024081	0,02329	1,925	1,9246	0,1165	672,8131	1,0002	3,3871
0+135,12	135,120	659,125	5,00	28,050	18,740	15,152	11,701	1,49680	0,026317	0,02520	1,870	1,8696	0,1260	672,8216	1,0002	3,5376
0+140,12	140,120	658,344	5,00	27,090	18,612	15,688	12,544	1,45551	0,029281	0,02780	1,806	1,8056	0,1390	672,8326	1,0002	3,7271
0+145,12	145,120	657,384	5,00	26,040	18,472	16,321	13,577	1,40970	0,033068	0,03117	1,736	1,7357	0,1559	672,8526	1,0002	3,9549
0+150,12	150,120	656,241	5,00	24,945	18,326	17,037	14,794	1,36118	0,037752	0,03541	1,663	1,6627	0,1771	672,8748	1,0003	4,2181
0+155,12	155,120	654,910	5,00	23,850	18,180	17,820	16,185	1,31188	0,043378	0,04057	1,590	1,5897	0,2029	672,8876	1,0003	4,5121
0+160,12	160,120	653,386	5,00	22,755	18,034	18,677	17,779	1,26178	0,050184	0,04678	1,517	1,5167	0,2339	672,9156	1,0003	4,8415
0+165,12	165,120	651,663	5,00	21,690	17,892	19,594	19,568	1,21227	0,058253	0,05422	1,446	1,4457	0,2711	672,9478	1,0004	5,2024
0+170,12	170,120	649,733	5,00	20,655	17,754	20,576	21,579	1,16340	0,067851	0,06305	1,377	1,3767	0,3153	673,0040	1,0005	5,5983
0+175,12	175,120	647,587	5,00	19,665	17,622	21,612	23,806	1,11593	0,079120	0,07349	1,311	1,3107	0,3675	673,0712	1,0006	6,0264
0+180,12	180,120	645,214	5,00	18,735	17,498	22,685	26,229	1,07069	0,092105	0,08561	1,249	1,2488	0,4281	673,1199	1,0006	6,4807
0+181,06	181,061	642,602	1,06	17,835	17,378	23,830	28,943	1,02630	0,107525	0,09982	1,189	1,1888	0,1058	672,8396	1,0002	6,9775

Tabla 22: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Alto Tocuyo

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+005,71	5,706	117,760	0,000	21,600	22,160	8,874	4,014	0,9747	0,01597	0,01597	1,080	1,0629	0,0000	122,837	1,0000	2,7263
0+015,19	15,190	115,970	10,000	18,020	21,802	10,637	5,767	0,8265	0,02857	0,02227	0,901	0,8867	0,2227	122,846	1,0000	3,5779
0+025,19	25,190	114,180	10,000	15,780	21,578	12,146	7,519	0,7313	0,04384	0,03621	0,789	0,7765	0,3621	122,838	1,0000	4,3658
0+035,19	35,190	112,390	10,000	14,240	21,424	13,460	9,234	0,6647	0,06113	0,05249	0,712	0,7007	0,5249	122,850	1,0001	5,0930
0+045,19	45,190	110,600	10,000	13,120	21,312	14,609	10,878	0,6156	0,07975	0,07044	0,656	0,6456	0,7044	122,828	0,9999	5,7588
0+055,19	55,190	108,810	10,000	12,220	21,222	15,685	12,539	0,5758	0,10048	0,09012	0,611	0,6013	0,9012	122,852	1,0001	6,4066
0+065,19	65,190	107,020	10,000	11,500	21,150	16,667	14,158	0,5437	0,12245	0,11147	0,575	0,5659	1,1147	122,859	1,0002	7,0176
0+075,19	75,190	105,230	10,000	10,900	21,090	17,584	15,759	0,5168	0,14581	0,13413	0,545	0,5364	1,3413	122,867	1,0002	7,6047
0+085,19	85,190	103,440	10,000	10,400	21,040	18,430	17,312	0,4943	0,16994	0,15788	0,520	0,5118	1,5788	122,843	1,0000	8,1600
0+095,19	95,190	101,650	10,000	9,960	20,996	19,244	18,875	0,4744	0,19569	0,18282	0,498	0,4901	1,8282	122,843	1,0000	8,7066
0+097,19	97,190	101,637	2,000	9,600	20,960	19,966	20,318	0,4580	0,22074	0,20822	0,480	0,4724	0,4164	122,844	1,0000	9,2010
0+099,19	99,190	101,606	2,000	9,600	20,960	19,966	20,318	0,4580	0,22074	0,22074	0,480	0,4724	0,4415	122,838	1,0000	9,2010
0+101,19	101,900	101,557	2,000	9,580	20,958	20,007	20,402	0,4571	0,22223	0,22149	0,479	0,4714	0,4430	122,873	1,0003	9,2295
0+103,19	103,190	101,490	2,000	9,580	20,958	20,007	20,402	0,4571	0,22223	0,22223	0,479	0,4714	0,4445	122,808	0,9997	9,2295
0+105,19	105,190	101,405	2,000	9,560	20,956	20,049	20,487	0,4562	0,22375	0,22299	0,478	0,4704	0,4460	122,808	0,9997	9,2586
0+107,19	107,190	101,302	2,000	9,520	20,952	20,133	20,659	0,4544	0,22682	0,22529	0,476	0,4685	0,4506	122,880	1,0003	9,3169
0+109,19	109,190	101,181	2,000	9,500	20,950	20,176	20,748	0,4535	0,22839	0,22761	0,475	0,4675	0,4552	122,852	1,0001	9,3466
0+111,19	111,190	101,041	2,000	9,480	20,948	20,218	20,834	0,4525	0,23002	0,22921	0,474	0,4665	0,4584	122,800	0,9997	9,3759
0+113,19	113,190	100,883	2,000	9,440	20,944	20,304	21,012	0,4507	0,23321	0,23162	0,472	0,4645	0,4632	122,823	0,9999	9,4357
0+115,19	115,190	100,706	2,000	9,400	20,940	20,390	21,190	0,4489	0,23645	0,23483	0,470	0,4626	0,4697	122,828	0,9999	9,4958
0+117,19	117,190	100,511	2,000	9,360	20,936	20,478	21,374	0,4471	0,23977	0,23811	0,468	0,4606	0,4762	122,822	0,9999	9,5572
1+118,00	118,000	100,306	2,000	9,320	20,932	20,565	21,556	0,4453	0,24311	0,24144	0,466	0,4586	0,4829	122,804	0,9997	9,6184
0+118,10	118,095	100,112	0,095	9,180	20,918	20,879	22,219	0,4389	0,25546	0,24929	0,459	0,4517	0,0237	122,806	0,9997	9,8394
0+164,75	164,753	76,000	46,658	7,840	20,784	24,448	30,464	0,3772	0,42845	0,34196	0,392	0,3858	15,9552	122,805	0,9997	12,4671

