

UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INDUSTRIAL

DISEÑO DE LA INGENIERÍA BÁSICA DE UN TALLER DE MANUFACTURA DE MUEBLES PARA VIVIENDAS DE CORTE SOCIAL, EN LA GRAN CARACAS.

TRABAJO ESPECIAL DE GRADO

Presentado ante la
UNIVERSIDAD CATÓLICA ANDRÉS BELLO
Como parte de los requisitos para optar al título de
INGENIERO INDUSTRIAL

REALIZADO POR: Pernalette Espinoza, Adrian Arturo

TUTOR: Villanueva, Alirio

Caracas, 22 de Mayo de 2015

Dedico este Trabajo Especial de Grado a mi madre Blanca Espinoza, eres la mujer que más amo en mundo, gracias por su apoyo incondicional a lo largo de la carrera y de mi vida.

AGRADECIMIENTOS

Le agradezco a todos los miembros de mi familia quienes estuvieron siempre al pendiente de mi desarrollo como profesional especialmente mi hermana y mi mama quienes siempre me decían"vas a parar a loco" cuando estudiaba, a mis compañeros de clase Alejandro Gatas, Edgar Mata, Carlos Nieves y Tomas Pineda que a pesar de estar en sus ocupaciones siempre estuvieron ahí para ayudar.

Agradezco con gran orgullo al profesor, José Gascón, Francisco Arvelo y todos mis profesores que me enseñaron a superar las dificultades, especialmente el profesor Adelmo Fernández.

Y por último, agradecer a mi mejor amigo, Alejandro Duque, que siempre estuvo a mi lado a lo largo de la carrera y pesar que, hoy está al otro lado del mundo aún sigue apoyándome.

UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INDUSTRIAL

"DISEÑO DE LA INGENIERÍA BÁSICA DE UN TALLER DE MANUFACTURA DE MUEBLES PARA VIVIENDAS DE CORTE SOCIAL, EN LA GRAN CARACAS."

Realizado por: Adrian Arturo Pernalette Espinoza

Tutor: Alirio Villanueva

Sinopsis

El presente trabajo especial de grado, nace con la necesidad de muebles que se adapten a los hogares venezolanos con bajos recursos económicos. El objetivo del mismo, es el diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de carácter social, en La Gran Caracas. En dicho proyecto se realizaron los estudios pertinentes para la caracterización de un producto estándar, adaptado a las condiciones de espacios dentro de las nuevas viviendas socialistas y con ello poder estructurar el sistema de producción en función de tipo de mueble a fabricar, dando un valor agregado debido a su reducción de costos y calidad.Una vez realizada la caracterización del producto y su sistema de producción, se establecieron los criterios para el diseño del taller en conjunto con las técnicas para la planeación de la instalación per se y conociendo los requerimientos asociados a dicha planificaciónse definió la capacidad de 1294 unidades al año, con incremento inter anual de 5% para el taller, en relación con la demanda total. Posteriormente se estimaron los costos necesarios para obtener un estudio financiero que permitiera la evaluación del proyecto en determinados escenarios (optimista, esperado y pesimista), los cuales están adjuntos a valores puntuales de 10%; 7,5% y 5% de la demanda total de viviendas a construirse dentro del área metropolitana. Dichos escenarios arrojaron cifras de valor presente neto y tasa interna de retorno, que permitieron conocer la factibilidad y retorno de la inversión de doy de los escenario sugeridos (optimista y esperado).

Palabras claves: Diseño de instalaciones, evaluación de proyecto, mueble, taller.

Índice General

INTRODUCCIÓN	1
CAPITULO I: EL PROBLEMA	3
1.1. PLANTEAMIENTO DEL PROBLEMA	3
1.2. JUSTIFICACIÓN	4
1.3. OBJETIVOS	4
1.3.1 Objetivo general	4
1.3.2. Objetivos específicos	4
1.4. ALCANCE	5
1.5. LIMITACIONES	5
CAPÍTULO II: MARCO TEÓRICO	6
2.1. Antecedentes	6
2.2. Conceptos básicos	6
2.2.1. La madera	6
2.2.2. MDF	6
2.2.3. Herramientas	7
2.2.3 Tipos de sargentos	9
2.3. Planificación de instalaciones	11
2.3.1. Proceso de producción	12
2.3.2. Mapa de procesos	12
2.3.3. Capacidad instalada	13
2.3.4. Fracción de equipo	13
2.3.5. Matriz de evaluación de factores internos (EFI)	14
2.3.6. Diagrama de relaciones de actividades	14
2.3.7. Diagrama de nodos	16
2.3.8. Método de la eficiencia relativa basada en el diagrama de relaciones	16
2.3.9. Manejo de materiales	17
2.4. Estudio económico financiero	17
2.4.1. Inflación	17
2.4.2. Tasa efectiva	18
2.4.3. Tasa mínima atractiva de rendimiento (TRAM)	18

2.4.4. Valor presente neto (VPN)	18
2.4.5. Tasa interna de rendimiento (TIR)	19
2.5. Marco legal	20
2.5.1 Ley Orgánica de Precios Justos	20
2.5.2. Ley Orgánica del Trabajo, los Trabajadores y las Trabajadoras (LOTTT)	20
2.5.3. Ley Orgánica de Prevención, Condiciones y Medios de Trabajo (LOPCYM	,
2.5.4. Decreto con rango, valor y fuerza de ley del régimen de propiedad de las viviendas de la gran misión vivienda Venezuela	
CAPÍTULO III. MARCO METODOLÓGICO	
3.1. Metodología	21
3.2. Estructura desagregada del trabajo	
3.3. Tipo de Investigación	
3.4. Diseño de la investigación.	24
3.5. Técnicas y herramientas utilizadas para la recolección de datos	25
3.5.1 La observación:	25
3.5.2. La entrevista:	25
3.5.3. Revisión documental:	25
CAPÍTULO IV: DESCRIPCIÓN BÁSICA PARAEL DISEÑO	26
4.1. Materia prima a utilizar en el taller de manufactura de muebles	26
4.2. Descripción del Producto	26
4.2.1 Especificaciones métricas del producto.	26
4.2.2. Descripción del Producto y sus componentes	27
4.3. Proceso Productivo del Taller	29
4.4. Descripción del proceso Productivo del Taller	30
4.5. Demanda estimada para la producción	34
4.6. Capacidad de Producción	35
4.7. Máquinas y equipos asociados a la producción del taller	39
4.7.1 Selección de equipo	39
4.7.2. Asignación de equipos	40
CAPITULO V: DISEÑO DE INSTALACIÓN	43
5.1 Requerimientos de espacio.	43
5.1.1. Propuesta de distribución de instalación	44
5.2. Requerimiento del Personal	48

5.2.1. Ventilación	49
5.2.2. Iluminación	49
5.2.3. Equipos de protección personal	51
5.2.4. Equipos contra incendio	51
5.2.5. Medios de Escape	52
5.3. Requerimientos de servicios	53
5.3.1. Instalaciones sanitarias	53
5.3.2. Electricidad	54
5.4. Requerimientos estructurales	55
5.4.1. Estructura industrial	55
5.4.2. Losa	56
CAPÍTULO VI: ESTIMACIÓN DE LA FACTIBILIDAD ECONÓMICA	57
6.1. Criterios para la evaluación	57
6.2. Supuestos	57
6.2.1. Inflación	58
6.2.2. Inversión inicial	58
6.2.3. Costos	59
6.2.4. Ingresos	61
6.2.5. Estado de ganancias y pérdidas	62
6.2.6. Financiamiento bancario	63
6.2.7. Depreciación	64
6.2.7. Capital de trabajo	64
6.3. Flujo de caja	65
6.3.1. Tasa mínima atractiva de rendimiento (TRAM)	66
6.3.2. Valor presente neto (VPN)	66
6.3.3. Tasa interna de rendimiento (TIR)	67
6.4. Punto de equilibrio	67
CAPÍTULO VII: CONCLUSIONES Y RECOMENDACIONES	68
7.1. Conclusiones	68
7.2. Recomendaciones	69
Bibliografía	71
Anexos	73

Índice de tablas

Tabla 1. Calificación y puntuaciones para la distribución de espació	15
Tabla 2. Definición de los valores para la distribución.	15
Tabla 3. Codificación para el diagrama de nodos	16
Tabla 4. Calificación y puntuaciones para la distribución de espacio	17
Tabla 5. Estructura desagregada del trabajo	22
Tabla 6. Descripción de fracciones de MDF por dimensión.	27
Tabla 7. Demanda anual estimada y proyectada	
Tabla 8. Porcentaje de desperdicio por operación	36
Tabla 9. Requerimientos para la producción	
Tabla 10. Tableros requeridos para la producción	37
Tabla 11. Láminas requeridas para la producción	
Tabla 12. Materiales e insumos totales para la producción.	38
Tabla 13. Sistema de selección.	39
Tabla 14. Fracción de equipos por etapa de producción.	40
Tabla 15. Equipos seleccionados para la producción.	40
Tabla 16. Requerimiento de espacio de producción	
Tabla 17. Requerimiento de espacio del taller	
Tabla 18. Diagrama de relaciones del departamento de producción	
Tabla 19. Diagrama de relaciones de las áreas del taller.	
Tabla 20. Valores asignados según las áreas del taller	
Tabla 21. Codificación para la grilla de distribución del taller.	
Tabla 22. Grilla de distribución del taller.	
Tabla 23. Intervalos para la constante de salón.	50
Tabla 24. Requerimientos de energía.	54
Tabla 25. Escenarios propuestos.	58
Tabla 26. Propuesta del taller de manufactura de muebles.	
Tabla 27. Carga fabril mensual y anual estimada	
Tabla 28. Costo de mano de obra proyectada	60
Tabla 29.Costo de materia prima para el escenario probable	61
Tabla 30. Insumos para el personal.	61
Tabla 31. Costos de materiales e insumos de personal proyectados. Escenario probable.	
Tabla 32. Ingreso anual por unidad.	
Tabla 33. Estado de ganancias y pérdidas, escenario probable	62
Tabla 34. Financiamiento bancario.	63
Tabla 35. Amortización anual.	64
Tabla 36. Depreciación anual proyectada	64
Tabla 37. Capital de trabajo, escenario probable	
Tabla 38. Flujo de caja, escenario probable	65
Tabla 39. Valor presente neto para cada escenario	
Tabla 40. Tasa interna de rendimiento por escenario.	
Tabla 41. Características físico-mecánicas del MDF	
Tabla 42.Matriz EFI para la selección de equipo.	74
Tabla 43. Matriz EFI para la selección de equipo.	74

Tabla 44. Matriz EFI para la selección de equipo.	74
Tabla 45. Matriz EFI para la selección de equipo.	75
Tabla 46. Matriz EFI para la selección de equipo.	75
Tabla 47. Matriz EFI para la selección de equipo.	75
Tabla 48. Matriz EFI para la selección de equipo.	76
Tabla 49. Ficha tecnica de equipo.	
Tabla 50. Ficha tecnica de equipo.	
Tabla 51. Ficha tecnica de equipo.	
Tabla 52. Ficha tecnica de equipo.	
Tabla 53. Ficha tecnica de equipo.	
Tabla 54. Ficha tecnica de equipo.	
Tabla 55. Ficha tecnica de equipo.	83
Tabla 56. Ficha tecnica de equipo.	
Tabla 57. Ficha tecnica de equipo.	
Tabla 58. Diagrama de relaciones (opción 2).	86
Tabla 59. Valores asignados según las áreas del taller (opción 2).	86
Tabla 60. Grilla de distribución (opción 2).	87
Tabla 61. Diagrama de relaciones (opción 3).	
Tabla 62. Valores asignados según las áreas del taller (opción 3)	
Tabla 63. Grilla de distribución (opción 3).	
Tabla 64. Clasificación de los extintores según el agente de extinción y del r	
expulsión	
Tabla 65. Potencial efectivo de los extintores contra fuego clase "A"	
Tabla 66. Costo de mano de obra (operadores y secretaria).	
Tabla 67. Costo de mano de obra (operadores y secretaria).	
Tabla 68. Costo de mano de obra (Supervisor general)	
Tabla 69. Cotos total anual de mano de obra.	
Tabla 70. Lista de costos de materiales e insumos por proveedor.	
Tabla 71. Costo de materia prima para el escenario optimista.	
Tabla 72. Costos de materiales e insumos de personal proyectados. Escenario	
Tabla 73. Costo de materia prima para el escenario pesimista.	
Tabla 74. Costo de materia prima para el escenario pesimista.	
Tabla 75. Ingreso anuales proyectados, escenario optimista.	
Tabla 76. Ingresos anuales proyectados, escenario pesimista.	
Tabla 77. Estado de ganancias y pérdidas, Escenario optimista	
Tabla 78. Estado de ganancias y pérdidas, Escenario optimista	
Tabla 79. Capital de trabajo, escenario optimista.	
Tabla 80. Capital de trabajo, escenario pesimista.	
Tabla 81. Flujo de caja escenario Optimista.	
Tabla 82. Fluio de caia escenario pesimista	101

Índice de figuras

Figura 1.Cinta metrica	/
Figura2. Escuadra de carpintero	7
Figura3. Transportador de ángulos	8
Figura4. Pie de rey.	8
Figura5. Nivel	9
Figura6. Serrucho de punta	10
Figura7. Serrucho de costilla	10
Figura8. Sierra de marquetería	11
Figura9. Sierrademetal.	11
Figura 10. Ciclo de planeación de instalaciones con mejoramiento continuo	12
Figura11.Mueble inferior	2 <i>e</i>
Figura12. Árbol estructural del mueble	29
Figura13. Mapa de procesos del taller	30
Figura 14. Proceso de manufactura del mueble	32
Figura15. Diagrama de proceso para la elaboración del mueble	34
Figura 16. Diagrama de nodos para el área de producción	46
Figura17. Diagrama de nodos del taller.	47
Figura 18. Propuesta de distribución	48
Figura19. Estructura industrial.	56
Figura 20. Puntos de iluminación del taller.	90
Figura21. Desagüe de la instalación	90
Figura 22. Aguas Blancas	91
Figura 23. LOTTT.	102
Figura 24. LOPCYMAT	102
Figura 25. Ley Orgánica de Precios Justos.	103
Índice de Ecuaciones	
Ecuación 1	13
Ecuación 2	13
Ecuación3	16
Ecuación 4	18
Ecuación 5	19
Ecuación 6	19
Ecuación 7	50
Ecuación 8	50
Ecuación 9	
Ecuación 10	63
Ecuación 11	66

Índice de Anexos

Anexo A. Características del MDF.	,73
Anexo B. Selección de equipos.	74
Anexo C. Fichas técnicas.	77
Anexo D. Diagrama de relaciones y de grilla.	86
Anexo E. Clasificación y potencial de extintores portátiles	
Anexo F. Plano de iluminación, aguas blancas, negras y desagüe	90
Anexo G. Costos de mano de obra	92
Anexo H. Lista de materiales e insumos, por proveedores	95
Anexo I. Costo de materiales e insumos.	
Anexo J. Ingresos	98
Anexo K. Estado de ganancias y pérdidas	
Anexo L . Capital de trabajo.	
Anexo M. Flujo de caja	101
Anexo N. Estatutos legales	

INTRODUCCIÓN

El presente Trabajo Especial de Grado contempla el diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de corte social, en La Gran Caracas. Este se divide en un total de siete capítulos, los cuales serán descritos a continuación:

CAPÍTULO I: EL PROBLEMA, contiene el planteamiento del problema, el objetivo general y los objetivos específicos; también se justifica la investigación y se muestran el alcance y limitaciones de la misma

CAPÍTULO II: MARCO TEÓRICO, se presentan los estudios que preceden al Trabajo Especial de Grado, abarca los antecedentes de la investigación y las definiciones básicas.

CAPÍTULO III: MARCO METODOLÓGICO, se describe el tipo de investigación desarrollada, las herramientas y técnicas que se utilizaron durante la intervención y la metodología empleada.

CAPÍTULO IV: DESCRIPCIÓN BÁSICA DE DISEÑO, se establecen los criterios básicos para el diseño de la instalación, que van desde la caracterización del producto hasta la selección de los equipos a ser empleados en la misma.

CAPÍTULO V: DISEÑO DE INSTALACIÓN, se representan los detalles del diseño de la instalación, abarcando los equipos y su distribución, departamentos del taller y los requerimientos dentro del mismo.

CAPÍTULO VI: ESTIMACIÓN DE LA FACTIBILIDAD ECONÓMICA, se estiman los costos asociados a la producción del proyecto y se evalúan los escenarios para determinar si el proyecto es rentable o no.

CAPÍTULO VII: CONCLUSIONES Y RECOMENDACIONES, se da a conocer un resumido desenlace de los eventos más resaltantes durante la satisfacción de los objetivos planteados y se muestran una serie de recomendaciones para trabajos futuros en áreas similares.

CAPITULO I: EL PROBLEMA

1.1. PLANTEAMIENTO DEL PROBLEMA

En la actualidad el incremento de la población a nivel mundial es un tema de con alta relevancia, esto debido a cierto elementos, como son: el aumento nivel de natalidad, disminución de la mortalidad, analfabetismo e ignorancia educativa y la temática socio cultural, dejando una necesidad por viviendas aptas y amuebladas con material tangible que se adapte al espacio dentro de la misma.

En la actualidad en Venezuela, se han desarrollado una serie de proyectos que están asociados a la construcción de viviendas con carácter social, dentro del territorio metropolitano, destinado a sectores de la población con bajos recursos y que cuentan con espacios reducidos para maximizar el número de hogares por área, generando un déficit de espacio, para la instalación de elementos tangibles y necesarios, como: muebles para cocina, cuartos y baño para estas instalaciones familiares.

Está establecido en la ley Orgánica de Responsabilidad Social "el compromiso de las corporaciones de contribuir con el desarrollo sustentable, trabajando con sus empleados, los familiares de estos, la comunidad local y la sociedad en general para mejorar la calidad de su vida, en maneras que son buenos tanto para las corporaciones como para el desarrollo"

Debido a la demanda de viviendas en el territorio metropolitano, el Ministerio del Poder Popular para Ecosocialismo, Hábitat y Vivienda, desarrollo un proyecto de gran amplitud para cubrir la necesidad de hogares, caracterizados por espacios reducido, de aproximadamente $45\text{m}^2\text{y}~75\text{m}^2$. Actualmente se han otorgado al menos 25.000 viviendas dentro de la Gran Caracas, beneficiando a más de dos tercios de los ciudadanos en espera de hogar.