Tabla 23: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Matícora

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+007,83	7,282	46,6200	0,000	18,984	3,164	10,388	5,5000	6,000	0,00000	0,00000	1,582	1,582	0,0000	53,7020	1,0000	2,6369
0+018,50	18,504	46,4065	10,676	18,792	3,132	10,494	5,6128	6,000	0,00199	0,00100	1,566	1,566	0,0107	53,5960	0,9981	2,6774
0+028,50	28,504	46,2065	10,000	18,240	3,040	10,811	5,9571	6,000	0,00211	0,00205	1,520	1,520	0,0205	53,7041	1,0001	2,7997
0+038,50	38,504	46,0065	10,000	17,904	2,984	11,014	6,1829	6,000	0,00219	0,00215	1,492	1,492	0,0215	53,7029	1,0001	2,8789
0+048,50	48,504	45,8065	10,000	17,580	2,930	11,217	6,4129	6,000	0,00228	0,00224	1,465	1,465	0,0224	53,7068	1,0001	2,9589
0+058,50	58,504	45,6065	10,000	17,280	2,880	11,412	6,6378	6,000	0,00236	0,00232	1,440	1,440	0,0232	53,7075	1,0001	3,0363
0+068,50	68,504	45,4065	10,000	17,004	2,834	11,597	6,8548	6,000	0,00243	0,00240	1,417	1,417	0,0240	53,7023	1,0000	3,1105
0+078,50	78,504	45,2065	10,000	16,728	2,788	11,789	7,0836	6,000	0,00251	0,00247	1,394	1,394	0,0247	53,7088	1,0002	3,1879
0+088,50	88,504	45,0065	10,000	16,476	2,746	11,969	7,3016	6,000	0,00259	0,00255	1,373	1,373	0,0255	53,7066	1,0001	3,2613
0+090,54	90,540	44,9837	2,000	16,428	2,738	12,004	7,3443	6,000	0,00261	0,00260	1,369	1,369	0,0052	53,7022	1,0000	3,2756
0+092,54	92,540	44,9304	2,000	16,356	2,726	12,057	7,4093	6,000	0,00263	0,00262	1,363	1,363	0,0052	53,7079	1,0001	3,2973
0+094,54	94,540	44,8464	2,000	16,260	2,710	12,128	7,4969	6,000	0,00266	0,00265	1,355	1,355	0,0053	53,7036	1,0001	3,3265
0+096,54	96,540	44,7315	2,000	16,128	2,688	12,227	7,6198	6,000	0,00270	0,00268	1,344	1,344	0,0054	53,7007	1,0000	3,3673
0+098,54	98,540	44,5854	2,000	15,960	2,660	12,356	7,7814	6,000	0,00276	0,00273	1,330	1,330	0,0055	53,7023	1,0000	3,4207
0+100,54	100,540	44,4077	2,000	15,756	2,626	12,516	7,9842	6,000	0,00283	0,00280	1,313	1,313	0,0056	53,7105	1,0002	3,4874
0+102,54	102,540	44,1978	2,000	15,540	2,590	12,690	8,2078	6,000	0,00291	0,00287	1,295	1,295	0,0057	53,7063	1,0001	3,5603
0+104,54	104,540	43,9551	2,000	15,300	2,550	12,889	8,4672	6,000	0,00300	0,00296	1,275	1,275	0,0059	53,7032	1,0001	3,6444
0+106,54	106,540	43,6789	2,000	15,036	2,506	13,115	8,7667	6,000	0,00311	0,00306	1,253	1,253	0,0061	53,7047	1,0001	3,7407
0+108,54	108,540	43,3682	2,000	14,760	2,460	13,360	9,0973	6,000	0,00323	0,00317	1,230	1,230	0,0063	53,7018	1,0000	3,8461
0+110,54	110,540	43,0221	2,000	14,460	2,410	13,638	9,4799	6,000	0,00336	0,00330	1,205	1,205	0,0066	53,7136	1,0003	3,9666
0+112,54	112,540	42,6393	2,000	14,160	2,360	13,927	9,8859	6,000	0,00351	0,00344	1,180	1,180	0,0069	53,7121	1,0002	4,0934
0+114,54	114,540	42,2184	2,000	13,848	2,308	14,240	10,3352	6,000	0,00367	0,00359	1,154	1,154	0,0072	53,7148	1,0003	4,2323
0+116,54	116,540	41,7578	2,000	13,536	2,256	14,569	10,8183	6,000	0,00384	0,00376	1,128	1,128	0,0075	53,7116	1,0002	4,3797
0+118,54	118,540	41,4645	2,000	13,344	2,224	14,778	11,1310	6,000	0,00395	0,00390	1,112	1,112	0,0078	53,7153	1,0003	4,4743
0+120,54	120,540	40,9185	2,000	13,020	2,170	15,146	11,6922	6,000	0,00415	0,00405	1,085	1,085	0,0081	53,7038	1,0001	4,6425
0+122,54	122,540	40,3261	2,000	12,684	2,114	15,547	12,3195	6,000	0,00437	0,00426	1,057	1,057	0,0085	53,7111	1,0002	4,8281
0+124,54	124,540	39,6844	2,000	12,348	2,058	15,970	12,9990	6,000	0,00461	0,00449	1,029	1,029	0,0090	53,7214	1,0004	5,0265
0+126,54	126,540	38,9897	2,000	12,024	2,004	16,401	13,7101	6,000	0,00486	0,00474	1,002	1,002	0,0095	53,7113	1,0002	5,2312
0+127,37	127,370	38,3919	0,830	11,760	1,960	16,769	14,3323	6,000	0,00509	0,00498	0,980	0,980	0,0041	53,7083	1,0002	5,4083