Por estas razones, surge una necesidad de mejorar el entorno dentro del domicilio de cada venezolano, por medio de artículos para el hogar que se adapten a los requerimientos de espacio, suministrando elementos tangibles para la vivienda que sean efectivos para la armonía y el desplazamiento dentro del espacio, mejorando la calidad de vida de cada ciudadano, desarrollando un taller de manufactura de muebles para el hogar, que se adapten a la especificaciones de espacio dentro de la vivienda venezolana.

Hoy por hoy, existen múltiples organizaciones dedicadas a la fabricación y venta de muebles, como: juegos de baño, cocinas, comedor y cuartos, pero ninguna ofrece respuesta genérica de muebles que se adapten a las dimensiones acordes a los espacios reducidos de las viviendas. Para entrar a este mercado específico, se diseña la ingeniera básica para desarrollar una carpintería auto sustentable que fabrique muebles que se adapten a las dimensiones de las nuevas viviendas genéricas construidas en el territorio metropolitano.

1.2. JUSTIFICACIÓN

Este trabajo especial de grado tiene como finalidad, el desarrollo teórico de la ingeniería básica de un taller de manufactura de muebles para viviendas de carácter social, y através de su posible implementación se podrá suministrar muebles, adaptados a las limitaciones de espacio dentro de cada hogar, con sentido estético, calidad y bajos costos para sectores de la población de bajos ingresos.

1.3. OBJETIVOS

1.3.1 Objetivo general

Diseño de la ingeniería básica un taller de manufactura de muebles para viviendas de corte social, en la Gran Caracas.

1.3.2. Objetivos específicos

- Caracterizar los procesos asociados a un taller de manufactura de muebles.
- Caracterizar los tipos de muebles relacionados con las viviendas de cortes de social contempladas.
- Diseñar el proceso productivo asociado a la manufactura de los tipos de muebles contemplados.
- Estimar la capacidad asociada al proceso productivo diseñado.
- Seleccionar las maquinarias y equipos acordes con el proceso de producción diseñado.
- Establecer la distribución del taller de manufactura de muebles.
- Estimar los costos asociados al diseño propuesto.

1.4. ALCANCE

- El presente trabajo especial de grado abarcará el diseño de ingeniería básica para el
 desarrollo de un taller de carpintería destinada a la manufactura de muebles para
 viviendas de corte social, las maquinarias y equipos, el proceso de manufactura de los
 muebles, la distribución del taller y el diseño de plantas.
- Se realizará la conceptualización de los diversos procesos de manufactura, para la adaptación a la necesidad de muebles para hogares, con limitaciones de espacio.
- La caracterización de los diferentes tipos de muebles solo estará limitado, a las características físicas, es decir, el tipo de material y sus dimensiones específicas
- La realización de esta investigación no incluirá la implementación, ni el estudio de factibilidad, debido al mercado al que se está atacando, por esta razón, se fijará una demanda alternativa a la existente en el mercado real.

1.5. LIMITACIONES

- Dificultad en la obtención de información comercial confiable debido a la fuerte situación cambiaria que enfrenta el país.
- Dificultad en la obtención de información requerida con respecto a los equipos, maquinarias y sus especificaciones, por razones tácticas de mercado debido al incremento de la inflación en el país.
- Confiabilidad de información sobre las dimensiones de diseño para la fabricación de los muebles.
- Complejidad en la obtención de información pertinente, referida al coste de los materiales e insumos necesarios para la fabricación de los muebles, debido a la volatilidad inflacionaria que enfrenta el país.

CAPÍTULO II: MARCO TEÓRICO

En este capítulo se describirán los conceptos necesarios implicados, tal que, funcione como una guía para el diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de corte social, en La Gran Caracas.

2.1. Antecedentes

En el 2013, en la UCAB fue llevada a cabo una investigación que lleva por título "Estudio de factibilidad Técnico-Económico para la creación de una línea de producción en serie destinada a la fabricación de muebles de baño en una carpintería ubicada en Caracas, Distrito Capital", realizado por Carvalho De Andrade, V yGoatache, M; ésta resulta apropiada para fijar el modelo de producción.

En el 2014, en la UCAB fue llevada a cabo una investigación que lleva por título "Diseño de la Ingeniería Básica de una Planta Productora de Pellets elaborados a partir de Biomasa Forestal", realizado por Delgado, B y Díaz, O.; la cual resulta útil al determinar la estructura del TEG.

2.2. Conceptos básicos

2.2.1. La madera

Según (Biblioteca virtual universal, s.f.) "la madera proviene de los árboles. Este es el hecho más importante a tener presente para entender su naturaleza. El origen de las cualidades o defectos que posee pueden determinarse a partir del árbol de donde proviene. La madera tiene una compleja estructura natural, diseñada para servir a las necesidades funcionales de un árbol en vida, más que ser un material diseñado para satisfacer necesidades de carpinteros".

2.2.2. MDF

Es un tablero de densidad media, elaborado con fibras de madera de pino Caribe Venezolano, que se combinan con una resina sintética y luego son fraguadas bajo presión y temperatura.(Masisa, 2015). Sus propiedades se presentan en la tabla 1 y en el anexo 1 se presenta los tipos de MDF y sus propiedades.

2.2.3. Herramientas

Dentro de un taller de manufactura deben existir una serie de insumos y herramientas, con las cuales se pueda desarrollar un trabajo creativo y cómodo para todos y cada uno de los involucrados en la fabricación de muebles u otros objetos a base de madera o aglomerados de densidad media. Según (Salazar, 2011) estas son las herramientas adecuadas para un taller de carpintería:

Cinta métrica

Es el metro por excelencia. Tiene gran exactitud y sirve para tomar todo tipo de medidas. Para que una persona sola pueda medir longitudes largas, conviene que la cinta metálica sea bastante ancha y arqueada para mantenerla recta sin que se doble.

Figura 1.Cinta métrica Fuente: (Salazar, 2011)

Escuadra de carpintero

Es un clásico insustituible pues con ella se puede comprobar el escuadrado de un mueble (o de un ensamble), y además, sirve para trazar líneas perpendiculares o a 45° respecto al canto de un tablero. Las hay regulables en ángulo, pero se puede perder exactitud en la posición de ángulo recto con respecto a las escuadras fijas

Figura2. Escuadra de carpintero Fuente: (Salazar, 2011)

Transportador de ángulos

Es un instrumento muy útil cuando tenemos que fabricar algún elemento con ángulos no rectos. También sirve para copiar un ángulo de un determinado sitio y trasladarlo al elemento que estemos fabricando.

Figura3. Transportador de ángulos Fuente: (Salazar, 2011)

Pie de rey

También llamado calibre, ayuda a medir con precisión los elementos pequeños (tornillos, orificios, etc.). La exactitud de esta herramienta llega a la décima e incluso a la media décima de milímetro. Para medir exteriores se utilizan las dos patas largas, para medir interiores (por ejemplo, diámetros de orificios) las dos patas pequeñas, y para medir profundidades un vástago que va saliendo por la parte trasera. Para efectuar una medición, ajustaremos el calibre al objeto a medir y lo fijaremos. La pata móvil tiene una escala graduada (10 o 20 rayas, dependiendo de la precisión). La primera raya (0) nos indicará los milímetros y la siguiente raya que coincida exactamente con una de las lineas de la escala graduada del pie nos indicará las décimas de milímetro (calibre con 10 divisiones) o las medias décimas de milímetro (calibre con 20 divisiones).

Figura4. Pie de rey **Fuente:** (Salazar, 2011)

Nivel

Sirve para medir la horizontalidad o verticalidad de un elemento. Es una herramienta que no le puede faltar a ningún aficionado al bricolaje, ya que se utiliza constantemente (al colgar un mueble o un cuadro, al instalar una estantería o un frente de armario, etc.).

Figura5. Nivel **Fuente:** (Salazar, 2011)

Sargento

Es una herramienta manual que sirve para sujetar firmemente dos o más piezas que van a ser mecanizadas o pegadas entre sí. También se utilizan para sujetar firmemente la pieza en la que vayamos a trabajar sobre el banco o mesa de trabajo. En general, su mecanismo se basa en dos mandíbulas unidas por una guía que presionan las piezas.

2.2.3 Tipos de sargentos

- Sargento clásico o común: sus mandíbulas y la guía forman una sola pieza (cuerpo). Es decir, se trata de una U, generalmente de acero forjado, en la que en uno de sus extremos se coloca un husillo para presionar las piezas contra el otro extremo. Los hay de muy diversos tamaños y profundidades
- Sargento de cárcel: Es difícil verlo actualmente en un taller, sobre todo si es de un aficionado. Sin embargo, es una herramienta muy útil para determinados trabajos ya que su mecanismo de doble husillo hace que las mandíbulas puedan cerrarse formando diversidad de ángulos, lo cual permite el encolado de piezas trapezoidales, por ejemplo. Los ángulos se consiguen cerrando o abriendo más un husillo que el otro.
- Sargento de apriete rápido: una mandíbula es ajustable(normalmente la que lleva el husillo), lo que permite fijar las piezas con gran rapidez. Es el más utilizado por su versatilidad y es muy útil cuando se necesita rapidez en la fijación (uniones encoladas, por ejemplo). Los hay también de muchos tamaños. En el de la imagen, la mandíbula ajustable queda fija por apalancamiento sobre la guía.

- Sargento de leva: Llevan una leva en la mandíbula ajustable que al girar ejerce la presión sobre la pieza. Suelen ser de madera con las mandíbulas forradas de corcho por lo que son indicados para maderas blandas y/o delicadas. La presión que ejercen las mandíbulas es ligeramente inferior a la de los tornillos anteriores.
- Sargento de ingletes: Es prácticamente imprescindible para trabajar dos piezas a inglete. Consiste en dos mordazas unidas perpendicularmente. Cada cual sujeta a una de las molduras o listones del ingletea un ángulo de 90° respecto del otro.

Serrucho de punta o aguja

Este serrucho se caracteriza por su hoja estrecha y está indicado para cortes curvos y rectos, así como para hacer cortes interiores. Este serrucho nos será de mucha utilidad cuando queramos recortar un trozo interior de un tablero.

Figura6. Serrucho de punta **Fuente:** (Salazar, 2011)

Serrucho de costilla

Se utilizan para cortes de precisión. La hoja suele ser más delgada que en los anteriores. Para que no flexe se dota de un refuerzo superior (costilla) con lo que el corte será perfectamente recto. Se utiliza mucho para ingletear listones, molduras, barras y rodapiés, ayudándose con una caja de ingletear.

Figura7. Serrucho de costilla **Fuente:** (Salazar, 2011)

Sierra de marquetería, de arco o segueta

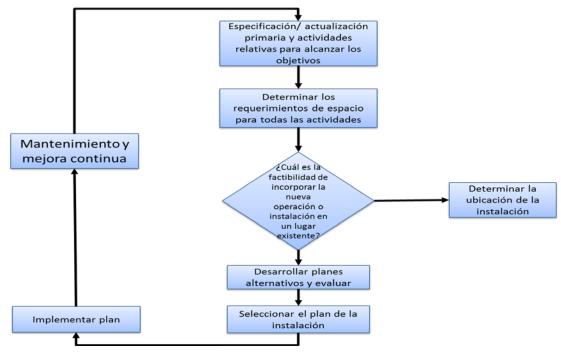
Es un arco metálico con mango que mantiene tensa una hoja de sierra muy fina. El arco lo hay de variadas formas y profundidades. Las hojas de sierra o pelos de segueta las hay de

diversos grosores y formas, para cortes rectos y cortes de curvas más o menos pronunciadas. Debido a la estrechez de la hoja no se puede afilar y hay que cambiarla cada vez que se desafila o rompe. Se utiliza mucho para recortes complicados de tablas estrechas, generalmente contrachapados.

Figura8.Sierra de marquetería **Fuente**: (Salazar, 2011)

Sierra de metal

Llamada también arco para metales, tiene un dentado mucho más fino para permitir su corte. El corte puede hacerse en el movimiento de ida o en el de vuelta, dependiendo de la colocación de la hoja de sierra. También existe una empuña dura para tener acceso a lugares difíciles. En resumen, la sierra de metal es una herramienta muy útil para cualquier bricolador, ya que también corta plásticos, y en determinados casos, puede utilizarse para cortar madera.


Figura9. Sierra de metal. Fuente: (Salazar, 2011).

2.3. Planificación de instalaciones

En la actualidad, la planeación de cualquier evento u actividad es primordial, por esta razón la planeación de una instalación debe estar orientada a apoyar a la corporación empresa a llegar a un fin único y para esto la misma debe cumplir con una excelente cadena de suministro, pero según (Tompkins, 2011) todo proceso de planeación de instalación debe seguir un directriz, es claro que una planta solo se diseña una vez, pero esta misma debe está sujeta a los constante cambios en los volúmenes de demanda, por esta razón " los

procesos de planeación y replaneación de instalaciones se relacionan por medio del ciclo de planeación de instalaciones con mejoramiento continuo"

Figura10. Ciclo de planeación de instalaciones con mejoramiento continuo. **Fuente**: (Tompkins, 2011)

2.3.1. Proceso de producción

El proceso de producción es la fase, en la cual, la materia prima será transformada por una serie de actividades y haciendo uso de determinados equipos y máquinas, con sus respectivos operadores.

Según (Blanco, 2000) el proceso productivo es "consecuencia de los resultados del estudio técnico y del estudio de mercado por lo que deberá coincidir con las conclusiones alcanzadas en ambos. Deberá estar acompañado por un flujograma bien detallado conteniendo todos los pasos del proceso muy bien explicados, pues su cabal comprensión facilitará enormemente los cálculos de ingresos y costos que se derivan de él.

2.3.2. Mapa de procesos

Según (García, 2007)"para elaborar el mapa de procesos se seguirá una metodología sencilla que parte de la misión y la visión de la Unidad o Servicio, de los clientes/usuarios y de las necesidades y expectativas de los mismos".

2.3.3. Capacidad instalada

Según (Blanco, 2000), " se indicará capacidad instalada de la planta de producción correspondiente a la inversión total expresada en porcentaje y en unidades de producto anual calculado, de ser necesario, por mes y por día; de tratarse de varios productos se deberán indicar tales datos por separado".

Para determinar el número estimado de unidades para la producción, debemos hacer uso de la siguiente expresión:

$$I_1 = \frac{O_n}{(1-d_1)(1-d_2)...(1-d_n)},$$

Ecuación 1

Fuente: (Tompkins, 2011)

Donde,

 I_k : La entrada de unidades a la producción

 O_k : La producción sin defectos deseada

 d_k : Porcentaje de artículos defectuosos producidos en la k – esima operación

2.3.4. Fracción de equipo

Se emplea para determinar el número total de equipos individuales por turno dentro de una instalación, según (Tompkins, 2011) la fracción de equipo "se determina al dividir el tiempo total requerido para efectuar la operación entre el tiempo disponible para completar la operación. El tiempo total requerido para llevar a cabo la operación es el producto del tiempo estándar para la operación y el número de veces que va a realizar la operación".

$$F = \frac{SQ}{EHR}$$

Ecuación 2 Fuente: (Arévalo, 2014)

Donde,

F = Número de Máquinas requeridas por turno.

S = El número estándar (en minutos) por unidad producida.

Q= *El número de unidades que se van a producir por turno.*

E= *El desempaño real, expresado con un porcentaje del tiempo estándar.*

H= La cantidad de tiempo (en minutos), disponible por máquina.

R= Confiabilidad de la máquina

2.3.5. Matriz de evaluación de factores internos (EFI)

La matriz EFI es bien utilizada para determinar las virtudes y debilidades al momento de la evaluación de determinados elementos, para su elección en función de parámetros previamente analizados para su apreciación, según (David, 2013) "la matriz de evaluación de factores internos (EFI) es una síntesis dentro del proceso de auditoría interna de la administración estratégica. Esta herramienta para la formulación de estrategias sintetiza y evalúa las fortalezas y debilidades más importantes encontradas en las áreas funcionales de una empresa y también constituye la base para identificar y evaluar las relaciones entre estas áreas. Al desarrollar una matriz EFI, se requiere cierta dosis de intuición que impida que se le interprete como técnica todopoderosa, dada su apariencia científica. Es más importante comprender bien los factores que suponen las cifras".

2.3.6. Diagrama de relaciones de actividades

Según (UDLAP, Universidad de las Américas Puebla, s.f.) "el diagrama de relaciones desarrollado por Muther es muy conveniente para determinar la importancia de proximidad entre dos departamentos. Pero (Tompkins, 2011)nos muestra los departamentos y la relación entre ellos en base a un ranking de flujos entre ellos y en ocasiones en base a criterios especiales como conveniencia, interacción del personal y limpieza. La metodología a seguir es la siguiente:

- El diagrama debe contener todos los departamentos.
- Determinar los criterios de cercanía y la razón de ésta.
- Llenar el diagrama.

A continuación se muestra una codificación para determinar la relación de cercanía que se les dará a las áreas que contempla la instalación. Cada una contiene una codificación diferente, la primera hace referencia a la importancia de cercanía entre cada departamento y

la segunda al flujo de personas, información y materiales para cada departamento, esta última se determinó en una consulta con el Ing. Alirio Villanueva.

Tabla 1. Calificación y puntuaciones para la distribución de espacio.

Código	Definición	
A	Absolutamente necesario. Los departamentos deben estar uno junto al otro estrictamente.	
E	Muy importante. Los departamentos deben estar uno junto al otro.	
I	Importante. Los departamentos pueden estar juntos.	
0	Ordinario. No es estrictamente necesario que los departamentos estén juntos.	
U	No es importante. Pueden estar juntos o no los departamentos.	
X	Indeseable. Estrictamente necesario que los departamentos no estén juntos.	

Fuente:(Tompkins, 2011)

Tabla 2. Definición de los valores para la distribución.

Valor	Definición
1	Flujo de personal alta
2	Flujo de personal medio
3	Flujo de personal bajo
4	Flujo de Material alto
5	Flujo de Material medio
6	Flujo de Material bajo
7	Flujo de información alto
8	Flujo de información medio
9	Flujo de información bajo

Fuente: Elaboración Propia 2015

2.3.7. Diagrama de nodos

Según la (UCLM, 2009), "mediante este diagrama vamos a visualizar las posiciones relativas de una áreas frente a otras utilizando los datos de la tabla de relaciones y trazando las valoraciones de proximidad de la siguiente manera":

Tabla 3. Codificación para el diagrama de nodos.

Código	Valor gráfico
Α	
E	
I	
0	
U	
Х	

Fuente:(UCLM, 2009)

2.3.8. Método de la eficiencia relativa basada en el diagrama de relaciones

Ahora, se debe hacer lo necesario para que la distribución dentro de la instalación sea apropiada para el desplazamiento de los operadores, y para esto, se debe realizar el cálculo de la eficiencia de la distribución según la cercanía.

$$E = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} f_{ij}}{\sum_{i=1}^{n} f_{ij} positivos}$$

Ecuación3

Fuente: (UDLAP, Universidad de las Américas Puebla, s.f.)

Donde,

E= eficiencia relativa

n= Número de departamentos

f= Valor asignado según la cercanía del departamento i al departamento j.

Tabla 4. Calificación y puntuaciones para la distribución de espacio.

Calificación	Puntuación
A	10
E	5
I	2
0	1
U	0
X	-10

Fuente: Elaboración Propia 2015

2.3.9. Manejo de materiales

Según (Tompkins, 2011)"el manejo de materiales es el arte y la ciencia de mover, guardar, proteger y controlar el material a través de sus procesos de fabricación, distribución, consumo y desecho". El manejo de materiales representa la forma en cómo se debe manipular la materia prima desde la entrada a planta, hasta su salida, después de un proceso de transformación.

2.4. Estudio económico financiero

Según (Blanco, 2000) "el estudio económico financiero recoge la información arrojado por el estudio de mercado y técnico, lo que permite identificar elementos tales como: costos de inversión, costos de operación e inversión. Estos elementos son finalmente transformados según un estudio de valores".

Tomando en cuenta, que la siguiente investigación se basa en la aplicación de ingeniería básica para el diseño de un taller de manufactura, la misma no posee un estudio de mercado previo, por lo cual, el análisis económico financiero se realizara en función del estudio técnico de la instalación.

2.4.1. Inflación

Según (Farias, 1997) la inflación "es un proceso económico caracterizado por alzas generalizadas y sostenidas de precios en el tiempo. Por alzas generalizadas de precios se

entiende que aumentan todos los precios. Así, los precios de los bienes y servicios, el precio del servicio del trabajo. En otras palabras, sueldos y salarios. En adición, sube también el precio de las monedas extranjeras".

2.4.2. Tasa efectiva

Según (Blank, 2012) la tasa efectiva "es la tasa real durante un período a que incluye la capitalización. No se considera ni la inflación ni la deflación". Para determinar dicha tasa, para cualquier período se usa la siguiente expresión:

$$i = (1 + \frac{r}{m})^m - 1$$

Ecuación 4 Fuente: (Blank, 2012)

Donde,

i= tasa efectiva por período

r= tasa de interés nominal

m= Número de veces que se capitalizara el interés por período.

2.4.3. Tasa mínima atractiva de rendimiento (TRAM)

Según (Blank, 2012) la TRAM "es la tasa de rendimiento razonable establecida para la evaluación de una opción económica. También llamada tasa por superar, la TRAM se basa en el costo de capital, tendencia del mercado, riesgo, etc.".Para que un proyecto sea viable se debe cumplir la siguiente premisa:

$$TIR \geq TRAM$$

2.4.4. Valor presente neto (VPN)

Este es un término usado en economía para referirse al valor del dinero que se invierte actualmente, en el futuro, pero según (Urbina, 2007) "el valor presente simplemente significa traer del futuro al presente cantidades monetarias a su valor equivalente. En términos formales de evaluación económica, cuando se trasladan cantidades del presente al futuro se dice que se utiliza una tasa de interés. El VPN, tal y como se calcula, simplemente indica si el inversionista está ganando un aproximado del porcentaje de ganancia que él mismo fijó como mínimo aceptable. De esta forma y haciendo uso de la siguiente

expresión, se puede determinar el valor de una inversión al final de un determinado período.

$$VPN = P + \frac{FNE_1}{(1+i)^1} + \frac{FNE_2}{(1+i)^2} + \dots + \frac{FNE_n}{(1+i)^n}$$

Ecuación 5 Fuente: (Urbina, 2007)

Donde.

P= inversión inicial en el año (0).

i= Tasa de referencia correspondiente a la TRAM.

FNE =Fondo neto de efectivo correspondiente al año n.

Ahora, para determinar si el VPN obtenido para una inversión es buena o no, se usa el siguiente criterio:

- Si VPN > 0, es conveniente aceptar la inversión, ya que se estaría ganando más del rendimiento solicitado.
- Si VPN <0, se debe rechazar la inversión porque no se estaría ganando el rendimiento mínimo solicitado.

2.4.5. Tasa interna de rendimiento (TIR)

Según (Urbina, 2007) "la TIR es la tasa de interés que iguala el valor futuro de la inversión con la suma de los valores futuros equivalente de las ganancias, comparando el dinero al final del período de análisis". Esta se determina según la siguiente expresión:

$$VPN = 0 = P + \frac{FNE_1}{(1 + TIR)^1} + \frac{FNE_2}{(1 + TIR)^2} + \dots + \frac{FNE_n}{(1 + TIR)^n}$$

Ecuación 6 Fuente: (Urbina, 2007)

Donde,

VPN= Valor presente neto igualado a "0"

P= inversión inicial en el año (0).

TIR= Tasa interna de rendimiento.

FNE =Fondo neto de efectivo correspondiente al año n.

Ahora, si el VPN cumple con la premisa anterior, es decir, que su valor sea igual o mayor a cero, esto implicara que existe retorno de la inversión, debido a que se estará ganando más, o al menos la tasa que se fijó como mínima sea aceptable. De esta manera, el criterio para tomar decisiones con la TIR es el siguiente:

- Si TMAR > TIR es recomendable aceptar la inversión
- Si TMAR < TIR es preciso rechazar la inversión

2.5. Marco legal

El proyecto de investigación, sigue las siguientes premisas legales:

2.5.1 Ley Orgánica de Precios Justos

Promulgada el 23 de Enero de 2014, tras su publicación en Gaceta Oficial N° 40.340 bajo el decreto N° 600, la cual establece como objeto "la presente Ley asegurar el desarrollo armónico, justo, equitativo, productivo y soberano de la economía nacional, a través de la determinación de precios justos de bienes y servicios, mediante el análisis de las estructuras de costos, la fijación del porcentaje máximo de ganancia y la fiscalización efectiva de la actividad económica y comercial, a fin de proteger los ingresos de todas las ciudadanas y ciudadanos, y muy especialmente el salario de las trabajadoras y los trabajadores; el acceso de las personas a los bienes y servicios para la satisfacción de sus necesidades; establecer los ilícitos administrativos, sus procedimientos y sanciones, los delitos económicos, su penalización y el resarcimiento de los daños sufridos, para la consolidación del orden económico socialista productivo".

2.5.2. Ley Orgánica del Trabajo, los Trabajadores y las Trabajadoras (LOTTT)

Promulgada el 30 de Abril de 2012, tras su publicación en Gaceta Oficial N° 6.076 bajo el decreto N° 8.938 y según los estipulado en el artículo 1 de dicho documento, "esta Ley, tiene por objeto proteger al trabajo como hecho social y garantizar los derechos de los trabajadores y de las trabajadoras, creadores de la riqueza socialmente producida y sujetos

protagónicos de los procesos de educación y trabajo para alcanzar los fines del Estado democrático y social de derecho y de justicia, de conformidad con la Constitución de la República Bolivariana de Venezuela y el pensamiento del padre de la patria Simón Bolívar. Regula las situaciones y relaciones jurídicas derivadas del proceso de producción de bienes y servicios, protegiendo el interés supremo del trabajo como proceso liberador, indispensable para materializar los derechos de la persona humana, de las familias y del conjunto de la sociedad, mediante la justa distribución de la riqueza, para la satisfacción de las necesidades materiales, intelectuales y espirituales del pueblo".

2.5.3. Ley Orgánica de Prevención, Condiciones y Medios de Trabajo (LOPCYMAT)

Promulgada el 26 de abril de 2005, tras su publicación en Gaceta Oficial N° 38.236 bajo el decreto N° 8.938, el objeto de la presente Ley "es garantizar a los trabajadores, permanentes y ocasionales, condiciones de seguridad, salud y bienestar, en un medio ambiente de trabajo adecuado y propicio para el ejercicio de sus facultades físicas y mentales".

2.5.4. Decreto con rango, valor y fuerza de ley del régimen de propiedad de las viviendas de la gran misión vivienda Venezuela

Promulgada el 6 de abril de 2011, tras su publicación en Gaceta Oficial N° 6.021 bajo el decreto N° 8.143, el objetivo de la siguiente normativa "es desarrollar el régimen de los bienes, derechos y obligaciones relacionados con las previsiones del Decreto con Rango, Valor y Fuerza de Ley Orgánica de Emergencia de Terrenos y Vivienda, enclavado en el ámbito de la Gran Misión Vivienda Venezuela".

CAPÍTULO III. MARCO METODOLÓGICO

3.1. Metodología

Según Arias (1999), "la metodología del proyecto incluye el tipo o tipos de investigación, las técnicas y los procedimientos que serán utilizados para llevar a cabo la

indagación. Es el "cómo" se realizará el estudio para responder al problema planteado" (pág. 45).

3.2. Estructura desagregada del trabajo

En este capítulo se definirán todos los conceptos e información necesaria que, constituyan un aporte esencial a la metodología empleada en el desarrollo de la investigación. Además de introducir conocimientos sobre frases, tipo de investigación, técnicas, procesos, métodos, estrategias y estructura desagregada del trabajo que estarán presentes durante el Trabajo Especial de Grado.

Tabla 5. Estructura desagregada del trabajo

Tabla 5. Estructura desagregada del trabajo Diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de corte social, en La		
Gran Caracas.		
Objetivos	Actividades	Herramientas
Caracterizar los tipos de muebles relacionados con las viviendas de corte social contempladas	 Definicióndel tipo de mueble a fabricar. Diseñar los modelos estándar Selección del material. Investigación posibles proveedores. 	 Patrones estandarizados Investigación bibliográfica Diagrama de árbol Diagrama de estructura y componentes Entrevistas no estructuradas
Caracterizar los procesos asociados a un taller de manufactura de muebles	 Definición del proceso principal de producción Identificación los procesos auxiliares Comparación con otros procesos productivos similares 	 Entrevistas no estructuradas Observación de campo Investigación bibliográfica Diagrama de procesos Distribución de planta Explosión de materiales BOM
Diseñar el proceso productivo asociado a la manufactura de los tipos de muebles contemplados	 Definir los requerimientos del procesos de producción Establecer el requerimiento de la materia prima e insumos necesarios para la producción Investigación y observación de sistemas de producción asociados a la manufactura de muebles 	 Investigación en fuentes bibliográficas Investigación de campo Entrevistas no estructuradas Diagrama de procesos Consulta a expertos

Diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de corte social, en La Gran Caracas.		
Objetivos	Actividades	Herramientas
Estimar la capacidad asociada al proceso productivo diseñado	 Definir la capacidad instalada Estimar la demanda Establecer la capacidad instalada de la instalación Determinar la cantidad de equipos a usar Determinar el área total para el taller. 	 Investigación en fuentes bibliográficas Investigación de campo Diagrama de requerimiento de espacio Fracción de equipo
Seleccionar la maquinaria y equipos acordes con el proceso de producción diseñado	 Establecer los requerimientos de espacio. Identificar los equipos apropiados para el proceso productivo seleccionado. Selección de los equipos a utilizar. Definir los parámetros asociados a la seguridad para cada equipo. 	 Diagrama de requerimiento de espacio Matriz EFI Ficha de especificaciones Investigación en fuentes bibliográficas
Establecer la distribución del taller de manufactura de muebles	 Definir el área de los quipos Análisis de requerimiento de espacio de los equipos. Definición de las secciones o áreas existentes dentro de la instalación Definición de las actividades principales y de apoyo. 	 Ficha técnica de equipos Diagrama de distribución de planta Diagrama de relaciones Visio Diagrama de nodos
Estimar los costos asociados al diseño propuesto	 Estimar los costos de producción Determinar el costo de equipos según el sistema de producción 	Estado de ganancias y perdidasFlujo de caja

Diseño de la ingeniería básica de un taller de manufactura de muebles para viviendas de corte social, en La Gran Caracas.			
Objetivos	Actividades	Herramientas	
	Estimar los costos de instalación	Valor presente neto	
	Estimar el costo de los servicios	• TIR	
	Determinar el costo de la materia		
	prima.		

Fuente: Elaboración Propia 2015

3.3. Tipo de Investigación.

Por tratarse del desarrollo del diseño de la ingeniería básica un taller de manufactura de muebles, este trabajo se sustenta en una investigación de tipo documental, pero al tener que obtener información sobre métodos de producción dentro de las instalaciones que posean un fin similar al proyecto, ésta también es una investigación de campo.

Según Hurtado de Barrera (2000) "la investigación analítica consiste en el análisis de las definiciones relacionadas con un tema, para estudiar sus elementos en forma exhaustiva y poderlo comprender con mayor profundidad."(p. 50).

Según Arias (2006) "La investigación de campo es aquella que consiste en la recolección de datos directamente de los sujetos investigados, o de la realidad donde ocurren los hechos, sin manipular o controlar variable alguna, es decir el investigador obtiene la información pero no altera las condiciones existentes. De allí su carácter investigación no experimental (p. 31)."

3.4. Diseño de la investigación.

Después de haber definido el tipo de estudio a realizar, se debe plantear la manera práctica y concreta de responder a las preguntas que se han planteado. Esto implica el desarrollo o selección de un diseño de investigación y aplicarlo al estudio. El diseño es el que señalará al investigador lo que debe hacer para alcanzar los objetivos del estudio.

Según Arias (2006) el diseño de la investigación es "(...) la estrategia general que adopta el investigador para responder el problema planteado." (p. 26).

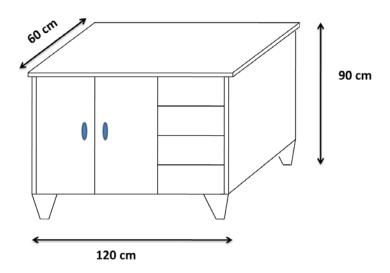
En la presente investigación se aplicó un diseño de investigación no experimental, nivel descriptivo, ya que se observaron los eventos tal y como suceden sin alterar su desarrollo.

3.5. Técnicas y herramientas utilizadas para la recolección de datos.

- **3.5.1 La observación:** Arias (2006) señala que "la observación es una técnica que consiste en visualizar o captar mediante la vista, en forma sistemática, cualquier hecho, fenómeno o situación que se produzca en la naturaleza o en la sociedad, en función de unos objetivos de investigación preestablecidos."(p. 69). Dentro de la misma se hizo uso de una observación libre o no estructurada que según Arias (2006) "Es la que se ejecuta en función de un objeto, pero sin una guía prediseñada previamente que especifique cada uno de los aspectos que deben ser observados." (p. 70).
- **3.5.2.** La entrevista: Es definida por Arias (2006) como "...Técnica basada en un diálogo o conversación "cara a cara", entre el entrevistador y entrevistado acerca de un tema previamente determinado, de tal manera que el entrevistador pueda obtener la información requerida." (p. 73), esta fue del tipo no convencional y empírica, disponiendo de un conjunto de preguntas no estructuradas, para determinar, obtener la información requerida para su seguridad.
- **3.5.3.** Revisión documental: Según Arias (2006) "la revisión documental-bibliográfica, consiste en una recopilación de ideas, posturas de autores, conceptos y definiciones, que sirven de base a la investigación. De esta manera se toman en cuenta ciertas selecciones: definir, investigar y diseñar".

CAPÍTULO IV: DESCRIPCIÓN BÁSICA PARAEL DISEÑO

En este capítulo se hará la descripción del diseño de la ingeniería básica de la planta propuesta, se selecciona como criterios base el número de viviendas construidas en los últimos cuatro años, para establecer la demanda y posteriormente la capacidad de la instalación. Por otro lado, se definirá el proceso de producción de taller, así como las actividades, tanto primarias como de apoyo que se deben llevar a cabo en el mismo para lograr la producción de muebles para viviendas de corte social.


4.1. Materia prima a utilizar en el taller de manufactura de muebles

En la instalación se utilizara un tipo de material, que es el MDF, los cuales son aglomerados de fibra de madera y aglutinado de resinas sintéticas, juntados a presión y alta temperatura. Usualmente utilizados en la industria de la construcción y la carpintería, como remplazo de la madera, por su fácil transporte y la reducción de costos.

4.2. Descripción del Producto

4.2.1 Especificaciones métricas del producto.

Este mueble está constituido por láminas de MDF previamente pintados para darte un acabado liso y de un color atractivo. Posee unas dimensiones de 120 cm de largo, 90 cm de alto y 60 cm de profundidad. El modulo derecho contiene cuatro gavetas, mientras que el modulo izquierdo está compuesto por dos puertas e internamente posee una división.

Figura 11. Mueble inferior **Fuente:** Elaboración Propia (2015).

4.2.2. Descripción del Producto y sus componentes

Para la fabricación del mueble en cuestión, es necesario desagregarlos por sus componentes básicos, especificando sus dimensiones materiales e insumos que conforman su acabado final. A continuación se mostrará una lista con las especificaciones de dimensión de los componentes para su fabricación.

Para poder determinar el número de perfiles de tableros de MDF a utilizar es necesario establecer un parámetro para su medición, que en este caso será el cm^2 . De esta manera se procede a establecer los patrones para las medidas que serán marcadas en el proceso de medición. A continuación se muestra un cuadro representando las fracciones en la cual será dividida la lámina de MFD y el área que representa.