Tabla 24: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Manuelote

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+009,00	9,000	328,160	0	23,380	22,338	10,432	5,547	1,04665	0,02007	0,0201	1,169	1,115	0,000	334,822	1,0000	3,0805
0+019,00	19,000	325,530	10	19,220	21,922	12,689	8,206	0,87674	0,03759	0,0288	0,961	0,917	0,288	334,941	1,0003	4,1327
0+029,00	29,000	324,591	10	18,380	21,838	13,269	8,974	0,84165	0,04340	0,0405	0,919	0,877	0,405	334,847	1,0001	4,4192
0+039,00	39,000	323,652	10	17,520	21,752	13,921	9,877	0,80544	0,05065	0,0470	0,876	0,836	0,470	334,835	1,0000	4,7488
0+049,00	49,000	322,713	10	16,780	21,678	14,535	10,768	0,77406	0,05821	0,0544	0,839	0,800	0,544	334,825	1,0000	5,0664
0+059,00	59,000	321,774	10	16,120	21,612	15,130	11,668	0,74588	0,06627	0,0622	0,806	0,769	0,622	334,833	1,0000	5,3807
0+069,00	69,000	320,835	10	15,540	21,554	15,694	12,554	0,72098	0,07459	0,0704	0,777	0,741	0,704	334,834	1,0000	5,6845
0+079,00	79,000	319,896	10	15,020	21,502	16,238	13,439	0,69854	0,08328	0,0789	0,751	0,716	0,789	334,840	1,0000	5,9824
0+089,00	89,000	318,957	10	14,560	21,456	16,751	14,302	0,67860	0,09211	0,0877	0,728	0,694	0,877	334,830	1,0000	6,2682
0+099,00	99,000	318,018	10	14,140	21,414	17,248	15,163	0,66032	0,10127	0,0967	0,707	0,674	0,967	334,822	1,0000	6,5493
0+109,00	109,000	317,079	10	13,740	21,374	17,750	16,058	0,64284	0,11114	0,1062	0,687	0,655	1,062	334,854	1,0001	6,8373
0+119,00	119,000	316,140	10	13,400	21,340	18,201	16,885	0,62793	0,12057	0,1159	0,670	0,639	1,159	334,823	1,0000	7,0994
0+129,00	129,000	315,201	10	13,060	21,306	18,675	17,776	0,61297	0,13106	0,1258	0,653	0,623	1,258	334,858	1,0001	7,3785
0+139,00	139,000	314,262	10	12,760	21,276	19,114	18,621	0,59974	0,14134	0,1362	0,638	0,609	1,362	334,854	1,0001	7,6402
0+149,00	149,000	313,323	10	12,480	21,248	19,542	19,464	0,58735	0,15190	0,1466	0,624	0,595	1,466	334,848	1,0001	7,8985
0+159,00	159,000	312,384	10	12,220	21,222	19,958	20,302	0,57582	0,16267	0,1573	0,611	0,583	1,573	334,842	1,0000	8,1520
0+169,00	169,000	311,445	10	11,980	21,198	20,358	21,124	0,56515	0,17352	0,1681	0,599	0,571	1,681	334,821	1,0000	8,3982
0+179,00	179,000	310,506	10	11,740	21,174	20,774	21,996	0,55445	0,18534	0,1794	0,587	0,560	1,794	334,856	1,0001	8,6570
0+189,00	189,000	309,567	10	11,520	21,152	21,171	22,845	0,54463	0,19712	0,1912	0,576	0,549	1,912	334,873	1,0001	8,9063
0+199,00	199,000	308,628	10	11,320	21,132	21,545	23,659	0,53568	0,20869	0,2029	0,566	0,540	2,029	334,856	1,0001	9,1433
0+209,00	209,000	307,689	10	11,120	21,112	21,933	24,519	0,52671	0,22119	0,2149	0,556	0,530	2,149	334,887	1,0002	9,3913
0+219,00	219,000	306,750	10	10,940	21,094	22,293	25,330	0,51863	0,23326	0,2272	0,547	0,522	2,272	334,874	1,0001	9,6237
0+229,00	229,000	305,811	10	10,780	21,078	22,624	26,088	0,51143	0,24474	0,2390	0,539	0,514	2,390	334,803	0,9999	9,8388
0+239,00	239,000	304,872	10	10,620	21,062	22,965	26,880	0,50423	0,25698	0,2509	0,531	0,506	2,509	334,767	0,9998	10,0620
0+249,00	249,000	303,933	10	10,460	21,046	23,316	27,708	0,49701	0,27002	0,2635	0,523	0,499	2,635	334,775	0,9998	10,2936
0+259,00	259,000	302,994	10	10,300	21,030	23,679	28,578	0,48978	0,28398	0,2770	0,515	0,491	2,770	334,833	1,0000	10,5348
0+269,00	269,000	302,055	10	10,160	21,016	24,005	29,370	0,48344	0,29695	0,2905	0,508	0,485	2,905	334,815	1,0000	10,7531
0+279,00	279,000	301,116	10	10,020	21,002	24,340	30,195	0,47710	0,31070	0,3038	0,501	0,478	3,038	334,827	1,0000	10,9791
0+289,00	289,000	300,177	10	9,880	20,988	24,685	31,058	0,47075	0,32532	0,3180	0,494	0,471	3,180	334,886	1,0002	11,2133
0+299,00	299,000	299,238	10	9,760	20,976	24,989	31,827	0,46529	0,33860	0,3320	0,488	0,465	3,320	334,850	1,0001	11,4210
0+309,00	309,000	298,299	10	9,640	20,964	25,300	32,624	0,45984	0,35256	0,3456	0,482	0,460	3,456	334,839	1,0000	11,6349
0+319,00	319,000	297,360	10	9,520	20,952	25,619	33,452	0,45437	0,36730	0,3599	0,476	0,454	3,599	334,865	1,0001	11,8556
0+329,00	329,000	296,421	10	9,420	20,942	25,891	34,166	0,44981	0,38021	0,3738	0,471	0,449	3,738	334,774	0,9998	12,0449
0+339,00	339,000	295,482	10	9,300	20,930	26,225	35,054	0,44434	0,39648	0,3883	0,465	0,444	3,883	334,863	1,0001	12,2788
0+349,00	349,000	294,543	10	9,200	20,920	26,510	35,820	0,43977	0,41076	0,4036	0,460	0,439	4,036	334,838	1,0000	12,4795