Tabla 6. Descripción de fracciones de MDF por dimensión

Lista fraccionada del tablero de MDF	cm ²
• 4 Tablas laterales del mueble 75x60 cm	18.000,00
• 2 cubiertas traseras de 116,4x14 cm	3.270,40
• 1 Cubierta inferior 112,8x60 cm	6.768,00
• 1 Tabla interna 73,1x58,2 cm	4.254,42
• 2 Puertas 74,5x 38,5 cm	5.736,50
• Cubierta superior 124x60 cm	7.440,00
• 4 Gavetas	
• 4 cubiertas frontales 38,6x18,4 cm	2.840,96
• 8 Tablas laterales 43,7x14 cm	6.432,64
• 4 Tablas frontales 29,8x14 cm	1.668,8
• 4 Tablas traseras 29,8x11,6 cm	1.382,72
• 4 superficies de fondo (piso) 31,6x32, 9 cm .Espesor que será de 4mm.	4.158,56
Total	57.794,44
Área total de un tablero 183x244 cm	44.652,10

Fuente: Elaboración Propia 2015

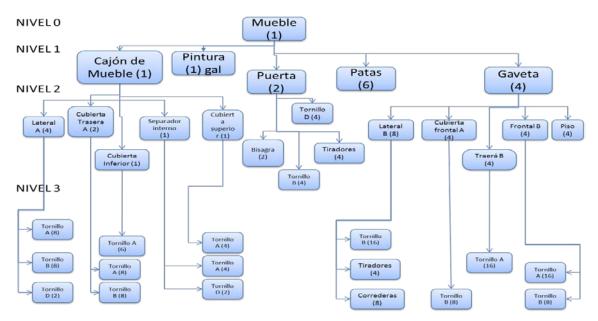
Como se observa en el cuadro anterior, el área total requerida es superior a la superficie que conforma el tablero de MDF. Debido a esto, se determinó que para la

elaboración del mueble en cuestión son necesariosdos tableros, esto también contempla una holgura, para el proceso de medición. Todo se pudo determinar, en una consulta al personal del Taller de Carpintería Moderna.

Especificaciones del mueble:

• 2 Tablero

- 4Tablas laterales del mueble 75x60.
- 2 cubiertas traseras de 116,40x14.
- 1 Cubierta inferior 112,80x60.
- 1 Tabla interna 73,10x58, 20.
- 2 Puertas 74,50x 38,50.
- Cubierta superior 212,40x60.
- 4 Gavetas
 - 4 cubiertas frontales(A) 38,60x18, 40.
 - 8 Tablas laterales 43,70x14.
 - 4 Tablas frontales (B) 29,80x14.
 - 4 Tablas traseras 29,80x11, 60.
 - 4 superficies de fondo(piso) 31,6x32, 9Solamente estas superficies varían en el espesor que será de 4mm.


Tornillos

- 62Tornillos 6x2"(A).
- 52Tornillos de 5/8(B).
- 10 Tornillo para ramplús©.
- 10 Tornillo de bisagra(D).
- 2 Bisagras de brazo curvo.
- 8 Rawplúgs.
- 6 bases y cuerpo de las patas.
- 6 tiradores de puerta.
- 1 gal de Barniz.
- 1 gal de Pintura.

• 8 Correderas telescópicas.

Como se mencionó anteriormente en una lista bien estructurada y detallada de materiales e insumos necesarios para la fabricación de mueble, también es necesario establecer un orden jerárquico para la manufactura del mismo, que permita conocer la información que pueda sostener el posible sistema de programación para la producción del objeto a fin. A continuación en la ilustración 13.

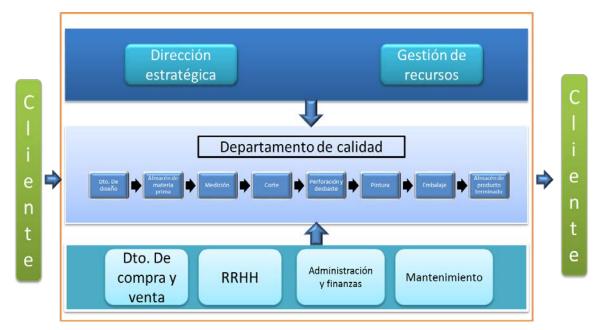


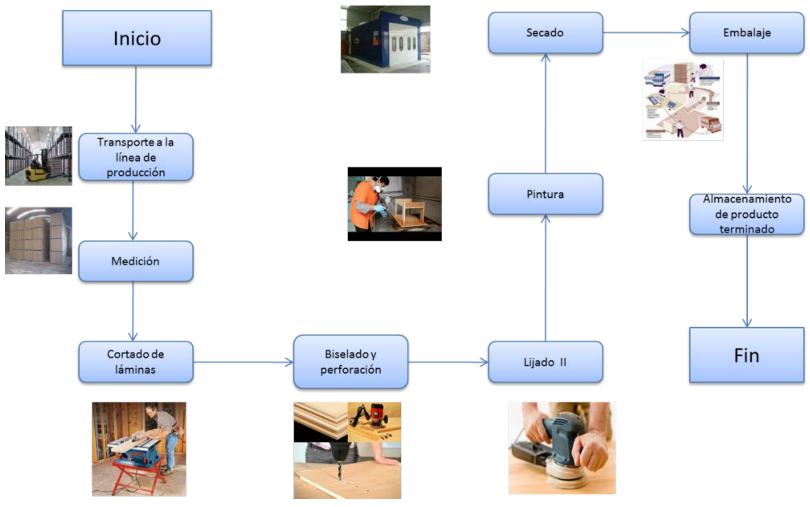
Figura12. Árbol estructural del mueble **Fuente:** Elaboración Propia (2015).

4.3. Proceso Productivo del Taller

Para la realización del proceso de producción de muebles como tal se deben evaluar la procedencia de la materia prima, al igual que su calidad para la siguiente etapa de trasformación de los tableros de densidad media y para este caso de estudio en particular serán los tableros de aglomerado de MDF. Dicho proceso requiere el uso de maquinaria, manejo de materiales y espacio para el mismo.

Figura 13. Mapa de procesos del taller **Fuente:** Elaboración Propia (2015).

A continuación se puede observar el proceso de transformación de los tableros de MFD en muebles modulares prefabricados de diseños estándar para el ambiente de cocina dentro de una vivienda familiar de corte social venezolana. Ver figura 15.


4.4. Descripción del proceso Productivo del Taller

A continuación se explica de forma descriptiva del proceso de productivo de muebles para viviendas de corte social:

• Almacenamiento

En esta fase se procede al almacenamiento de toda la materia prima, que corresponde a láminas de MDF, que poseen un perfil de 1,83x 2,44 m y un espesor de 18 mm. Para realizar esta actividad solo se requiere del espacio correspondiente a las condiciones que demanda el material para su conservación y de un determinado quipo para su transporte.

Figura14. Proceso de manufactura del mueble. **Fuente:** Elaboración Propia (2015)

Medición

Durante esta fase, los tableros son medidos y marcados, para establecer los patrones exactos para pasar a la siguiente fase de cortado. Durante este proceso, todos y cada uno de los tableros son sometidos a fuertes estándares de medición, debido a la importancia de sus dimensiones para las siguientes fases y a su vez para producto final.

Corte

Una vez establecidos todos los patrones sobre los tableros, estos pasan a la siguiente fase, en donde son cortados en fracciones por varios equipo, siguiendo los patrones marcados en cada uno de los tableros. Una vez cortados los tableros, los mismos pasan por otro proceso de medición en función de los ángulos formados entre cada esquina, los cuales deben ser 90°, si estos son correctos, pasan a la siguiente fase de lo contrario se hace una corrección y luego se examina de nuevo.

Lijado

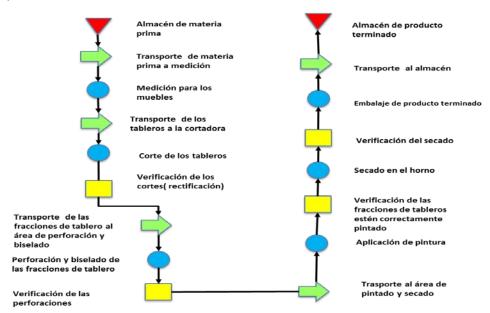
Esta fase consiste en hacer un lijado general, para corregir o mejorar el acabado que dejo la fase anterior (perforación, biselado y perfilado), logrando un fracciones completamente lisas, excepto las zonas en las que su fachada sea curva o posea un forma según las especificaciones de su diseño.

• Perforación y biselado

Durante esta fase, se desarrollan dos actividades, la primera es la perforación para los tornillos, de las fracciones de tableros, que fueron marcados previamente en la fase de medición; la segunda actividad consiste en darle un acabado singular a ciertas fracciones de del tablero, con el uso una fresa y una broca determinada, que le dará forma curva, recta o inclinada, que se podrá observar en la fachada principal del producto terminado.

Pintura

En esta fase, se aplica una serie de capas de barniz a las fracciones de tablero, para garantizar un acabado liso y brillante, además de brinda una capa impermeabilizada que protegerá el tablero de la humedad y el agua, posterior a este proceso se aplicarán capas de pintura para darle el acabado final a las fracciones del tablero.


Secado

Una vez terminado el proceso de pintado, todas y cada una de las fracciones del tablero pasan a un horno, el cual permitirá el secado total del barniz y la pintura, además de extraer los excedentes de humedad que pudo adquirir durante todo el proceso, y dejándolos con una humedad máxima de 8 %.

• Embalaje

En esta fase se procede a guardar de forma sistemática y ordenada todas las fracciones de tableros que constituyen el mueble a fin. Las fracciones son agrupadas, etiquetadas y cubiertas con plástico burbuja y colocadas en cajas de cartón de 1,50x 0, 65x0, 2 m.

Figura15. Diagrama de proceso para la elaboración del mueble. **Fuente:** Elaboración Propia 2015.

4.5. Demanda estimada para la producción

Según el Ministerio del Poder Popular para el Ecosocialismo, Hábitat y vivienda, indicó que se esperan construir 12.936 viviendas en la ciudad capital antes del 31 de diciembre del presente año. Lo que permitió determinar la demanda a satisfacer dentro del taller de manufactura.

Haciendo una consulta a expertos, centro de investigación de ingeniería (CIDI), se determinó que el porcentaje a tomar de la cantidad total que se esperan a construir para el

año 2015, será de 10% y con un aumento anual del 5%, lo que arroja una producción de 1294 $\frac{unidades}{a\bar{n}o}$ a producir.

Tabla 7. Demanda anual estimada y proyectada

Año	2015	2016	2017	2018	2019	2020
Demanda anual de unidades	1.294	1.359	1.427	1.498	1.573	1.652

Fuente: Elaboración Propia 2015

4.6. Capacidad de Producción

Para poder definir capacidad de producción, se debe hacer mención de los factores que pueden hacer que esta aumente o disminuya, estos son:

- La demanda de producción 1294 $\frac{unidades}{año}$
- Condiciones de la materia prima
- Condiciones del material a la entrada y salida de cada fase involucrada en la producción del artículo.

Una vez establecida la demanda y las condiciones que afectan la capacidad de producción, se debe calcular el número de $\frac{unidades}{día}$ que fabrica el taller. Para esto, se establece un estimado de días laborables de 225, con una jornada diaria de 8 horas.

$$1294 \frac{unidades}{a\tilde{n}o} \times \frac{a\tilde{n}o}{225d\tilde{i}a} \times \frac{d\tilde{i}a}{8h} = 0,71889 \approx 1 \frac{unidad}{h}$$

Debido a que el proceso de fabricación puede representar pérdidas de materia prima debido al mal manejo de las herramientas y maquinaria. Por esta razón y gracias a estudios previos realizados en el taller de "Carpintería Moderna", se determinaron las actividades que arrojan desperdicios para el proceso completo, además de poder estimar el porcentaje de material perdido por cada etapa. Estas etapas son: corte, lijado, biselado y perforación, las cuales poseen un porcentaje de desperdicio de 7, 2, 10 %, respectivamente.

Una vez determinada la estimación de las unidades dispuestas a producir e identificados las etapas en las cuales se genera desperdicio, es necesario establecer el cálculo de las unidades reales de materia prima que se necesitaran para dar comienzo a la producción.

Tabla 8. Porcentaje de desperdicio por operación

Porcentaje de desperdicio por operación			
Operación	Desperdicio (%)		
Corte	7		
Lijado	2		
Biselado y perforación 10			

Fuente: Elaboración Propia 2015

Haciendo uso de la ecuación (1), ubicada en el capítulo II, se realiza el cálculo de los tableros que se debe tener antes del proceso. Cabe destacar, que esta expresión solo se utiliza para productos con n operaciones secuenciales. Una vez determinada la expresión, nos remitimos a la tabla #9 en la cual se pueden observar el número de unidades estimadas.

Tabla 9. Requerimientos para la producción

Operación	Unidades estimadas	Unidades esperadas
	para la producción	bien producidas
Corte	1.578	1.467
Biselado y perf.	1.467	1.320
Lijado	1.320	1.294

Fuente: Elaboración Propia 2015

$$I_1 = \frac{1.294 \text{ unidades}}{(1 - 0.07)(1 - 0.1)(1 - 0.02)} = 1.578 \text{ unidades}$$

Ahora, una vez establecidos el número de unidades a producir, es imperativo definir el número de tableros necesarios para la fabricación de cada uno de los muebles de cocina. Como se mencionó anteriormente, para la producción de una unidad, son necesarios dos tableros de MDF, pero teniendo en cuenta que los mismos no son usados en su totalidad, solo es necesario $1^{\frac{3}{4}}$ de la materia prima empleada, el resto son desechos de la producción y debido a las dimisiones resultantes del proceso de medición y posteriormente corte, no

pueden ser rehusada. A continuación se procede a realizar los cálculos de unidades en función de la superficie.

Tabla 10. Tableros requeridos para la producción.

Operación	Tableros estimados	Tableros esperados
	para la producción	sin daño
Corte	3.155	2.934
Biselado y perf.	2.934	2.641
Lijado	2.641	2.588

Fuente: Elaboración Propia 2015

$$I_1 = \frac{1.294 \text{ unidades}}{(1 - 0.07)(1 - 0.1)(1 - 0.02)} \times 2 \frac{\text{tableros}}{\text{unidades}} = 3.155 \text{ tableros}$$

Posterior a este cálculo, también se requiere determinar el número de láminas de MDF de 4 mm de espesor, que están destinadas a constituir el piso o superficie inferior de las gavetas. Hay que hacer notar que el perfil de esta lámina es 2,44x1,83 m. A continuación se representa el cálculo del requerimiento de esta lámina:

Operación	Unidades estimadas para la producción	Unidades esperadas bien producidas
Corte	789	734
Biselado y perf.	734	660
Lijado	660	647

Fuente: Elaboración Propia 2015

$$I_1 = \frac{1.294 \ unidades}{(1-0.07)(1-0.1)(1-0.02)} \times 0.5 \ \frac{l\'{a}minas}{unidades} = 789 \ l\'{a}minas$$

Ahora se representan, los desperdicios de la producción:

$$D_a = \frac{1.294 \ unidades}{(1-0.07)} \times 2 \ \frac{tableros}{unidades} \times 0.125 \frac{desecho}{tablero} = 348 \ \frac{desecho}{año}$$

$$D_b = \frac{1.294 \ unidades}{(1 - 0.07)} \times 0.5 \ \frac{l\'{a}mina}{unidades} \times 0.255 \frac{desecho}{l\'{a}mina} = 177 \frac{desecho}{a\~{n}o}$$

Donde D_a y D_b representan los desechos irrecuperables de los tableros y láminas de MDF respectivamente, debido a las dimensiones necesarias para la elaboración del mueble y la distribución en el momento de establecer los patones en el material, para ser cortado posteriormente. Una vez establecido la cantidad real de materia prima a ser procesada, se puede conocer el volumen total de materiales e insumos necesarios para la producción en la tabla 12.

Tabla 12. Materiales e insumos totales para la producción.

Materiales	Unidades	Total
· Tableros	2	3.155,00
· 62 Tornillos 6x2"(A).	62	80.228,00
· 52 Tornillos de 5/8"(B).	52	67.288,00
· 10 Tornillo para ramplús©.	10	12.940,00
· 10 Tornillo de bisagra (D).	10	12.940,00
· 4 Bisagras de brazo curvo.	2	2.588,00
· 8 Ramplús.	8	10.352,00
· 6 bases y cuerpo de las patas.	6	7.764,00
· 6 tiradores de puerta.	6	7.764,00
· 1 gal de Barniz.	1	1.294,00
· Papel burbuja	1	215,67
· Caja de embalaje	1	1.294,00
· 1 gal de Pintura.	1	1.294,00
· 1 par de Correderas telescópicas.	4	5.176,00

4.7. Máquinas y equipos asociados a la producción del taller.

4.7.1 Selección de equipo

Ya establecidas las necesidades de producción y la capacidad del taller, lo siguiente, es realizar un investigación para hallar las máquinas y equipos que se adapten a las características de la instalación. Con esta investigación se determinara las especificaciones técnicas de cada equipo y su capacidad para la producción de los equipos ya seleccionados. Estas especificaciones podrán ser observadas en las tablas 49 a 57 del anexo C.

Ahora, para poder elegir o seleccionar los equipos más apropiados que aporten un beneficio a la instalación y la producción que ahí se lleva, es imperativo desarrollar un sistema que clasifique los equipos según una determinada ponderación. A continuación se muestra los parámetros para la elección y su ponderación.

Tabla 13. Sistema de selección.

Sistema de selección				
Parámetros de selección	Ponderación	Descripción		
Consumo de energía	0,1	¿El equipo es apropiado para los estándares de consumo (electricidad o combustible)?		
Calidad	0,15	¿El equipo cumple con algún parámetro de calidad?		
Tamaño	0,2	¿El equipo posee las dimensiones apropiadas para su manejo dentro de la instalación?		
Capacidad	0,2	¿El equipo se adapta a la demanda de producción de la instalación?		
Componentes extra	0,1	¿El equipo posee algún componente extra que permita manejar los materiales con más facilidad?		
Precio	0,25	¿El equipo es accesible económicamente?		

Fuente: Elaboración Propia 2015

Posterior a la definición de los parámetros y la asignación de valores a los mismos según su importancia correspondiente, se realizó una matriz EFI para evaluación y selección de los equipo. Según la conveniencia de la instalación dicha y siguiendo los parámetros antes mencionados, cada equipo se le asignará un valor que estará en un rango

entre (1) el menos apropiado y (4) el que mejor se adapte a la producción, dependiendo de los beneficiosque puedan generar. Esta se puede observarse en elanexo **B.**

4.7.2. Asignación de equipos

Antes de asignar un equipo al procesos productivo, se debe determinarcuántos de ellos estarán en cada etapa de la manufactura de muebles, para ello se hará uso del método de la fracción de equipo, con el cual se puede conocer la cantidad de máquinas, en función del turno de producción y el tiempo empleado en por etapa, para la fabricación dentro de la etapa. Con el uso de la ecuación (3), se llegó a la siguiente tabla:

Tabla 14. Fracción de equipos por etapa de producción.

Proceso	S	Q	E	H	R	f	F
Medición	120					1,7544	2
Corte	180					2,6316	3
Perforación y Biselado	45	6	0,95	480	0,9	0,6579	1
Lijado	50					0,7310	1
Pintura y secado	45					0,6579	1

Fuente: Elaboración Propia 2015

Una vez culminado el proceso de selección y del cálculo de la cantidad de los equipo para cada etapa de la producción, se procede a la asignación de equipos por actividad. Los equipos asignados al proceso se observan en la tabla.15.

Tabla 15. Equipos seleccionados para la producción.

Equipos seleccionas para el proceso						
Proceso	Equipo	N°	Especificaciones			
Transporte de Producto terminado		1	 Dimensiones: 2,40x 5,8x 2,5m Combustible: gas/ gasolina Potencia: 385 -5500Hp Vol. Tanque: 80 L Capacidad de carga: 4,5 T Revoluciones: 4500 r.p.m 			

Equipos seleccionas para el proceso			
Proceso	Equipo	N°	Especificaciones
Cortado de materia prima		3	 Potencia del motor: 1.600 W / 230 V Capacidad máx. de corte a 90°: 79 mm Capacidad máx. de corte a 45°: 55 mm Medidas de la mesa: 868 x 656 mm Medidas de la mesa + extensión: 1.260 x 656 mm N° de revoluciones: 2.500 r.p.m.
Perforación		3	 Peso: 4,7 libras Dimensiones: 8,9 x 4 x 7,8 pulgadas Esfuerzo de torsión: 300 in-lb Velocidad: 750 r.p.m Voltaje: 120 V
Biselado		3	 Peso: 10,9 libras Dimensiones: 11,5 x 6,6 x 11,9 pulgadas Velocidad: 750 r.p.m Voltaje: 120 V
Lijado		3	 Peso: 1 libras Dimensiones: 8 x 6 x 6 pulgadas Voltaje: 120 V
Cierra manual		3	 Peso: 15,9 libras Corriente: 15 amp. Voltaje: 120 V Potencia: 1,2 KW Dimensiones: 20,2 x 11,4 x 4,2 pulgadas
Pintado y secado	clear en alibaba som	1	 Dimensiones: 7mX5.5mX3.5m Potencia: 16kw Combustible: gas/ diesel Voltaje: 380V 3PH-50Hz / 50Hz-fase-220V sola

Equipos seleccionas para el proceso					
Proceso	Equipo	N°	Especificaciones		
Generación de Energía	1800 MINING SCORES	2	 Dimensiones: 17,7 x 14.0 x 14,8 Pulgadas Peso: 56 libras Combustible: Gasolina Vol. Tanque: 1,4 G Ruido: 65 Db 4000 W 		
Transporte de material		2	 Dimensiones: 1,6x2,01x0,7 m Capacidad de carga: 1500 Kg Radio de giro: 1590 mm Peso: 246-360 Kg 		

CAPITULO V: DISEÑO DE INSTALACIÓN

En este capítulo se determinara todo lo relacionado al diseño de la instalación como tal, es decir, se definirán los departamentos a contemplarse dentro de la misma, los requerimientos de espacio necesario, su distribución, cercanía y el recorrido de material dentro los departamentos que involucren algún proceso de transformación de la materia prima.

5.1 Requerimientos de espacio.

No existe una referencia específica sobre las medidas que debe tener un taller de manufactura de muebles. Lo que sí se puede especificar, es que el espacio correspondiente a la cartera de servicios y personal que tendrá que cumplir los requisitos siempre que exista.

Para poder determinar el espacio requerido, teniendo en cuenta el tipo de mueble a fabricarse, cantidad y los procesos involucrados, se toma en cuenta el área ocupada por los equipos, es decir, el área de ocupación, mantenimiento y uso de cada equipo y mesas de trabajo, así como los espacios para la circulación dentro de la instalación. Luego de determinar el área total

Una vez determinado el sistema de producción para la manufactura de muebles, además de conocer los equipos seleccionas en el capítulo anterior, es posible desarrollar un estudio concreto sobre el requerimiento de área de los equipos y del departamento (tabla 16). Para determinar el requerimiento de espacio bruto y el total de los equipos, se hace uso de fichas técnicas, en la cual, se muestran datos técnicos del equipo que son de importancia para la empresa y área total del equipo con su respectivas zonas de mantenimiento y seguridad. Se puede observar en el anexo C.

Tabla 16. Requerimiento de espacio de producción.

	Áreas de producción	Equipos	N° equipos	Superficie de equipos m^2	Superficie Netam ²	Superficie Bruta m^2
	Medición	mesa para medición	2	3	6	10
	Cortado	Mesa de cortado	3	2,37	7,11	11,11
	Perforado	Taladro	3	0,101	0,303	4,303
	Biselado	Trompo	3	0,0224	0,0672	4,0672
	Lijado	Lijadora	3	0,1	0,3	4,3
Producción	Pintado y secado	Horno	1	123,2	123,2	127,2
	Transporte de material	Monta carga manual	2	7,38	14,76	18,76
	Embalaje	N/A	N/A	6	6	10
	Fuente de poder	Planta de energía	2	0,88	1,76	5,76
			Total	143,0534	159,5002	195,5002

Fuente: Elaboración Propia (2015).

Una vez establecido las dimensiones para toda el área de producción, se procede a determinar la superficie que corresponde a todos los departamentos que conforman la instalación. A continuación la tabla 17.

Tabla 17. Requerimiento de espacio del taller.

Áreas	Superficie netam ²
Producción	200
Recepción	10
Oficinas	25
Comedor	25
Mantenimiento	5
Baños y Vestidores	34
Almacén	60
Total	360

Fuente: Elaboración Propia (2015).

5.1.1. Propuesta de distribución de instalación

Luego de determinar los requerimientos de espacios de la instalación, es fundamental desarrollar un método que nos permita agrupar las áreas, de manera clara y ordenada, de manera que se pueda evitar los traslados innecesarios a causa de la lejanía entre las secciones de la instalación, al igual que, los cuellos de botella entre los puestos de trabajo. Para esto, se utilizará un diagrama para la distribución de planta.

Con las codificaciones que representan los parámetros de cercanía expresadas en el Capítulo II, se procede a realizar el diagrama de relaciones para justificar las posibles configuraciones para los departamentos dentro de la instalación. Pero antes de realizar la distribución general del taller tabla 19, es necesario establecer la misma dentro del departamento de producción tabla18.

Tabla 18. Diagrama de relaciones del departamento de producción

	Medición	Cortado	Perforado	Biselado	Lijado	Pintado y secado	Transporte de material	Embalaje
Medición		A,4	0,5	0	0	U	U	Х
Cortado			A,4	E,6	0,4	0,4	U	Χ
Perforado				A,4	E,6	0,4	U	Χ
Biselado					A,4	E,6	0	Х
Lijado						A,4	1,6	Х
Pintado y secado							1,4	Х
Transporte de material								E,4
Embalaje								

Fuente: Elaboración Propia 2015

Tabla 19. Diagrama de relaciones de las áreas del taller.

			ania de relación				
	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y Vestidores	Almacén
Producción		U,2,5	U	1,2	1,2,5	0,2	A.1.4
Recepción			E,2,7	U	0,3	0	1,7
Oficinas				E,2	0,3	1,2	X,3,7
Comedor					I,3	l,1	0
Mantenimiento						0,3	1,3,5
Baños y Vestidores							U
Almacén							

Con la información obtenida en los diagramas expuestos anteriormente y haciendo uso de la ecuación (3), se realiza el cálculo de la eficiencia relativa y con su debida valoración como se expresa en la tabla 4; posterior a esto se implementa un diagrama de nodos para observar la alineación preliminar, para establecer la distribución de las áreas dentro de la instalación. Ilustración 17 y 18, las otras opciones se pueden observar en las tablas 58 a 63 del anexo D.

Tabla 20. Valores asignados según las áreas del taller.

	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y Vestidores	Almacén
Producción		0	0	2	2	1	10
Recepción			5	0	1	1	2
Oficinas				5	1	2	-10
Comedor					2	2	1
Mantenimiento						1	2
Baños y Vestidores							0
Almacén							
Total		0	5	7	6	7	5

Fuente: Elaboración Propia 2015

$$E = \frac{30}{40} = 0.75$$

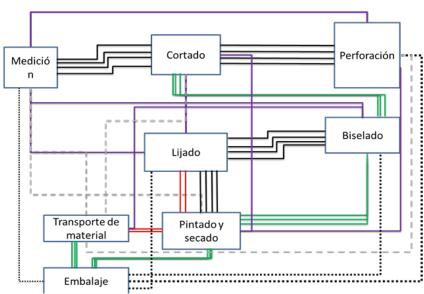


Figura16. Diagrama de nodos para el área de producción.

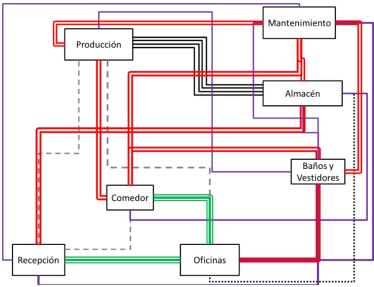


Figura17. Diagrama de nodos del taller.

Fuente: Elaboración Propia 2015

5.1.1.1. Distribución de espacio

Luego de realizar el diagrama de nodos, con el cual se determinó la importancia de cercanías entre departamentos. Ahora es necesario establecer una proporción que se acerque a las dimensiones y distribuciones reales del taller. Para este fin, hacemos uso de una grilla de distribución, a la cual se le asignara un número y un color que represente a cada área de la instalación. Ver tabla 21.

Tabla 21. Codificación para la grilla de distribución del taller.

Áreas	Superficie Neta	N° de Cuadros	N° Asignado
Producción	200	40	1
Recepción	10	2	2
Oficinas	25	5	3
Comedor	25	5	4
Mantenimiento	5	1	5
Baños y	35	7	6
Vestidores			
Almacén	60	12	7
total	360	72	

Luego de establecer los parámetros para la elaboración de la grilla de distribución, donde se establece la distribución del taller, tabla22. Otras agrupaciones de la misma se pueden observar en el anexo D

Tabla 22. Grilla de distribución del taller.

3	3	3	4	7	7	7	2
3	3	4	4	7	7	7	2
6	4	4	5	7	7	7	1
6	6	6	1	7	7	7	1
6	6	6	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

Fuente: Elaboración Propia 2015

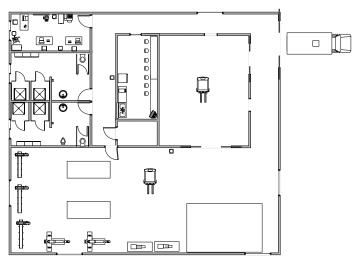


Figura18. Propuesta de distribución.

Fuente: Elaboración Propia 2015

5.2. Requerimiento del Personal

Debido a que el taller de manufactura de muebles es una instalación industrial con determinadas dimensiones, es necesario una cantidad específica de trabajadores, para que ésta mantenga una actividad moderada. El personal de taller estará constituido de la siguiente manera:

- Tres (3) encargados del departamento administrativo
- Tres(3) operadores para las cortadoras y herramientas
- Un (1) operador del horno para pintura

- Un (1) operador para la conducción del vehículo
- Dos (2) encargados de almacén
- Un (1) encargado de mantenimiento.

Ahora, según el artículo 168 y 173 de la Ley Orgánica del trabajo, de los Trabajadores y Trabajadoras "Se establece una jornada laboral de cinco (5) días a la semana de ocho (8) horas diarias, que no podrá exceder de las cuarenta (40) horas semanales, y el trabajador tendrá derecho a dos (2) días de descanso continuos y remunerados" además "en los períodos de descanso y de alimentación, los trabajadores tendrán el derecho a suspender sus labores y a salir del lugar donde trabajan. El tiempo de descanso y de alimentación será de una (1) hora diaria, sin que puedan trabajarse más de cinco (5) horas continuas".

5.2.1. Ventilación

Todo sistema de ventilación artificial o mecánica de un local, se fundamentará en la inyección de aire fresco y no contaminado al interior del local de una edificación, permitiendo la salida de aire viciado al exterior, o bien, en la extracción del aire viciado del local, permitiendo la entrada al mismo de una cantidad de aire fresco y no contaminado desde el exterior.

Por lo antes expuesto, la instalación estará dotada de sistema de ventilación mixto es decir, el área de producción y almacén contarán con extractores de aire yventiladores de techo, estos últimos serán solo para la generación de una corriente de aire fresca. Se evitará la ubicación de un sistema de ventilación de refrigeración debido a que ese puede aumentar la humedad dentro de las áreas de producción y almacén, afectando la materia prima y producto terminado. Solo se hará uso de este tipo de ventilación en el área del comedor y oficinas.

5.2.2. Iluminación

Según la (Iluminación en Tareas y áreas de trabajo (COVENIN 2249)., 1993) este tipo de establecimiento debe tener una iluminancia tipo A, B y C de 200,300 y 500 lux respectivamente, con un número de cuatro a nueve puntos de iluminación. Que una instalación tenga un tipo de iluminación "A, B y C" significa que el desempeño de la iluminación, tiene una eficacia energética de iluminancia, baja, media y alta

respectivamente. Los puntos de iluminación pueden variar dependiendo del área total que ocupará la instalación, pero lo que determina una iluminación adecuada, es la uniformidad del flujo de luz en este recinto.

Para poder determinar esta uniformidad de iluminación, es necesario calcular la constante del salón, con el fin de conocer cuántos puntos de medición serán necesarios para establecer un espacio apto para el trabajo. Para ello se hace uso de la siguiente ecuación:

$$CA = \frac{l * a}{h * (l + a)}$$

Ecuación 7

Fuente: (Iluminación en Tareas y áreas de trabajo (COVENIN 2249)., 1993)

Donde:

CA: Constante de salón o ambiente.

L: Largo del recinto

A: Ancho del recinto

H: Altura del recinto

$$CA = \frac{20 * 18}{6 * (20 + 18)} = 1,578$$

Ahora, el número de mediciones viene dado a través de los siguientes intervalos para los valores de constante de salón:

Tabla 23. Intervalos para la constante de salón

Constante de salón	Número de puntos de medición
<1	4
1 – 2	9
2 – 3	16
> 3	25

Fuente: (Iluminación en Tareas y áreas de trabajo (COVENIN 2249)., 1993).

Según esta tabla, dividir el área entre el número de puntos de medición, de esta manera se toman las medidas, para determinar la uniformidad de iluminación.

La uniformidad de iluminación nos proporciona una apreciación de que tan homogénea es la iluminación en el ambiente estudiado, se calcula de la siguiente manera:

$$ec\ 4$$
: $Fu = \frac{Bi}{Bp}\ para\ Bi < Bp\ y\ Fu = \frac{Bp}{Bi}para\ Bi > Bp$

Ecuación 8

Fuente: (Iluminación en Tareas y áreas de trabajo (COVENIN 2249)., 1993)

Siendo:

Fu: Factor de uniformidad

Bi: Medición en cada punto

Bp: Iluminación promedio

Según la norma (Iluminación en Tareas y áreas de trabajo (COVENIN 2249)., 1993), explica que el 75% de los datos obtenidos deben poseer un factor de uniformidad > 2/3 (0.667).ver anexo F

5.2.3. Equipos de protección personal

Cuando se requiera el uso de equipos como lentes de protección, guantes entre otro, se debe dar un adiestramiento adecuado a todos los usuarios sobre su uso obligatorio. Dichos equipos deben mantenerse en perfectas condiciones operativas, según los lineamientos de la empresa o las especificaciones del fabricante, siendo inspeccionados antes de su uso para garantizar su buen funcionamiento.

Según la norma (Ropa, equipos y dispositivos de protección personal. Selección de acuerdo all riesgo a ocupacional (COVENIN 2237), 1989)y se debe seleccionar el equipo de protección personal en función de los factores de riesgo inherentes al puesto de trabajo (bata o delantal, botas, guantes naturales o sintéticos y lentes de seguridad).

Asegurarse que la ropa y equipos de protección personal sean los adecuados a las condiciones del taller, así como garantizar su provisión y uso. La vestimenta de protección, al igual que los equipos debe permanecer en el área cuando termine la jornada de trabajo.

Según la norma (Protecciones oculares faciales (COVENIN 955), 1976), debe utilizarse permanentemente lentes de protección en el área del taller. Estos deben seleccionarse de acuerdo a la tarea que se realice (en este caso, se deberá usar anteojos cubre lentes, para polvos y salpicaduras)

5.2.4. Equipos contra incendio

Dependiendo del tipo de riesgo en que se encuentre, la zona de trabajo, se debe usar un extintor según sea el requerimiento. Para estas instalaciones se recomienda el uso de

extintores manuales, cuyo contenido sea de polvo químico seco. Los extintores deben estar a una distancia cercana de no más 5 m del puesto de trabajo y a 1,5 m de altura, con la debida identificación. Ver anexo E.

5.2.5. Medios de Escape

Según la norma(Entorno urbano y edificaciones, accesibilidad para las personas(COVENIN 2733), 2004)las especificaciones de diseño para las vías de escape, puertas y pasillos son:

5.2.5.1. Escalera de escape

- Debe tener una resistencia mínima al fuego de dos horas
- Los descansos deben formar 90° o 180° entre los planos verticales de contrahuella.
- El ancho debe ser de 0,28 m y una altura de 0,17 m y además poseer 15 escalones continuos
- Debe tener pasamanos con un ancho entre 1,2 m y 2,4 m, no debe sobresalir de la pared 15 cm.

5.2.5.2. Puertas de Escape

- Deben tener un ancho mayor a 0,90 m y una altura no menor de 1,90 m
- Debe permitir su apertura manual bajo cualquier condición y tener un sistema con retorno automático que garantice que la puerta se mantenga normalmente cerrada.
- Deben estar ubicadas en dirección opuestas tan lejanas una de la otra como sea posible.