Tabla 25: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse Taguay

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+005,60	5,600	99,200	0,0	12,396	14,066	8,212	3,437	0,881	0,0156	0,0156	1,033	0,9853	0,0000	103,6223	1,0000	2,5797
0+010,00	10,000	97,000	4,4	9,576	13,596	10,631	5,760	0,704	0,0353	0,0255	0,798	0,7611	0,1122	103,6333	1,0001	3,7996
0+020,00	20,000	92,020	10,0	7,116	13,186	14,306	10,431	0,540	0,0910	0,0632	0,593	0,5656	0,6320	103,6486	1,0003	5,9314
0+030,00	30,000	87,238	10,0	6,000	13,000	16,967	14,673	0,462	0,1576	0,1243	0,500	0,4769	1,2430	103,6309	1,0001	7,6610
0+040,00	40,000	82,456	10,0	5,304	12,884	19,193	18,775	0,412	0,2348	0,1962	0,442	0,4216	1,9620	103,6146	0,9999	9,2172
0+050,00	50,000	77,674	10,0	4,812	12,802	21,155	22,810	0,376	0,3222	0,2785	0,401	0,3900	2,7850	103,6590	1,0004	10,6661
0+060,00	60,000	72,892	10,0	4,440	12,740	22,928	26,794	0,349	0,4179	0,3701	0,370	0,3529	3,7010	103,7399	1,0012	12,0346
0+070,00	70,000	68,110	10,0	4,152	12,692	24,518	30,639	0,327	0,5210	0,4695	0,346	0,3300	4,6950	103,774	1,0015	13,3080
0+080,00	80,000	63,328	10,0	3,924	12,654	25,943	34,304	0,310	0,6263	0,5737	0,327	0,3119	5,7370	103,6809	1,0006	14,4848
0+090,00	90,000	58,546	10,0	3,732	12,622	27,278	37,925	0,296	0,7363	0,6813	0,311	0,2966	6,8130	103,5806	0,9996	15,6170
0+100,00	100,000	53,764	10,0	3,564	12,594	28,563	41,582	0,283	0,8570	0,7967	0,297	0,2833	7,9670	103,5963	0,9998	16,7337
0+110,00	110,000	48,982	10,0	3,420	12,570	29,766	45,159	0,272	0,9811	0,9191	0,285	0,2718	9,1910	103,6038	0,9998	17,8018
0+120,00	120,000	44,200	10,0	3,288	12,548	30,961	48,857	0,262	1,1157	1,0484	0,274	0,2613	10,4840	103,8023	1,0018	18,8845

Tabla 26: Cálculo del tirante de agua para descarga de diseño en el rápido del Embalse El Guapo

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	$\mathbf{E}_1/\mathbf{E}_0$	Froude
1,000	0,9538	15,00	13,229	8,920	102,664	1,05839175	4,224
2,000	1,9076	30,00	6,615	2,230	96,928	0,99925773	1,493
3,000	2,8614	45,00	4,410	0,991	96,642	0,99630928	0,813
4,000	3,8152	60,00	3,307	0,557	97,162	1,00167010	0,528
2,100	2,0030	31,50	6,300	2,023	96,816	0,99810309	1,388
2,200	2,0984	33,00	6,013	1,843	96,731	0,99722680	1,294
2,300	2,1937	34,50	5,752	1,686	96,670	0,99659794	1,211
1,947	1,8570	29,21	6,794	2,353	97,000	1,00000000	1,555

Tabla 27: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse Hueque

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E ₁ /E ₀	Froude
1,000	0,9998	15,000	33,891	58,542	722,242	1,0726	10,821
1,500	1,4997	22,500	22,594	26,019	690,219	1,0251	5,890
2,000	1,9996	30,000	16,946	14,636	679,336	1,0089	3,826
2,500	2,4995	37,500	13,557	9,368	674,568	1,0018	2,738
2,600	2,5995	39,000	13,035	8,660	673,960	1,0009	2,581
2,700	2,6995	40,500	12,552	8,030	673,430	1,0001	2,439
2,710	2,7095	40,650	12,506	7,971	673,381	1,0001	2,425
2,720	2,7195	40,800	12,460	7,913	673,333	1,0000	2,412
2,730	2,7295	40,950	12,414	7,855	673,285	0,9999	2,399
2,720	2,7195	40,800	12,460	7,913	673,333	1,0000	2,412
2,719	2,7185	40,785	12,465	7,919	673,338	1,0000	2,414

Tabla 28: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse Alto Tocuyo

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
2,000	1,9684	40,00	12,029	7,375	127,107	1,0169	2,716
3,000	2,9525	60,00	8,019	3,277	123,994	0,9920	1,478
4,000	3,9367	80,00	6,015	1,844	123,545	0,9884	0,960
2,100	2,0668	42,00	11,456	6,689	126,520	1,0122	2,524
2,200	2,1652	44,00	10,935	6,095	126,024	1,0082	2,354
2,300	2,2636	46,00	10,460	5,577	125,605	1,0048	2,202
2,400	2,3620	48,00	10,024	5,121	125,247	1,0020	2,066
2,500	2,4605	50,00	9,623	4,720	124,945	0,9996	1,943
2,600	2,5589	52,00	9,253	4,364	124,687	0,9975	1,832
2,520	2,4801	50,40	9,547	4,646	124,890	0,9991	1,920
2,540	2,4998	50,80	9,472	4,573	124,837	0,9987	1,898
2,480	2,4408	49,60	9,701	4,797	125,002	1,0000	1,967

Tabla 29: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse Matícora

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	$\mathbf{E_1/E_0}$	Froude
1,000	0,9998	12,000	34,945	62,240	109,860	1,9618	11,157
2,000	1,9996	24,000	17,473	15,561	64,181	1,1461	3,945
3,000	2,9994	36,000	11,648	6,915	56,534	1,0095	2,147
3,500	3,4993	42,000	9,984	5,081	55,200	0,9857	1,704
3,100	3,0994	37,200	11,273	6,477	56,196	1,0035	2,044
3,200	3,1994	38,400	10,920	6,078	55,897	0,9982	1,949
3,110	3,1094	37,320	11,236	6,435	56,164	1,0029	2,034
3,120	3,1194	37,440	11,200	6,393	56,132	1,0024	2,024
3,130	3,1294	37,560	11,165	6,354	56,103	1,0018	2,015
3,140	3,1394	37,680	11,129	6,313	56,072	1,0013	2,005
3,164	3,1634	37,968	11,045	6,218	56,001	1,0000	1,982

Tabla 30: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse Manuelote

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	E_1/E_0	Froude
1,000	0,955	20,00	18,436	17,323	346,438	1,028006	5,886
2,000	1,910	40,00	9,218	4,331	334,401	0,992288	2,081
3,000	2,865	60,00	6,145	1,925	332,950	0,987982	1,133
1,600	1,528	32,00	11,523	6,768	336,456	0,998386	2,909
1,700	1,624	34,00	10,845	5,995	335,779	0,996377	2,656
1,500	1,433	30,00	12,291	7,700	337,293	1,000869	3,204
1,400	1,337	28,00	13,169	8,839	338,336	1,003964	3,553
1,532	1,463	30,64	12,034	7,381	337,004	1,000012	3,104

Tabla 31: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse Taguay

Y (m)	Y vert (m)	A (m ²)	V (m/s)	V ² /2g (m)	E ₁ (m)	$\mathbf{E_1/E_0}$	Froude
1,000	0,9538	12,000	32,511	53,872	154,026	1,4395	10,380
6,500	6,1997	78,000	5,002	1,275	106,675	0,9970	0,626
6,000	5,7228	72,000	5,418	1,496	106,419	0,9946	0,706
4,000	3,8152	48,000	8,128	3,367	106,382	0,9942	1,298
3,000	2,8614	36,000	10,837	5,986	108,047	1,0098	1,998
3,940	3,7580	47,280	8,251	3,470	106,428	0,9947	1,327
3,460	3,3001	41,520	9,396	4,500	107,000	1,0000	1,613