5.2.5.3. Pasillos de escape

- Deben ser continuos, construidos de piso a techo y tener un ancho, no menor de 1,50 m.
- En los pasillos no debe existir ningún tipo de elemento que funcione como obstáculo (bebederos, puertas y cualquier otro objeto) o en caso de su existencia, debe estar empotrado en la pared o nichos.

5.3. Requerimientos de servicios

5.3.1. Instalaciones sanitarias

Las instalaciones sanitarias se desarrollan en función del número de personas que efectúan labores de trabajo en ella. Por lo general estas instalaciones no deben estar a no más de 61 m del puesto de trabajo, sin importar que se diseñe para un número limitado de persona, digamos 1-5 es necesario baños para ambos géneros, considerando que el baño de hombres debe poseer un lavado, un orinal y un inodoro en el caso de las mujeres solo un inodoro y un lavado. Ver anexo F. Según (NORMA VENEZOLANA ENTORNO URBANO Y EDIFICACIONES (FONDONORMA 2733), 2004) las instalaciones sanitarias deben cumplir con los siguientes requisitos:

5.3.1.1. Baños

- Las dimensiones mínimas del recinto privado deben ser 1,75 m de ancho por 1,55 m de largo.
- La puerta del recinto deben tener un ancho mínimo de 90 cm. con apertura hacia afuera del recinto.
- Se debe prever un espacio lateral para transferencia desde la silla de ruedas al WC,
 cuyas dimensiones mínimas deben ser 1,20 x 0,80 m (véase Fig. 20)
- Debe disponerse un espacio de giro y maniobra entre las piezas y las puertas de 1,5 m de diámetro.
- Cuando se trate de espacios a remodelar se debe procurar sea posible el giro de al menos 1,2 m de diámetro

5.3.1.2. Urinario

- La distancia entre el borde superior de los urinarios y el piso no debe exceder 45 cm.
- En urinarios colgados a la pared se deben instalar barras de sostén a cada lado del artefacto sanitario.
- Un extremo de cada barra se debe fijar al piso y el otro, a la pared.

5.3.1.3. Duchas

- En las duchas los grifos deben ser, preferiblemente, tipo palanca.
- Se recomienda la instalación de regaderas tipo teléfono.
- El espacio del sector de la ducha, debe ser suficiente de modo que una persona sentada en una silla pueda practicar su higiene con comodidad.
- En los sectores de ducha dispuestos para el uso de personas con discapacidad no se deben colocar brocales ni ningún otro tipo de obstáculos en el piso.
- El acceso a la ducha debe ser sin desniveles, con pendiente suave hacia el drenaje.
- Piso antirresbalante.

5.3.2. Electricidad

Una vez seleccionados los equipos y calculado el número de máquinas para el proceso de producción, podemos determinar el consumo eléctrico del taller en función del potencial electro de cada uno de los artefactos eléctrico y el período de tiempo de su uso, tomando en cuenta que estos mismos son usados durante toda la jornada de laboral, usando la siguiente expresión:

E = P.t **Ecuación 9 Fuente:** elaboración propia 2015

Donde:

E: Energía eléctrica (Kwh)

P: Potencial eléctrico de equipos e insumos (KW)

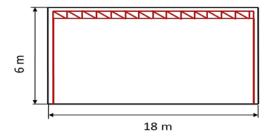
t: Tiempo de uso (horas)

Tabla 24. Requerimientos de energía.

Equipo	Unidades	Potencia por equipo (KW)	Potencia Total (KW)	Tiempo de uso (h)	Consumo de energía por jornada (KW)
Cortadoras	3	1,6	4,8	8	38,4
Horno	1	16	16	8	128
Lijadora	3	0,144	0,432	8	3,456
Taladros	3	0,6	1,8	8	14,4
Trompo	3	0,9	2,7	8	21,6
Computadora	3	0,35	1,05	8	8,4
Iluminación	33	0,096	3,168	8	25,344

Equipo	Unidades	Potencia por equipo (KW)	Potencia Total (KW)	Tiempo de uso (h)	Consumo de energía por jornada (KW)
sierra	3	1,2	3,6	8	28,8
Cafetera	1	0,3	0,3	2	0,6
Micro ondas	1	1,2	1,2	1	1,2
Refrigerador	1	0,3	0,3	24	7,2
Bebedero	3	0,15	0,45	24	10,8
TV	1	0,07	0,07	2	0,14
Aire	2	1,5	3	8	24
acondicionado					
Ventiladores	4	0,07	0,28	8	2,24
Total	65	24,48	39,15		314,58

Fuente: Elaboración Propia 2015


5.4. Requerimientos estructurales

Debido a que esta investigación es solo de ingeniería básica, no se tomará en cuenta los detalles para la construcción de la instalación, solo se admitirá las necesidades para su elaboración en función de la producción, dimensiones y equipos, para más complementos o información de la edificación sería necesario aplicar ingeniería de detalle.

5.4.1. Estructura industrial

Según(Rodríguez, 2009), una estructura industrial es un "conjunto de elementos resistentes capaz de mantener sus formas y cualidades a lo largo del tiempo, bajo la acción de las cargas y agentes exteriores a que ha de estar sometido". Con lo antes mencionado y ya establecido las dimensiones para el taller, se podrá diseñar una propuesta que cumpla con los requerimientos de dimensión y producción. Las estructuras, tendrán las dimensiones mencionas en la distribución de espacio (18x20m), una altura de 6 m desde el suelo de la instalación hasta el final de la estructura metálica (armadura). Para más detalle vea figura 21.

Figura19. Estructura industrial. **Fuente:** Elaboración Propia 2015

5.4.2. Losa

Según la ley de (CRITERIOS DE ACCIONES MÍNIMAS PARA EL PROYECTO DE EDIFICACIONES (COVENIN 88), 2002), "Toda edificación y cada una de sus partes deberán tener la resistencia, la rigidez y la estabilidad necesarias para comportarse satisfactoriamente y con seguridad para los estados límites que puedan presentarse durante su vida útil. En consecuencia, el proyecto arquitectónico deberá permitir una estructuración eficiente para resistir las acciones que puedan afectar a la edificación". Para el diseño y construcción de una superficie resistente y para el manejo de material, equipos y maquinas livianas y pesadas, además dejar alguna holgura para futuras expiaciones en la producción, es decir que la demanda aumente y sea necesario incrementar la capacidad instalada. Con lo antes mencionado y haciendo referencia la ley nombrada anteriormente el suelo del talle estará diseñado para soportar cargas variables de $1200 \frac{Kg}{m^2}$.

CAPÍTULO VI: ESTIMACIÓN DE LA FACTIBILIDAD ECONÓMICA.

Luego del desarrollo de la propuesta de diseño del taller de manufactura, se debe realizar la evaluación de económica financiera del proyecto, para determinar su rentabilidad en función de los resultados arrojados en el capítulo anterior y su adaptabilidad a los productos realizados por la instalación.

En este capítulo se de determinaran las estimaciones de los costos asociados a la producción, materia prima, mano de obra, gastos, el P.V.P. y los estados financieros proyectados, los cálculos del VPN y TIR para estipular la factibilidad económica de la creación del taller de manufactura.

6.1. Criterios para la evaluación

Para llevar a cabo el estudio a fin, es necesario fijar los criterios mediante el cual se determinará la factibilidad económica del proyecto, para éste, se hará uso de la relación de beneficio costo y el análisis a través del VPN.

Para el poder hacer uso de la relación beneficio costo es necesario el cálculo de todos los costos directos e indirectos de afectan la fabricación del bien en cuestión, al igual que los ingresos generados por las ventas de manera tal que se pueda establecer una proporción que nos indique que la rentabilidad del proyecto.

Ahora para poder determinar si la el proyecto es rentable o no, se determinará el flujo de caja del proyecto, el cual será proyectado a 5 años, tomando en cuenta este año (2015) como el año "0" y con éste se hará uso del VPN y el TIR, de manera tal, que se pueda conocer el valor del dinero en el tiempo de la inversión para el proyecto.

6.2. Supuestos

Para la evaluación de este proyecto, se una serie de escenarios para determinar la factibilidad financiera dado el caso que se presente. A continuación se muestran los escenarios a estudio:

Tabla 25. Escenarios propuestos.

Escenario	% de la demanda total	Unidades
Optimista	10%	1294
Probable	7,50%	971
Pesimista	5%	647

Fuente: Elaboración Propia 2015

6.2.1. Inflación

Debido a la volatilidad de la economía venezolana, la inflación está en constante ascenso lo cual no provoca una inestabilidad en los cálculos financieros. Para el uso adecuado de la misma y la evaluación del proyecto, se realizó una consulta la Ing. Mari Loli Suárez, la cual indicó que para hacer una evaluación certera y además que se acercara a la "realidad" inflacionaria que atraviesa el país, era necesario tomar el índice de inflación arrojado al final del año 2014, el cual, según el BCV fue de 68,5%.

6.2.2. Inversión inicial

La inversión inicial será determinada en función de las máquinas y equipos necesarios para la producción del mueble a fin, además de la construcción o compra de la instalación industrial, que se adapte a las necesidades de espacio y la localización dentro del territorio de La Gran Caracas. Como motivo de la evaluación del precio de los equipos, para determinar su precio por equipo, se usó de una tasa cambiaria Bs 197,92 por US\$, publicado el 28 de abril de 2015. Véase la tabla...

Tabla 26. Propuesta del taller de manufactura de muebles.

Máquinas y equipos	Unid.	Costo por unid. \$ (USD)	Costo total \$ (USD)	Costo total en Bs.
horno	1	8.000,00	8.000,00	1.580.975,20
Mesa de cortar	3	600,00	1.800,00	355.719,42
Sierra	3	65,00	195,00	38.536,27
Taladro	3	60,00	180,00	35.571,94
Lijadora	3	29,00	87,00	17.193,11
Trompo	3	65,00	195,00	38.536,27
Fuente de poder	2	202,00	404,00	79.839,25
Subtotal				2146371,456
Vehículo	1	1.937.	1.937.387,20	
Monta cargas	2	260.0	520.000,00	

Galpón	1	24.640.000,00	24.640.000,00
Total			29.243.758,66

Fuente: Elaboración Propia 2015

6.2.3. Costos

Para el proyecto a tratar, se tomarán en cuenta todo lo relacionado a costos de fabricación, costos de materia prima e insumos, costo de mano de obra directa e indirecta y carga fabril.

6.2.3.1. Carga fabril

La Carga fabril, son todos los desembolsos que no pueden identificarse directamente con el bien producido, por tanto, no pueden asociarse a la materia prima directa ni a la mano de obra directa. Para el proyecto solo se tomarán los costos indirectos de la producción como: gastos de electricidad, agua, teléfono, internet y aseo. Cada uno de estos estratos se estimará con excepción del potencial eléctrico que se determinó en el capítulo anterior y el internet, ya este mismo posee un plan para su servicio en CANTV.

Tabla 27. Carga fabril mensual y anual estimada.

	Mensual Bs.	Anual Bs.
Agua	1000	12000
Electricidad	267,64	3211,73
Teléfono	2000	24000
Internet	400	4800
Aseo	2000	24000
tot	al	68011,736

Fuente: Elaboración Propia 2015

6.2.3.2. Costo de mano de obra y gastos administrativos

La mano de obra está asociada al personal directo e indirecto, encargado de la fabricación, manejo y transporte del bien como tal, además de tomar en cuenta los gastos administrativos, relacionado con todos los beneficios requeridos según las leyes y/u otorgados por contrato con el empleador. Según la publicación en Gaceta N°6.181 de fecha 8 de Mayo del 2015 el aumento fraccionado queda de la siguiente manera:

 Desde el 1ero. de Mayo el salario mínimo tendrá un aumento de 20%, pasando de Bs. 5.622,48 a Bs. 7.309,20Bs. 6.746,98

A partir del 1ero. de Julio al sueldo mínimo se le suma un 10% más pasando de Bs.
 6.746,98 a Bs. 7.309,20Bs. 7.421,68

Ahora, para hacer la estimación del costo de la mano de obra fue necesario establecer algunos parámetros obligatorios, según lo estipulado en la LOTTT, que son:

- Aporte patronal del Seguro social 7%
- Bono vacacional (15 días)
- Vacaciones pagas (15 días)
- Utilidades 30 días
- Bono de alimentación 50% de una unidad tributaria por cada día laboral
- Prestaciones 15 días, depositado cada trimestres y en función del último sueldo pagado.
- Paro forzoso 2%
- Fondo habitacional 2%

En el anexo G, se pueden observar los cálculos en Bs. por año de mano de obra para cada uno de los empleados del taller.

Tabla 28. Costo de mano de obra proyectada.

Mano de obra	2015	2016	2017	2018	2019	2020
Obrero	1.914.205	3.225.435	5.434.858	9.157.737	15.430.786	26.000.876
Secretaria	239.275	403.179	679.357	1.144.717	1.928.848	3.250.109
Administrador	452.624	762.672	1.285.103	2.165.399	3.648.698	6.148.057
Supervisor general	684.076	1.152.669	1.942.248	3.272.688	5.514.479	9.291.898,31
Total	3.290.182	4.897.601	9.341.568	15.740.542	26.522.813	44.690.941

Fuente: Elaboración Propia 2015

6.2.3.3. Costo de materia prima e insumos

Se tomaron todos los costos asociados a los materiales, insumos y equipos de uso personal, involucrados en la fabricación del objeto en cuestión. Para esto se realizó una investigación de los precios y proveedores, el cual se puede observar en el anexoH. Posterior a lo antes mencionado, se determinó todos los costos por material y se proyectaron, tabla 29, el resto de los escenarios se ubica en el anexo I.

Tabla 29. Costo de materia prima para el escenario probable.

Materiales	Unidades	Total	costo por unidad Bs.	costo anual Bs.
· Tableros	2	2.366,25	3.500,00	8.281.875,00
· 62 Tornillos 6x2"(A).	62	60.171,00	8,00	481.368,00
• 52 Tornillos de 5/8(B).	52	50.466,00	9,00	454.194,00
· 10 Tornillo para ramplús(C).	10	9.705,00	10,00	97.050,00
· 10 Tornillo de bisagra (D).	10	9.705,00	8,00	77.640,00
· 2 Bisagras de brazo curvo.	2	1.941,00	300,00	582.300,00
· 8 Rawplúgs.	8	7.764,00	0,60	4.658,40
• 6 bases y cuerpo de las patas.	6	5.823,00	140,00	815.220,00
· 6 tiradores de puerta.	6	5.823,00	255,00	1.484.865,00
· 1 gal de Barniz.	1	970,50	1.200,00	1.164.600,00
· Papel burbuja	1	215,67	850	183.316,67
· Cajade embalaje	1	1.294,00	90	116.460,00
· 1 gal de Pintura.	1	970,50	1.000,00	970.500,00
· 1 par de Correderas telescópicas.	4	3.882,00	1.600,00	6.211.200,00
Total				20.925.247

Fuente: Elaboración Propia 2015

Tabla 30. Insumos para el personal.

Insumos para los Empleados	Unidades	Costo Bs.	Total Bs.		
· Lentes de protección.	4	550	2200		
· Botas de protección.	6	2000	12000		
· Tapa bocas.	3	450	1350		
· Máscara para pintura.	1	2000	2000		
· Guantes.	6	500	3000		
Costo total de insumos 2055					

Fuente: Elaboración Propia 2015

Tabla 31. Costos de materiales e insumos de personal proyectados. Escenario probable.

Bs/Año	2015	2016	2017	2018	2019	2020
Materiales	20.945.797	37.051.169	65.494.541	115.912.465	205.075.357	362.890.646

Fuente: Elaboración Propia 2015

6.2.4. Ingresos

Los ingresos serán determinados a partir del cálculo de los costos directos e indirectos de la producción y haciendo referencia al artículo 32 de la (Ley orgánica de precios justos, 2014), lo cual dictamina una porcentaje de ganancia entre (0%) y (30%). Para la evaluación

económico-financiero del proyecto se tomará el valor máximo de (30%) y luego será dividido por el volumen de producción anual estimado, para obtener el beneficio por cada unidad fabricada. Estos valores serán proyectados hasta 5 años con el valor de inflación calculado anteriormente. Ver tabla 32, para conocer los valores totales anuales proyectados por escenario ver el anexo J.

Tabla 32. Ingreso anual por unidad.

Probable							
Bs/Año	2015	2016	2017	2018	2019	2020	
Ingreso por unidad Bs.	34.421	57.713	96.724	162.251	272.172	456.714	
Ingreso Anual Bs.	33.406.230	58.811.261	103.493.258	182.285.748	321.068.506	565.701.287	

Fuente: Elaboración Propia 2015

6.2.5. Estado de ganancias y pérdidas

En este estado, se mostrará todas las entradas y salidas de dinero correspondiente a los ingresos y costos, asociados al taller de manufactura de muebles, por un período de evaluación de cinco años. Es necesario aclarar que la proyección del estado de ganancias y pérdidas estára afectado por la inflación y el ISLR. Dicho estado de resultado para un escenario probable puede ser observado en la tabla 33, para conocer el resto de los escenarios ir al anexo K.

Tabla 33. Estado de ganancias y pérdidas, escenario probable.

Da/AZa		2 017 00			2 020 00
Bs/ Año	2.016,00	2.017,00	2.018,00	2.019,00	2.020,00
ingreso por	58.811.261,22	103.493.258,14	182.285.748,49	321.068.506,13	565.701.287,59
ventas	36.611.201,22	103.473.236,14	102.203.740,43	321.000.300,13	303.701.207,39
C. Materia prima	0F 0F1 100 10	CE 404 E41 OF	115.010.465.20	205 055 255 20	262 000 646 00
e insumos	37.051.169,16	65.494.541,37	115.912.465,39	205.075.357,20	362.890.646,90
Mano de obra	4.00= <04.0=	0.044 #40.00	4 = 40 = 40 40	0 < 500 010 00	44.600.044.
1/20110 00 0020	4.897.601,05	9.341.568,20	15.740.542,42	26.522.813,98	44.690.941,55
Carga fabril	111 500 50	102 100 72	225 25 4 55	E40.0E4.11	000 011 55
	114.599,78	193.100,62	325.374,55	548.256,11	923.811,55
Utilidad bruta	1 (= 4= 001 00	20.464.045.04	E0 20E 200 14	00.033.050.04	155 105 005 50
	16.747.891,23	28.464.047,94	50.307.366,14	88.922.078,84	157.195.887,58
Depreciación	(250 02 (02	(250 02(02	(250 02 (02	(250 02 (02	(250 02 (02
_ · · · · · · · · · · · · · · · · · · ·	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Utilidad	40.460.068.04	00.406.004.00	44.000.040.44	00 (44 050 04	450 045 064 56
Operativa	10.469.865,21	22.186.021,92	44.029.340,11	82.644.052,81	150.917.861,56
ISLR 34%					
ISLK 34 70	3.559.754,17	7.543.247,45	14.969.975,64	28.098.977,96	51.312.072,93
T14'1' 1 - 1 N1 - 4 -					
Utilidad Neta	14.029.619,38	29.729.269,37	58.999.315,75	110.743.030,77	202.229.934,49
			1	,	· · · · · · · · · · · · · · · · · · ·

6.2.6. Financiamiento bancario

Para fines de llevar a cabo el proyecto, es necesario un financiamiento bancario, el cual se realizará a través del Banco de Venezuela, el cual ofrece un patrocinio máximo del 75% del presupuesto inicial calculado para equipos e instalaciones, una tasa de interés máxima de 16,2% para pequeñas y medias industrias(Banco de Venezuela, s.f.), que para el estudio de la factibilidad económica del proyecto se tomará. Para ver los detalles sobre el financiamiento para el proyecto ver la tabla 34.

Tabla 34. Financiamiento bancario.

Financiamiento del banco de Venezuela					
Inversión inicial Bs.	29243758,70				
Deuda Bs.	21932819,00				
Capital propio Bs.	7310939,66				

Fuente: Elaboración Propia 2015

Una vez determinado el valor a ser financiado por el banco, es necesario determinar el valor a ser amortizado ver tabla 35, con el pago de una cuota fija anual. Dicha cuota será calculada haciendo uso de la siguiente expresión:

$$C = P \frac{i(1+i)^n}{(1+i)^n - 1}$$

Ecuación 10

Donde:

C=Cuota a ser calculada

P= Valor del capital a ser financiado

i= *Tasa de interés*

n= A \tilde{n} os del financiamiento

$$C = 21932818,99 \frac{0,162(1+0,162)^5}{(1+0,162)^5 - 1} = 6729766,6723 Bs$$

Tabla 35. Amortización anual.

Años	Cuota Anual	Capital inicial	Interés	Amortización	Saldo actual
2015	0	0	0	0	21932818,99
2016	6729766,7	21932818,99	3553116,677	3176650	18756169,00
2017	6729766,7	18756169	3038499,377	3691267,3	15064901,70
2018	6729766,7	15064901,7	2440514,076	4289252,6	10775649,10
2019	6729766,7	10775649,1	1745655,155	4984111,5	5791537,59
2020	6729766,7	5791537,587	938229,0892	5791537,6	0,00

Fuente: Elaboración Propia 2015.

6.2.7. Depreciación

Para el estudio en cuestión es necesario hacer uso de un método contable que nos permita determinar el valor decreciente de los activos fijos que posea la instalación, en este caso, todo lo asociado a los equipos de producción, trasporte y el mismo recinto, en el que se lleva a cabo el proceso de manufactura. Para este procedimiento se hará uso de depreciación en línea recta en un período de (5) años y según (Urbina, 2007) "este método consiste en recuperar el valor del activo en una cantidad que es igual a lo largo de cada uno de los años de vida fiscal, de forma que si se grafica el tiempo contra el valor en libros, esto aparece como una línea recta."

Tabla 36. Depreciación anual proyectada.

Bs/Años	2015	2016	2017	2018	2019	2020
Equi, Maq, Gal	0	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02

Fuente: Elaboración Propia 2015

6.2.7. Capital de trabajo

La inversión en el capital de trabajo para el proyecto de estudio, serán todos los costos asociados a (2) meses de producción, es decir, los costos relacionados a los requerimientos de materia prima e insumos, mano de obra y gastos por servicios básicos necesarios para la fabricación del mueble en cuestión, durante el período antes mencionado. A continuación se observa el capital de trabajo total para el escenario probable, para visualizar el resto de los escenario remitirse al anexo L.

Tabla 37. Capital de trabajo, escenario probable.

	Probable					
	Anual Bs.	Costo a 2 Meses Bs.				
C. Fabril	68.011,74	11.335,29				
M. de obra	3.235.378,44	539.229,74				
Materia .Prima	20.625.470,40	3.437.578,40				
Insumos Per	20.550,00	3.425,00				
Total	23.949.410,58	3.991.568,43				

6.3. Flujo de caja

Para la evaluación del proyecto es primordial la presencia de un estado financiero que refleje todas las acciones de entrada y salida del efectivo, así como los estados de financiamientos de un tercero. Para esto hacemos uso de los cálculos de, ingreso, costos, depreciación de equipos y galpón, además del financiamiento del banco. Cabe destacar que cada uno de estos términos fue afectado por una inflación de (68,5%) para motivos de valoración de los escenarios propuestos. A continuación se muestra el flujo de caja del escenario probable, para conocer el resto de los escenarios remitirse al anexo M.

Tabla 38. Flujo de caja, escenario probable

			Probable 75			
Año	2.015	2.016	2.017	2.018	2.019	2.020
Ingreso	-	58.811.261,22	103.522.562,99	182.285.748,49	321.068.506,13	565.701.287,59
Costo	-	42.550.357,20	74.795.263,38	131.540.141,94	231.400.656,39	407.224.848,34
Depreciación	1	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Interés de préstamo	1	3.553.116,68	3.038.499,38	2.440.514,08	1.745.655,15	938.229,09
Ing Grab	•	6.429.761,32	19.410.774,22	42.027.066,45	81.644.168,57	151.260.184,14
ISLR	-	2.186.118,85	6.599.663,23	14.289.202,59	27.759.017,31	51.428.462,61
Ing Neto	1	4.243.642,47	12.811.110,98	27.737.863,86	53.885.151,25	99.831.721,53
Depreciación	1	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Flujo de caja Op	•	10.521.668,49	19.089.137,00	34.015.889,88	60.163.177,28	106.109.747,55
Cap. Trabajo	-3.991.568,43	-2.734.224,37	-4.607.168,07	-7.763.078,20	-13.080.786,77	32.176.825,84
Inversión	-29.243.758,66	-	1	1	1	1
Flujo de caja Inv	-33.235.327,09	-2.734.224,37	-4.607.168,07	-7.763.078,20	-13.080.786,77	32.176.825,84
Flujo de caja Finan	21.932.818,99	-3.176.650,00	-3.691.267,29	-4.289.252,60	-4.984.111,52	-5.791.537,58
Flujo de caja total	-11.302.508,09	4.610.794,12	10.790.701,64	21.963.559,09	42.098.278,99	132.495.035,81

6.3.1. Tasa mínima atractiva de rendimiento (TRAM)

Con el uso de la ecuación (4), procederemos a terminar la tasa efectiva anual, debido a que la tasa publicada por el BCV es la tasa nominal mensual.

$$i = (1 + \frac{r}{m})^m - 1$$

$$i = \left(1 + \frac{0.12}{12}\right)^{12} - 1 = 12,68\%$$

Ahora, se determinará el valor de la TRAM el cual se usará como objeto base en la evaluación del proyecto, para tal fin se usará la tasa previamente calculada, la cual está libre de inflación y con el uso de la siguiente expresión:

$$TRAM = i' + f + i'.f$$

Ecuación 11

Donde,

i'= Tasa efectiva sin inflación

f = Tasa de inflación

$$TRAM = 0.1268 + 68.5 + 0.1268 * 0.685 = 89.86\%$$

6.3.2. Valor presente neto (VPN)

Una vez determinada la TRAM, se procede al cálculo del VPN y de esta manera determinar si es posible invertir en el proyecto. Para esto se hará uso de la ecuación 5.

$$VPN = -11.302.508,09 + \frac{4.557.267,36}{(1+0.8986)^{1}} + \frac{10.694.706,68}{(1+0.8986)^{2}} + \frac{21.796.040,44}{(1+0.8986)^{3}} + \frac{41.801.877,79}{(1+0.8986)^{4}} + \frac{131.970.516,86}{(1+0.8986)^{5}}$$

$$VPN = 5.937.620,02 Bs$$

A continuación se muestra un cuadro resumen, en el cual se observan los valores de VPN correspondientes a cada escenario propuesto.

Tabla 39. Valor presente neto para cada escenario.

Escenario	% de demanda	VPN Bs
Optimista	10	14.520.654,18
Probable	7,5	5.937.620,08
Pesimista	5	-2.790.902,66

Fuente: Elaboración propia 2015.

6.3.3. Tasa interna de rendimiento (TIR)

Ya determinado el valor presente neto, procederemos a determinar la tasa interna rendimiento, en el escenario probable, para ello se usara la ecuación 6.

$$0 = -11.302.508,09 + \frac{4.557.267,36}{(1+TIR)^1} + \frac{10.694.706,68}{(1+TIR)^2} + \frac{21.796.040,44}{(1+TIR)^3} + \frac{41.801.877,79}{(1+TIR)^4} + \frac{131.970.516,86}{(1+TIR)^5}$$

$$TIR = 1.159$$

Tabla 40. Tasa interna de rendimiento por escenario.

Escenario	% de demanda	TIR %
Optimista	10	146,82
Probable	7,5	115,94
Pesimista	5	73,54

Fuente: Elaboración propia 2015.

6.4. Punto de equilibrio

Luego de determinar el VPN y TIR para cada uno de los escenarios, es necesario hallar el punto de equilibrio, es decir, el porcentaje de la demanda mínima a satisfacer de manera tal que, la inversión en el proyecto sea factible. Para realizar este procedimiento se debe iterar entres los valores que ocurrió el cambio de signo en el VPN, el cual se ubica entre el rango de 7,5% y 5%, los cuales representan un número de unidades de 971 y 647 respectivamente.

CAPÍTULO VII: CONCLUSIONES Y RECOMENDACIONES.

7.1. Conclusiones

- El tipo de mueble, se fundamentó en cumplir un requerimiento de espacio dentro de los hogares venezolanos, para ello se especificaron las medidas para el mismo, de 120x90x60 cm, compuesto de (4) gavetas y un espacio amplio para el montaje del lava platos, de manera tal que el objeto en cuestión sea de fácil instalación y se adaptada a cualquier área dentro de la cocina específicamente.
- El proceso productivo del taller de manufactura se realizara en las siguientes fases: medición, cortado, biselado, lijado, pintura y secado y posteriormente embalado para su transporte. Este se llevara a cabo de forma manual, en función de los equipos asignados a cada operario. Hay que destacar que el sistema propuesto se adapta a las necesidades de los sectores socio económico bajos.
- El sistema de producción se diseñó para adaptarseal mercado objetivo, el cual es de bajo poder adquisitivo por lo tanto no está automatizado. El área destinada a almacenaje consta de 60 m² y el área producción de 200 m², el equipo propuesto para el manejo de materiales APLM500E y la fabricación del producto será de manera lineal y flexible.
- La capacidad instalada para el proyecto a fin, fue $1294 \frac{unidades}{año}$ con aumento del 5% anual. Dicho valor de la capacidad instalada está vinculado a la demanda estimada de 12.940 viviendas construidas dentro del área metropolitana.
- Para selección de los equipos se usó la matriz EFI y los siguientes criterios para la evaluación de la misma, en función de: los precios, componentes extras, consumo de energía, calidad, dimensiones y su capacidad. Con esto, se logró la identificación de los equipos que se adaptaran al sistema de producción y la capacidad instalada.

- La distribución de la planta se realizó para facilitar el movimiento dentro de cada área del taller, es decir, en función del área de ocupación de los equipos y siguiendo determinados parámetros de diseño. Cabe destacar que se realizó una distribución previa del departamento de producción, con el fin de establecer una secuencian lineal en la manufactura del mueble.
- Los costos asociados al proyecto se desarrollaron en función de tres escenarios: optimista, esperado y pesimista, los cuales están definidos para un porcentaje de 10%; 7,5% y 5% respectivamente, de la demanda total estimada para el presente año. Los escenarios optimista y esperado arrojaron valores de VPN y TIR, bastante apropiados a la factibilidad con una diferencia entre el TIR y TRAM de 56,97% y 26,14% respectivamente, mientras el escenario pesimista arrojo valores negativos. Los resultados obtenidos por el análisis de financiero determinaron que es necesario un margen de ventas de al menos 7,5 %, para poder obtener ganancia de.

7.2. Recomendaciones

- Se recomienda hacer un estudio de materiales, para determinar si es factible el uso de otro tipo de aglomerado de densidad media que sea resistente a los fluidos (principalmente agua) y la humedad, de manera que se puedan minimizar costos por el uso de algunos materiales.
- En orden de establecer una mayor gama de muebles a ofertar y obtener información fehaciente de aquellas características a agregar y/o mejorar del producto, se recomienda llevar a cabo un estudio de mercado, ya que de esta manera se aclararía el panorama para el proyecto y su potencial desarrollo, enmarcado en la certeza de entrar en el mercado con confianza de conocer el qué exigen los potenciales clientes.

- Se debe realizar una investigación a fondo para hallar a los proveedores de materia prima e insumos, que cumplan con determinados parámetros de calidad, con el fin de minimizar los costos asociados a la producción del mueble.
- Se recomienda un estudio de factibilidad para la introducción de una línea de producción de tableros de MDF utilizando el material de desperdicio arrojado por la producción principal, constituido por 348 tableros al año.
- Es aconsejable realizar un estudio económico financiero, posicionando el P.V.P. un tanto por ciento por debajo de la competencia, de esta manera poder estimar si es posible entrar en el rango del escenario pesimista, es decir, aumentar el precio de producto a una escala menor de unidades.
- Finalmente, se recomienda invertir en el proyecto debido a que se demostró mediante un estudio financiero, que es factible y rentable dentro de los escenarios planteados.

Bibliografía

Arévalo, N. M. (2014). *Universidad Nacional Abierta y a Distancia*. Recuperado el 20 de Febrero de 2015, de

http://datateca.unad.edu.co/contenidos/256596/2014I/Material_Apoyo_Act_4.pdf

Banco de Venezuela. (s.f.). Recuperado el 8 de Mayo de 2015, de http://www.bancodevenezuela.com/?bdv=link_personas&cod=463

Biblioteca virtual universal. (s.f.). Recuperado el 16 de Febrero de 2015, de http://www.biblioteca.org.ar/libros/210283.pdf

Black and Deker. (2014). Recuperado el 14 de Marzo de 2015, de http://www.blackanddecker.com/en-US/products/power-tools/portable-power-tools/saws/15-amp-714-in-circular-saw/cs1015

Blanco, A. (2000). Formulación y evaluación de proyectos. Caracas.

Blank, L. (2012). *Ingenieria Economica*. Mexico: Mc Graw Hill.

Covenin. (1987). Especificaciones Generales para Edificios . (1750). Caracas. Recuperado el 4 de Marzo de 2015

CRITERIOS DE ACCIONES MÍNIMAS PARA EL PROYECTO DE EDIFICACIONES (COVENIN 88). (2002). Caracas.

David, F. R. (2013). Administracion estrategica. Mexico: Pearson.

Delgado, B. y. (2014). *DISEÑO DE LA INGENIERÍA BÁSICA DE UNA PLANTA PRODUCTORA DE PELLETS ELABORADOS A PARTIR DE BIOMASA FORESTAL.* Caracas.

Entorno urbano y edificaciones, accesibilidad para las personas(COVENIN 2733). (2004). Extintores portatiles generalidades. COVENIN 1040. (1989).

Farias, H. J. (1997). LA INFLACION. Que es u como eliminarla. Caracas: Panapo.

García, M. M. (Septiembre de 2007). *Universidad de Caliz*. Recuperado el 11 de Febrero de 2015, de http://servicio.uca.es/personal/guia_procesos

Iluminación en Tareas y áreas de trabajo (COVENIN 2249). (1993).

Ley orgánica de precios justos. (23 de Enero de 2014). Caracas. Obtenido de http://www.mp.gob.ve/c/document_library/get_file?uuid=7c3a0033-59c7-4098-8821-71334d20f196&groupId=10136

Maderas Planells. (1990). Recuperado el 4 de Febrero de 2015, de http://www.maderasplanells.com/es/productos/tableros-mdf/mdf/id/48

Masisa. (lunes de marso de 2015). *Masisa*. Obtenido de http://www.masisa.com/ven/productos/tableros/mdp/

NORMA VENEZOLANA ENTORNO URBANO Y EDIFICACIONES (FONDONORMA 2733). (2004). Caracas.

OSB. (s.f.). Recuperado el 3 de Febrero de 2015, de http://www.osb-info.org/Tecnica.html-pag de tableros 18/3/15

Protecciones oculares faciales (COVENIN 955). (1976).

Rodríguez, M. P. (Julio de 2009). *UNIVERSIDAD CARLOS III DE MADRID*. Recuperado el 25 de Febrero de 2015, de

 $http://orff.uc3m.es/bitstream/handle/10016/7572/PFC_Marta_Perez_Rodriguez.pdf? sequence=1$

Ropa, equipos y dispositivos de protección personal. Selección de acuerdo all riesgo a ocupacional (COVENIN 2237). (1989).

Salazar, I. (Mayo de 2011). *Soluciones practicas*. Recuperado el 29 de Enero de 2015, de http://www.solucionespracticas.org.pe/carpinteria-guia-practica-para-negocios-rurales

Tompkins, J. A. (2011). *Planaeacion de instalciones*. Mexico: Cengage Learning.

UCLM. (2009). *Universidad de Castilla la Mancha*. Recuperado el 4 de Abril de 2015, de https://www.uclm.es/area/ing_rural/AsignaturaProyectos/Tema%205.pdf

UDLAP. (s.f.). *Universidad de las Americas Puebla*. Recuperado el 24 de Abril de 2015, de http://catarina.udlap.mx/u_dl_a/tales/documentos/lmnf/chow_d_m/capitulo3.pdf

UDLAP. (s.f.). *Universidad de las Américas Puebla*. Recuperado el 4 de Abril de 2015, de http://catarina.udlap.mx/u_dl_a/tales/documentos/lmnf/chow_d_m/capitulo6.pdf

Urbina, G. B. (2007). Fundamentos de ingenieria economica. Mexico: Mc Graw Hill.