Tabla 32: Cálculo del tirante de agua al inicio del rápido para descarga a CCP en el Embalse El Guapo

progres	X (m)	$\mathbf{Z}(\mathbf{m})$	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+002,80	2,80	92,790	0,00	32,805	19,374	6,0491	1,8650	1,6932	0,0036	0,0036	2,187	2,0860	0,0000	96,741	0,9973	1,3060
0+013,40	13,40	89,690	13,40	19,680	17,624	10,0833	5,1821	1,1167	0,0172	0,0104	1,312	1,2514	0,1394	96,263	0,9924	2,8106
0+024,00	24,00	86,591	24,00	16,200	17,160	12,2494	7,6477	0,9441	0,0317	0,0245	1,080	1,0301	0,5880	95,857	0,9882	3,7633
0+034,60	36,60	83,492	34,60	14,370	16,916	13,8093	9,7195	0,8495	0,0464	0,0391	0,958	0,9137	1,3529	95,478	0,9843	4,5046
0+045,20	45,20	80,392	45,20	13,245	16,766	14,9823	11,4408	0,7900	0,0602	0,0533	0,883	0,8422	2,4092	95,084	0,9802	5,0905
0+055,80	55,80	77,293	55,80	12,465	16,662	15,9198	12,9174	0,7481	0,0731	0,0667	0,831	0,7926	3,7219	94,725	0,9765	5,5757
0+066,40	66,40	74,193	66,40	11,910	16,588	16,6616	14,1493	0,7180	0,0845	0,0788	0,794	0,7573	5,2323	94,332	0,9725	5,9700
0+077,00	77,00	71,094	77,00	11,490	16,532	17,2707	15,2027	0,6950	0,0948	0,0897	0,766	0,7306	6,9069	93,934	0,9684	6,3003
0+087,60	87,60	67,994	87,60	11,145	16,486	17,8053	16,1584	0,6760	0,1046	0,0997	0,743	0,7087	8,7337	93,595	0,9649	6,5951
0+098,33	98,33	64,857	98,33	10,875	16,450	18,2474	16,9708	0,6611	0,1132	0,1089	0,725	0,6915	10,7081	93,227	0,9611	6,8422

Tabla 33: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Hueque

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v²/2g	R (m)	S	S media	v (m)	Y vertical	hf	E (m)	E/Eo	F
0+010,11	10,110	662,700	0,000	40,785	5,438	12,465	7,919	7,5	0,0200	0,0200	2,719	2,7185	0,0000	673,3375	1,0000	2,4135
0+020,12	20,120	662,500	10,010	40,515	5,402	12,548	8,025	7,5	0,0021	0,0111	2,701	2,7005	0,1111	673,3366	1,0000	2,4377
0+030,12	30,120	662,300	10,000	39,675	5,290	12,813	8,368	7,5	0,0022	0,0022	2,645	2,6445	0,0220	673,3345	1,0000	2,5154
0+040,12	40,120	662,100	10,000	39,135	5,218	12,990	8,600	7,5	0,0023	0,0023	2,609	2,6085	0,0230	673,3315	1,0000	2,5677
0+050,12	50,120	661,900	10,000	38,610	5,148	13,167	8,836	7,5	0,0023	0,0023	2,574	2,5735	0,0230	673,3325	1,0000	2,6203
0+060,12	60,120	661,700	10,000	38,115	5,082	13,338	9,067	7,5	0,0024	0,0024	2,541	2,5405	0,0240	673,3315	1,0000	2,6715
0+070,12	70,120	661,500	10,000	37,635	5,018	13,508	9,300	7,5	0,0025	0,0025	2,509	2,5085	0,0250	673,3335	1,0000	2,7227
0+080,12	80,120	661,300	10,000	37,185	4,958	13,671	9,526	7,5	0,0025	0,0025	2,479	2,4785	0,0250	673,3295	1,0000	2,7722
0+090,12	90,120	661,100	10,000	36,735	4,898	13,839	9,761	7,5	0,0026	0,0026	2,449	2,4485	0,0260	673,3355	1,0000	2,8234
0+100,12	100,120	660,900	10,000	36,315	4,842	13,999	9,988	7,5	0,0026	0,0026	2,421	2,4205	0,0260	673,3345	1,0000	2,8725
0+110,12	110,120	660,700	10,000	35,970	4,796	14,133	10,181	7,5	0,0027	0,0027	2,398	2,3975	0,0270	673,3055	1,0000	2,9139
0+120,12	120,120	660,500	10,000	35,520	4,736	14,312	10,440	7,5	0,0028	0,0028	2,368	2,3675	0,0280	673,3355	1,0000	2,9694
0+121,12	121,120	660,418	1,000	35,325	4,710	14,391	10,556	7,5	0,0028	0,0028	2,355	2,3545	0,0028	673,3313	1,0000	2,9941
0+125,12	125,120	660,160	5,000	34,875	4,650	14,577	10,830	7,5	0,0029	0,0029	2,325	2,3245	0,0145	673,329	1,0000	3,0523
0+130,12	130,120	659,730	5,000	34,125	4,550	14,897	11,311	7,5	0,0030	0,0030	2,275	2,2745	0,0150	673,3305	1,0000	3,1534
0+135,12	135,120	659,125	5,000	33,150	4,420	15,335	11,986	7,5	0,0032	0,0031	2,210	2,2096	0,0155	673,3361	1,0000	3,2935
0+140,12	140,120	658,344	5,000	32,040	4,272	15,867	12,832	7,5	0,0034	0,0033	2,136	2,1356	0,0165	673,3281	1,0000	3,4662
0+145,12	145,120	657,384	5,000	30,810	4,108	16,500	13,876	7,5	0,0037	0,0036	2,054	2,0536	0,0180	673,3316	1,0000	3,6758
0+150,12	150,120	656,241	5,000	29,520	3,936	17,221	15,115	7,5	0,0040	0,0039	1,968	1,9676	0,0195	673,3431	1,0000	3,9193
0+155,12	155,120	654,910	5,000	28,230	3,764	18,008	16,528	7,5	0,0044	0,0042	1,882	1,8816	0,0210	673,3406	1,0000	4,1910
0+160,12	160,120	653,386	5,000	26,955	3,594	18,860	18,129	7,5	0,0048	0,0046	1,797	1,7966	0,0230	673,3346	1,0000	4,4919
0+165,12	165,120	651,663	5,000	25,710	3,428	19,773	19,927	7,5	0,0053	0,0051	1,714	1,7137	0,0255	673,3292	1,0000	4,8221
0+170,12	170,120	649,733	5,000	24,510	3,268	20,741	21,926	7,5	0,0058	0,0056	1,634	1,6337	0,0280	673,3207	1,0000	5,1805
0+175,12	175,120	647,587	5,000	23,355	3,114	21,767	24,149	7,5	0,0064	0,0061	1,557	1,5567	0,0305	673,3232	1,0000	5,5695
0+180,12	180,120	645,214	5,000	22,245	2,966	22,853	26,619	7,5	0,0070	0,0067	1,483	1,4827	0,0335	673,3492	1,0000	5,9915
0+181,06	181,061	642,602	1,061	21,195	2,826	23,985	29,321	7,5	0,0077	0,0074	1,413	1,4127	0,0079	673,3436	1,0000	6,4422

Tabla 34: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Alto Tocuyo

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+005,71	5,706	117,764	0,000	49,60	42,480	9,701	4,797	1,1676	0,0150	0,0150	2,480	2,441	0,0000	125,0020	1,00002	1,9668
0+015,19	15,190	115,974	10,000	41,76	42,088	11,522	6,766	0,9922	0,0263	0,0207	2,088	2,055	0,2070	125,0020	1,00002	2,5458
0+025,19	25,190	114,184	10,000	36,88	41,844	13,047	8,676	0,8814	0,0395	0,0329	1,844	1,815	0,3290	125,0040	1,00003	3,0676
0+035,19	35,190	112,394	10,000	33,54	41,677	14,346	10,490	0,8048	0,0538	0,0467	1,677	1,650	0,4670	125,0010	1,00001	3,5370
0+045,19	45,190	110,604	10,000	31,02	41,551	15,511	12,263	0,7466	0,0696	0,0617	1,551	1,526	0,6170	125,0100	1,00008	3,9765
0+055,19	55,190	108,814	10,000	29,04	41,452	16,569	13,992	0,7006	0,0864	0,0780	1,452	1,429	0,7800	125,0150	1,00012	4,3901
0+065,19	65,190	107,024	10,000	27,42	41,371	17,548	15,695	0,6628	0,1043	0,0954	1,371	1,349	0,9540	125,0220	1,00018	4,7849
0+075,19	75,190	105,234	10,000	26,48	41,324	18,171	16,829	0,6408	0,1170	0,1107	1,324	1,303	1,1070	124,4730	0,99578	5,0420
0+085,19	85,190	103,444	10,000	24,90	41,245	19,324	19,032	0,6037	0,1432	0,1301	1,245	1,225	1,3010	125,0020	1,00002	5,5294
0+095,19	95,190	101,654	10,000	23,90	41,195	20,132	20,657	0,5802	0,1639	0,1536	1,195	1,176	1,5360	125,0230	1,00018	5,8799
0+097,19	97,190	101,641	2,000	23,22	41,161	20,722	21,886	0,5641	0,1802	0,1721	1,161	1,143	0,3442	125,0142	1,00011	6,1402
0+099,19	99,190	101,610	2,000	23,20	41,160	20,740	21,924	0,5637	0,1807	0,1805	1,160	1,142	0,3610	125,0370	1,00030	6,1482
0+101,19	101,900	101,561	2,000	23,18	41,159	20,758	21,962	0,5632	0,1812	0,1810	1,159	1,141	0,3620	125,0260	1,00021	6,1562
0+103,19	103,190	101,494	2,000	23,14	41,157	20,793	22,036	0,5622	0,1823	0,1818	1,157	1,139	0,3636	125,0326	1,00026	6,1719
0+105,19	105,190	101,409	2,000	23,10	41,155	20,829	22,112	0,5613	0,1833	0,1828	1,155	1,137	0,3656	125,0236	1,00019	6,1879
0+107,19	107,190	101,306	2,000	23,04	41,152	20,884	22,229	0,5599	0,1849	0,1841	1,152	1,134	0,3682	125,0372	1,00030	6,2123
0+109,19	109,190	101,185	2,000	22,98	41,149	20,938	22,345	0,5585	0,1865	0,1857	1,149	1,131	0,3714	125,0324	1,00026	6,2365
0+111,19	111,190	101,045	2,000	22,92	41,146	20,993	22,462	0,5570	0,1881	0,1873	1,146	1,128	0,3746	125,0096	1,00008	6,2611
0+113,19	113,190	100,887	2,000	22,84	41,142	21,067	22,621	0,5552	0,1903	0,1892	1,142	1,124	0,3784	125,0104	1,00008	6,2941
0+115,19	115,190	100,710	2,000	22,74	41,137	21,159	22,819	0,5528	0,1930	0,1917	1,137	1,119	0,3834	125,0314	1,00025	6,3355
0+117,19	117,190	100,515	2,000	22,64	41,132	21,253	23,022	0,5504	0,1959	0,1945	1,132	1,114	0,3890	125,0400	1,00032	6,3777
1+118,00	118,000	100,310	2,000	22,54	41,127	21,347	23,226	0,5481	0,1987	0,1973	1,127	1,109	0,3946	125,0396	1,00032	6,4201
0+118,10	118,095	100,116	0,095	22,28	41,114	21,596	23,771	0,5419	0,2065	0,2026	1,114	1,096	0,0192	125,0022	1,00002	6,5328
0+164,75	164,753	76,000	46,658	18,50	40,925	26,009	34,478	0,4520	0,3812	0,2939	0,925	0,910	13,7128	125,1008	1,00081	8,6341

Tabla 35: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Matícora

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+007,83	7,282	46,620	0,000	37,968	6,328	11,0446	6,2173	6	0,02000	0,02000	3,164	3,1634	0,0000	56,0007	1,00001	1,98243
0+018,50	18,504	46,406	10,676	37,584	6,264	11,1574	6,3449	6	0,00225	0,01113	3,132	3,1314	0,1188	56,0011	1,00002	2,01288
0+028,50	28,504	46,206	10,000	36,492	6,082	11,4913	6,7304	6	0,00239	0,00232	3,041	3,0404	0,0232	56,0000	1,00000	2,10391
0+038,50	38,504	46,006	10,000	35,820	5,970	11,7069	6,9853	6	0,00248	0,00244	2,985	2,9844	0,0244	56,0001	1,00000	2,16339
0+048,50	48,504	45,806	10,000	35,184	5,864	11,9185	7,2401	6	0,00257	0,00253	2,932	2,9314	0,0253	56,0028	1,00005	2,22231
0+058,50	58,504	45,606	10,000	34,596	5,766	12,1211	7,4883	6	0,00266	0,00262	2,883	2,8824	0,0262	56,0029	1,00005	2,27921
0+068,50	68,504	45,406	10,000	34,044	5,674	12,3176	7,7331	6	0,00274	0,00270	2,837	2,8364	0,0270	56,0025	1,00004	2,33487
0+078,50	78,504	45,206	10,000	33,528	5,588	12,5072	7,9730	6	0,00283	0,00279	2,794	2,7934	0,0279	56,0003	1,00001	2,38898
0+088,50	88,504	45,006	10,000	33,024	5,504	12,6980	8,2181	6	0,00292	0,00288	2,752	2,7514	0,0288	56,0043	1,00008	2,44386
0+090,54	90,540	44,983	2,000	32,916	5,486	12,7397	8,2722	6	0,00294	0,00293	2,743	2,7425	0,0059	56,0036	1,00006	2,45591
0+092,54	92,540	44,930	2,000	32,796	5,466	12,7863	8,3328	6	0,00296	0,00295	2,733	2,7325	0,0059	56,0012	1,00002	2,46940
0+094,54	94,540	44,846	2,000	32,604	5,434	12,8616	8,4312	6	0,00299	0,00298	2,717	2,7165	0,0060	55,9997	0,99999	2,49124
0+096,54	96,540	44,731	2,000	32,340	5,390	12,9666	8,5695	6	0,00304	0,00302	2,695	2,6945	0,0060	56,0010	1,00002	2,52181
0+098,54	98,540	44,585	2,000	32,016	5,336	13,0978	8,7437	6	0,00310	0,00307	2,668	2,6675	0,0061	56,0023	1,00004	2,56018
0+100,54	100,540	44,407	2,000	31,644	5,274	13,2518	8,9506	6	0,00318	0,00314	2,637	2,6365	0,0063	56,0004	1,00001	2,60547
0+102,54	102,540	44,197	2,000	31,212	5,202	13,4352	9,2000	6	0,00326	0,00322	2,601	2,6005	0,0064	56,0039	1,00007	2,65974
0+104,54	104,540	43,954	2,000	30,744	5,124	13,6397	9,4822	6	0,00336	0,00331	2,562	2,5615	0,0066	56,0043	1,00008	2,72070
0+106,54	106,540	43,678	2,000	30,240	5,040	13,8671	9,8010	6	0,00348	0,00342	2,520	2,5195	0,0068	56,0053	1,00009	2,78902
0+108,54	108,540	43,367	2,000	29,712	4,952	14,1135	10,1524	6	0,00360	0,00354	2,476	2,4755	0,0071	56,0020	1,00004	2,86368
0+110,54	110,540	43,021	2,000	29,148	4,858	14,3866	10,5491	6	0,00374	0,00367	2,429	2,4285	0,0073	56,0059	1,00011	2,94720
0+112,54	112,540	42,638	2,000	28,572	4,762	14,6766	10,9787	6	0,00390	0,00382	2,381	2,3805	0,0076	56,0048	1,00009	3,03677
0+114,54	114,540	42,217	2,000	27,984	4,664	14,9850	11,4450	6	0,00406	0,00398	2,332	2,3315	0,0080	56,0015	1,00003	3,13298
0+116,54	116,540	41,756	2,000	27,372	4,562	15,3200	11,9624	6	0,00424	0,00415	2,281	2,2805	0,0083	56,0072	1,00013	3,23863
0+118,54	118,540	41,463	2,000	27,012	4,502	15,5242	12,2834	6	0,00436	0,00430	2,251	2,2505	0,0086	56,0055	1,00010	3,30360
0+120,54	120,540	40,917	2,000	26,376	4,396	15,8985	12,8829	6	0,00457	0,00447	2,198	2,1976	0,0089	56,0064	1,00011	3,42380
0+122,54	122,540	40,325	2,000	25,740	4,290	16,2914	13,5275	6	0,00480	0,00469	2,145	2,1446	0,0094	56,0065	1,00012	3,55149
0+124,54	124,540	39,683	2,000	25,104	4,184	16,7041	14,2216	6	0,00505	0,00493	2,092	2,0916	0,0099	56,0061	1,00011	3,68729
0+126,54	126,540	38,988	2,000	24,468	4,078	17,1383	14,9705	6	0,00531	0,00518	2,039	2,0386	0,0104	56,0075	1,00013	3,83199
0+127,37	127,370	38,390	0,830	23,952	3,992	17,5075	15,6225	6	0,00554	0,00543	1,996	1,9956	0,0045	56,0126	1,00023	3,95648

Tabla 36: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Manuelote

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+009,00	9,000	328,160	0	30,64	23,064	12,034	7,381	1,3285	0,0195	0,0195	1,532	1,461	0,000	337,002	1,000006	3,1042
0+019,00	19,000	325,530	10	26,36	22,636	13,988	9,973	1,1645	0,0313	0,0254	1,318	1,257	0,254	337,014	1,000042	3,8901
0+029,00	29,000	324,591	10	25,24	22,524	14,609	10,878	1,1206	0,0360	0,0337	1,262	1,204	0,337	337,010	1,000030	4,1520
0+039,00	39,000	323,652	10	24,22	22,422	15,224	11,813	1,0802	0,0410	0,0385	1,211	1,155	0,385	337,005	1,000015	4,4169
0+049,00	49,000	322,713	10	23,32	22,332	15,811	12,741	1,0442	0,0463	0,0437	1,166	1,112	0,437	337,003	1,000009	4,6749
0+059,00	59,000	321,774	10	22,52	22,252	16,373	13,663	1,0120	0,0517	0,0490	1,126	1,074	0,490	337,001	1,000003	4,9263
0+069,00	69,000	320,835	10	21,80	22,180	16,914	14,581	0,9829	0,0574	0,0546	1,090	1,040	0,546	337,002	1,000006	5,1725
0+079,00	79,000	319,896	10	21,14	22,114	17,442	15,506	0,9560	0,0633	0,0604	1,057	1,008	0,604	337,014	1,000042	5,4166
0+089,00	89,000	318,957	10	20,54	22,054	17,951	16,424	0,9314	0,0694	0,0664	1,027	0,980	0,664	337,025	1,000074	5,6555
0+099,00	99,000	318,018	10	20,00	22,000	18,436	17,323	0,9091	0,0756	0,0725	1,000	0,954	0,725	337,020	1,000059	5,8862
0+109,00	109,000	317,079	10	19,50	21,950	18,909	18,224	0,8884	0,0820	0,0788	0,975	0,930	0,788	337,021	1,000062	6,1141
0+119,00	119,000	316,140	10	19,04	21,904	19,366	19,115	0,8692	0,0886	0,0853	0,952	0,908	0,853	337,016	1,000047	6,3370
0+129,00	129,000	315,201	10	18,60	21,860	19,824	20,030	0,8509	0,0955	0,0921	0,930	0,887	0,921	337,039	1,000116	6,5632
0+139,00	139,000	314,262	10	18,20	21,820	20,259	20,919	0,8341	0,1024	0,0990	0,910	0,868	0,990	337,039	1,000116	6,7805
0+149,00	149,000	313,323	10	17,84	21,784	20,668	21,772	0,8189	0,1092	0,1058	0,892	0,851	1,058	337,004	1,000012	6,9869
0+159,00	159,000	312,384	10	17,48	21,748	21,094	22,679	0,8038	0,1166	0,1129	0,874	0,834	1,129	337,026	1,000077	7,2039
0+169,00	169,000	311,445	10	17,14	21,714	21,512	23,586	0,7894	0,1242	0,1204	0,857	0,817	1,204	337,052	1,000154	7,4192
0+179,00	179,000	310,506	10	16,84	21,684	21,895	24,434	0,7766	0,1315	0,1279	0,842	0,803	1,279	337,022	1,000065	7,6182
0+189,00	189,000	309,567	10	16,54	21,654	22,293	25,330	0,7638	0,1394	0,1355	0,827	0,789	1,355	337,041	1,000122	7,8267
0+199,00	199,000	308,628	10	16,26	21,626	22,677	26,210	0,7519	0,1473	0,1434	0,813	0,775	1,434	337,047	1,000139	8,0298
0+209,00	209,000	307,689	10	16,00	21,600	23,045	27,068	0,7407	0,1552	0,1513	0,800	0,763	1,513	337,033	1,000098	8,2262
0+219,00	219,000	306,750	10	15,74	21,574	23,426	27,970	0,7296	0,1636	0,1594	0,787	0,751	1,594	337,065	1,000193	8,4309
0+229,00	229,000	305,811	10	15,50	21,550	23,788	28,841	0,7193	0,1719	0,1678	0,775	0,739	1,678	337,069	1,000205	8,6273
0+239,00	239,000	304,872	10	15,28	21,528	24,131	29,679	0,7098	0,1801	0,1760	0,764	0,729	1,760	337,040	1,000119	8,8144
0+249,00	249,000	303,933	10	15,06	21,506	24,483	30,551	0,7003	0,1887	0,1844	0,753	0,718	1,844	337,046	1,000136	9,0081
0+259,00	259,000	302,994	10	14,86	21,486	24,813	31,380	0,6916	0,1971	0,1929	0,743	0,709	1,929	337,012	1,000036	9,1907
0+269,00	269,000	302,055	10	14,66	21,466	25,151	32,241	0,6829	0,2059	0,2015	0,733	0,699	2,015	337,010	1,000030	9,3793
0+279,00	279,000	301,116	10	14,46	21,446	25,499	33,140	0,6743	0,2152	0,2106	0,723	0,690	2,106	337,052	1,000154	9,5746
0+289,00	289,000	300,177	10	14,28	21,428	25,821	33,982	0,6664	0,2242	0,2197	0,714	0,681	2,197	337,037	1,000110	9,7564
0+299,00	299,000	299,238	10	14,10	21,410	26,150	34,853	0,6586	0,2336	0,2289	0,705	0,672	2,289	337,052	1,000154	9,9436
0+309,00	309,000	298,299	10	13,94	21,394	26,451	35,660	0,6516	0,2424	0,2380	0,697	0,665	2,380	337,004	1,000012	10,1156
0+319,00	319,000	297,360	10	13,76	21,376	26,797	36,599	0,6437	0,2529	0,2477	0,688	0,656	2,477	337,092	1,000273	10,3147
0+329,00	329,000	296,421	10	13,60	21,360	27,112	37,465	0,6367	0,2626	0,2578	0,680	0,649	2,578	337,113	1,000335	10,4972
0+339,00	339,000	295,482	10	13,46	21,346	27,394	38,248	0,6306	0,2716	0,2671	0,673	0,642	2,671	337,043	1,000128	10,6614
0+349,00	349,000	294,543	10	13,30	21,330	27,723	39,173	0,6235	0,2824	0,2770	0,665	0,634	2,770	337,120	1,000356	10,8541

Tabla 37: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse Taguay

progres	X (m)	Z (m)	L (m)	A (m ²)	P(m)	V (m/s)	v ² /2g	R (m)	S	S media	y (m)	Y vertical	hf	E (m)	E/Eo	F
0+005,60	5,600	99,200	0,00	41,52	18,920	9,396	4,4997	2,1945	0,0061	0,0061	3,460	3,3001	0,000	106,9998	1,0000	1,6128
0+010,00	10,000	97,000	4,40	32,4	17,400	12,041	7,3897	1,8621	0,0124	0,0093	2,700	2,5753	0,041	107,0060	1,0001	2,3396
0+020,00	20,000	92,020	10,00	24,588	16,098	15,867	12,8319	1,5274	0,0281	0,0203	2,049	1,9543	0,203	107,0092	1,0001	3,5391
0+030,00	30,000	87,238	10,00	20,916	15,486	18,652	17,7318	1,3506	0,0457	0,0369	1,743	1,6625	0,369	107,0013	1,0000	4,5107
0+040,00	40,000	82,456	10,00	18,552	15,092	21,029	22,5392	1,2293	0,0659	0,0558	1,546	1,4746	0,558	107,0278	1,0003	5,3998
0+050,00	50,000	77,674	10,00	16,872	14,812	23,123	27,2514	1,1391	0,0881	0,0770	1,406	1,3410	0,770	107,0364	1,0003	6,2261
0+060,00	60,000	72,892	10,00	15,6	14,600	25,008	31,8756	1,0685	0,1122	0,1002	1,300	1,2399	1,002	107,0095	1,0001	7,0028
0+070,00	70,000	68,110	10,00	14,58	14,430	26,758	36,4929	1,0104	0,1384	0,1253	1,215	1,1589	1,253	107,0148	1,0001	7,7505
0+080,00	80,000	63,328	10,00	13,74	14,290	28,394	41,0917	0,9615	0,1665	0,1525	1,145	1,0921	1,525	107,0368	1,0003	8,4721
0+090,00	90,000	58,546	10,00	13,032	14,172	29,936	45,6760	0,9196	0,1964	0,1815	1,086	1,0358	1,815	107,0728	1,0007	9,1716
0+100,00	100,000	53,764	10,00	12,432	14,072	31,381	50,1920	0,8835	0,2276	0,2120	1,036	0,9881	2,120	107,0641	1,0006	9,8436
0+110,00	110,000	48,982	10,00	11,916	13,986	32,740	54,6334	0,8520	0,2600	0,2438	0,993	0,9471	2,438	107,0005	1,0000	10,4899
0+120,00	120,000	44,200	10,00	11,448	13,908	34,078	59,1901	0,8231	0,2949	0,2775	0,954	0,9099	2,775	107,0750	1,0007	11,1395

Tabla 38: Cálculo del tirante de agua para descarga a CCP en el rápido del Embalse El Guapo