Anexos

Anexo A. Características del MDF.

Tabla 41. Características físico-mecánicas del MDF

S	Espesor							
Propiedades	Unidades	tolerancia	9	12	15	18-20	22-25	25-30
Densidad	Kg/m3	± 20	760	750	740	730	720	710
Resistencia Tracción	N/mm2	± 0,15	0,8	0,75	0,7	0,7	0,7	0,7
Resistencia Flexión	N/mm2	± 5	39	39	37	35	32	32
Módulo de elasticidad	N/mm2	Mínimo	2700	2700	2300	2300	2300	2300
Hinchamiento 24hrs	%	Máximo	15	9,5	8,5	7,5	7,5	7,5
Extracción del tornillo- cara	N	Mínimo	N/A	N/A	1000	1000	1000	1000
Extracción del tornillo- canto	N	Mínimo	N/A	N/A	800	800	800	800

Fuente: (Masisa, 2015)

Anexo B. Selección de equipos.

Tabla 42. Matriz EFI para la selección de equipo.

Taladro								
Parámetro de selección	Valor %	DCC		EWALT Black C970K &Decker LD120VA		er &Decl		
Consumo de energía	0,10	3	0,30	3	0,30	4	0,40	
Calidad	0,15	4	0,60	4	0,60	4	0,60	
Tamaño	0,20	2	0,40	4	0,80	3	0,60	
Capacidad	0,20	3	0,60	2	0,40	2	0,40	
Componentes extra	0,10	2	0,20	4	0,40	2	0,20	
Precio	0,25	1	0,25	3	0,75	4	1,00	
Total	1	2,35 3,25		3,25	3,20			

Tabla 43. Matriz EFI para la selección de equipo.

Lijadora								
Parámetro de selección	Valor %	7292-02 &		Black &Decker QS900				
Consumo de energía	0,10	3	0,30	3	0,30			
Calidad	0,15	2	2 0,30		0,60			
Tamaño	0,20	3	3 0,60		0,60			
Capacidad	0,20	2	0,40	2	0,40			
Componentes extra	0,10	2	2 0,20		0,20			
Precio	0,25	4	4 1,00 3		0,75			
Total	1	2,80 2,85		2,85				

Fuente: Elaboración Propia 2015

Tabla 44. Matriz EFI para la selección de equipo.

Montacargas									
Parámetro de selección	Valor %	APL	APLM500E		E12WA				
Consumo de energía	0,10	2	0,20	4	0,40				
Calidad	0,15	3	0,45	3	0,45				
Tamaño	0,20	3	0,60	3	0,60				
Capacidad	0,20	4	4 0,80		0,60				
Componentes extra	0,10	1	0,10	1	0,10				
Precio	0,25	4	1,00	2	0,50				
Total	1	3,15		1 3,15 2,		2,65			

Fuente: Elaboración Propia 2015.

Tabla 45. Matriz EFI para la selección de equipo.

Fresadora									
Parámetro de selección	Valor %	8	Black &Decker RP250		PEWALT VP611PK				
Consumo de energía	0,10	3	0,30	3	0,30				
Calidad	0,15	3	0,45	3	0,45				
Tamaño	0,20	2	2 0,40		0,60				
Capacidad	0,20	3	0,60	3	0,60				
Componentes extra	0,10	1	1 0,10		0,10				
Precio	0,25	4	4 1,00		0,25				
Total	1	2,85 2,30			2,30				

Tabla 46. Matriz EFI para la selección de equipo.

	Fuen	te c	le Pode	er						
Parámetro de selección	Valor %	_	NERAC 65000E		werAmerica PG3202	Champio	nPowerEquipment 42436			
Consumo de energía	0,10	3	0,30	4	0,40	4	0,40			
Calidad	0,15	3	0,45	3	0,45	3	0,45			
Tamaño	0,20	4	0,80	2	0,40	3	0,60			
Capacidad	0,20	4	0,80	4	0,80	2	0,40			
Componentes extra	0,10	1	0,10	1	0,10	1	0,10			
Precio	0,25	1	0,25	1	0,25	4	1,00			
Total	1	2	2,70		2,40 2,95					

Fuente: Elaboración Propia 2015

Tabla 47. Matriz EFI para la selección de equipo.

Mesa de Corte											
	Mesa d	le C	orte								
Parámetro de selección	Valor %		akita	Evo	lutionBuild	Wo	odmansc				
		M	LT100		Rage5		200c				
Consumo de energía	0,10						0,40				
Calidad	0,15	2	0,30	0,30		2	0,30				
Tamaño	0,20	1	0,20	20 3 0,60		4	0,80				
Capacidad	0,20	3	0,60	3	0,60	3	0,60				
Componentes extra	0,10	1	0,10	4	0,40	3	0,30				
Precio	0,25	4	1,00	3	0,75	1	0,25				
Total	1	2	2,50		3,05		2,65				

Tabla 48. Matriz EFI para la selección de equipo.

Vehículo de	Transporte				
Parámetro de selección	Valor %	F-	350 4x2	F-	350 4x4
			MT		MT
Consumo de energía	0,10	3	0,30	4	0,40
Calidad	0,15	4	0,60	4	0,60
Tamaño	0,20	2	0,40	4	0,80
Capacidad	0,20	4	0,80	4	0,80
Componentes extra	0,10	2	0,20	2	0,20
Precio	0,25	3	0,75	2	0,50
Total	1		3,05		3,30

Anexo C. Fichas técnicas.

Tabla 49. Ficha tecnica de equipo.

Marca									
IVIarca	l F	ord	Empresa	ecnica de equip	Mueble en cas		Elavorado	Adrian P	ernalette
Modelo		4x4 MT	Proceso		sporte de Mer		Fecha		1-2015
Modelo	1 330	IX I IVII		rimientos y esp		carreta	reena	110	. 2013
Dimenciones	2,4x5,8 m	Combustible	Gasl/ Gas	Potencia	385-5500Hp	color	N/P	Comp. Adic.	SI
Velocidad	4500 r.p.m.	Voltaje	N/P	Peso	3684 Kg	Vol. Tanque	80 L	Origen	Vzla
	Imagen del equip	00							
Area bruta: 9,52 Area total: 54,6 Observaciones:	m^2		-				Leyenda: Equipo Mantenin Descarge		Zona de seguridad 0,65x0,8 m

Tabla 50. Ficha tecnica de equipo. Ficha tecnica de equipos y maquinas **Evolution Build** Mueble en casa Elavorado Adrian Pernalette Marca Empresa Fecha Modelo Race 5 Proceso Corte 14-04-2015 Requerimientos y especificaciones Dimenciones 1.260 x 656mm conbustible N/P Potencia 1,6Kw color Naranja Comp. Adic. Si Cap.Cort Origen Velocidad 2.500 r.p.m. Voltaje 120 V 5-78 mm Peso 32 Kg Europa Imagen del equipo Area Bruta: 0,826 m^2 Area total: 2,37 m^2 Observaciones: El disco de corte es capas de cortar metales, plastico, hielo y piedra Leyenda: Operador Equipo Area de Mantenimiento seguridad 0,09x0,165 m Descarga

Tabla 51. Ficha tecnica de equipo.

				ecnica de equip		_	_									
Marca	Black &	Decker	Empresa		Mueb	le en	casa	a		Elav	orado)	A	Adrian	Pernale	ette
Modelo	RP:	250	Proceso		Bi	selad	do			Fech	ia			14-0)4-2015	5
			Reque	rimientos y esp	pecific	acior	nes									
Dimenciones	29,2x16,7x30,2 cm	conbustible	N/P	Potencia	1	,20 H	p	colo	r		Rojo		Com	p. Adio	:.	Si
Velocidad	Variable	Voltaje	120 V	Peso	4	,95 K	g						Orige	en	(China
	Imagen del equip	0														
Area Bruta: 0,0																
Area total: 0,0																
	: El equipo contier															
	liferentes, para los	acabados														
superficiales										Leye				C	perado	
											Equi				Area	
												enimi	ento		segur	
			ļ	v. Elaboración							Desc	arga			0,05x0,	,056 m

Tabla 52. Ficha tecnica de equipo. Requerimientos y especificaciones 7x5,5x3,5m conbustible Gas/Disel Potencia 16 Kw color Azul Comp. Adic. Dimenciones No Velocidad 970 r.p.m. 380 V Velocidad Voltaje Peso Origen China Imagen del equipo Area Bruta: 38,5m^2 Area total: 123,2 m^2 Observaciones: Leyenda: Operador Equipo Area de

Mantenimiento

Descarga

seguridad

1x1,1 m

Tabla 53. Ficha tecnica de equipo.

				53. Ficha te										
				ecnica de ec										
Marca	Black &	Decker	Empresa		Ν	1ueble	en cas	sa		Elavo	rado	Ad	rian Pe	rnalette
Modelo	QSS	900	Proceso			Lija	ado			Fecha	a		14-04	-2015
			Reque	rimientos y	espe	cifica	ciones							
Dimenciones	20,5x15,5x15,5 cm	conbustible	N/P	Potencia		14	4 w	cold	or	F	Rojo	Comp.	Adic.	SI
Velocidad	N/P	Voltaje	120 V	Peso		0,4	5 Kg	Amı	р		1,2	Origen		China
	Imagen del equipo)												
Area Bruta: 0,03														
Area total:0,1 m	า^2		1	_										
Observaciones:														
										Leyer	nda:		Ор	erador
										E	Equipo			Area de
											Mantenimi	ento		seguridad
										[Descarga		0,0	41x0,031 m
				o Flaborac	• / 1		2015					•		

Tabla 54. Ficha tecnica de equipo.

Modelo APLM1500E Proceso Transporte Fecha 14-04-2015 Requerimientos y especificaciones Dimenciones 1,6x2,01x0,7 m conbustible N/P Potencia N/P color Rojo Comp. Adic. NO					54. Ficha techi										
Dimenciones 1,6x2,01x0,7 m conbustible N/P Potencia N/P color Rojo Comp. Adic. NO Velocidad N/P Voltaje N/P Peso 360 Kg Capacidad 1500 Kg Origen Vzla Imagen del equipo Area Bruta: 1,12 m^2 Area total: 7,38m^2 Observaciones:	Marca	EN	ΓEC	Empresa	1	Mueb	le en ca	asa)	Adria	n Pernalette	
Dimenciones 1,6x2,01x0,7 m conbustible N/P Potencia N/P color Rojo Comp. Adic. NO Velocidad N/P Voltaje N/P Peso 360 kg Capacidad 1500 kg Origen Vzla Imagen del equipo Area Bruta: 1,12 m^2 Area total: 7,38m^2 Observaciones:	Modelo	APLM	1500E	Proceso		Tra	nsporte	е		F	echa		14	-04-2015	
Vala Imagen del equipo Area Bruta: 1,12 m^2 Area total: 7,38m^2 Observaciones: Leyenda: Equipo Mantenimiento Area de seguridad				Reque	rimientos y esp	ecific	acione:	S							
Area Bruta: 1,12 m^2 Area total: 7,38m^2 Observaciones: Leyenda: Operador Equipo Area de seguridad	Dimenciones	1,6x2,01x0,7 m	conbustible	N/P	Potencia		N/P	со	lor		Rojo	Cor	np. Ad	ic. NO	
Area Bruta: 1,12 m^2 Area total: 7,38m^2 Observaciones: Leyenda: Operador Equipo Area de Seguridad	Velocidad	N/P	Voltaje	N/P	Peso	3	60 Kg	Ca	pacidad		1500 K	g Ori	gen	Vzla	
Area total: 7,38m^2 Observaciones: Leyenda: Operador Equipo Area de Mantenimiento seguridad		Imagen del equipo	0												
Observaciones: Leyenda: Operador Equipo Area de Mantenimiento seguridad	Area Bruta: 1,1:	2 m^2													
Observaciones: Leyenda: Operador Equipo Area de Mantenimiento seguridad				†											
Leyenda: Operador Equipo Area de Mantenimiento seguridad				+											
Equipo Area de Mantenimiento seguridad	observaciones:														
Equipo Area de Mantenimiento seguridad										Г	evenda:			Operador	
Mantenimiento seguridad												00		•	
											_				

Tabla 55. Ficha tecnica de equipo.

					do oquin														
Marca	Champior	Dower		cilica (de equip		naqu ole er					Elav	orad	^		A dria	n Dor	nalet	to
			Empresa											0					te
Modelo	Equipmer	11 42436	Proceso				ion de		ergia			Fech	na			14	1-04-2	2015	
D: :					tos y esp	ести			6 1						6		1:		10
		conbustible	Gasolina	Poten	сіа		N/P		Colc			А	mari			np. A	dic.		10
Velocidad	N/P	Genr. Ener	1500 W	Peso		1	25,2K	g	Capa	acida	ıd		1,4 L	-	Orig	gen		U	SA
	Imagen del equipo	1	_																
	1500 25 25 25025.	۵																	
		3																	
	GHAMPION																		
		7																	
<u>G</u>																			
				_		_													
Area Bruta: 0,16			1																
Area total: 0, 88			_																
	Con solo la mitad																		
capacidad de ta	nque, puede gene	rar energia																	
suficiente para !	5 horas consegutiv	/as										Leye	enda:				Ope	rador	
													Equi	ipo			/	Area d	de
													Man	tenim	iento		Se	egurio	lad
													Des	carga	1		0,0	5x0,0	89 m

Tabla 56. Ficha tecnica de equipo.

			Tabla	56. Ficha tecnio	ca de equipo.				
			Ficha te	cnica de equipo	os y maquinas				
Marca	Black &	Decker	Empresa	ı	Mueble en cas	a	Elavorado	Adrian P	ernalette
Modelo	LD12	0VA	Proceso		Perforado		Fecha	14-04	1-2015
			Reque	rimientos y esp	ecificaciones				
Dimenciones	0,226x0,102x0,189m	Combustible	N/P	Potencia	N/P	color	Rojo	Comp. Adic.	SI
Velocidad	750 r.p.m	Voltaje	120 V	Peso	2,11 KG			Origen	China
	Imagen del equipo	1							
Area Bruta: 0,0									
Area total: 0,10	1 m^2								
	este equipo contie								
	ara la ferforacion (•							
-	tornillador, adema	is tiene una pila					Leyenda:	Op	perador
recargable y su	cargador.						Equipo		Area de
							Mantenimi	ento	seguridad
							Descarga	c	,0452x0,034 m

Tabla 57. Ficha tecnica de equipo.

				ecnica de equipo					
Marca	Black &	Decker	Empresa		Mueble en cas		Elavorado	Adrian P	ernalette
Modelo	CS1		Proceso		Corte		Fecha	14-04	-2015
			Reque	rimientos y esp	ecificaciones				
Dimenciones	20,2 x 11,4 x 4,2 Pt	conbustible	N/P	Potencia	1,2Kw	color	Rojo	Comp. Adic.	SI
Velocidad	5500 r.p.m	Voltaje	120 V	Peso	15,3 l			Origen	EE.UU
Area Bruta:	Imagen del equipo								
Area total:									
	: Conjunto de herra	amientas							
							Leyenda:	Op	erador
							Equipo		Area de
							Manteni		seguridad
				· 171.1	D : 2015		Descarg	ga	

Anexo D. Diagrama de relaciones y de grilla.

Tabla 58. Diagrama de relaciones (opción 2).

	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y Vestidores	Almacén
Producción		0,2,5	U	U,2	0,2,5	I,2	A,1,4
Recepción			E,2,7	0	0,3	I	0,7
Oficinas				I,2	0,3	I,2	X,3,7
Comedor					I,3	0,1	X
Mantenimiento						I,3	I,3,5
Baños y							0
Vestidores							
Almacén							

Fuente: Elaboración Propia 2015

Tabla 59. Valores asignados según las áreas del taller (opción 2).

	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y Vestidores	Almacén
Producción		1	0	0	1	2	10
Recepción			5	1	1	2	1
Oficinas				5	1	2	-10
Comedor					2	1	-10
Mantenimiento						2	2
Baños y							1
Vestidores							
Almacén							
Total		1	5	6	5	9	-6

$$E = \frac{20}{37} = 0,5405$$

Tabla 60. Grilla de distribución (opción 2).

1	1	1	2	2	3	3	3
1	1	1	4	6	6	3	3
1	1	1	4	6	6	6	7
1	1	1	4	6	6	7	7
1	1	1	4	4	7	7	7
1	1	1	1	1	1	7	7
1	1	1	1	1	1	7	7
1	1	1	1	1	1	7	7
1	1	1	1	1	1	1	7

Areas	Superficie N	N°deCuadros	N° Asignado
Produccion	200	40	1
Resepcion	10	2	2
Oficinas	25	5	3
Comedor	25	5	4
Mantenimiento	5	1	5
Banos y Vestidor	35	7	6
Almacen	60	12	7
total	360	72	

Tabla 61. Diagrama de relaciones (opción 3).

	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y Vestidores	Almacén
Producción		I	0	0	E	I	A
Recepción			I	U	U	U	O
Oficinas				O	0	I	X
Comedor					I	O	X
Mantenimiento						I	I
Baños y							U
Vestidores							
Almacén							

Fuente: Elaboración Propia 2015

Tabla 62. Valores asignados según las áreas del taller (opción 3).

	Producción	Recepción	Oficinas	Comedor	Mantenimiento	Baños y	Almacén
						Vestidores	
Producción		2	1	1	5	2	10
Recepción			2	0	0	0	1
Oficinas				1	1	2	-10
Comedor					2	1	-10
Mantenimiento						2	2
Baños y							0
Vestidores							
Almacén							
Total		2	3	2	8	7	-7

$$E = \frac{15}{35} = 0,4285$$

Tabla 63. Grilla de distribución (opción 3).

1	1	1	2	2	3	3	3
1	1	1	1	4	4	ო	ო
1	1	1	1	4	4	4	6
1	1	1	1	1	6	6	6
1	1	1	1	1	6	6	6
1	1	1	1	1	5	7	7
1	1	1	1	1	7	7	7
1	1	1	1	1	7	7	7
1	1	1	1	7	7	7	7

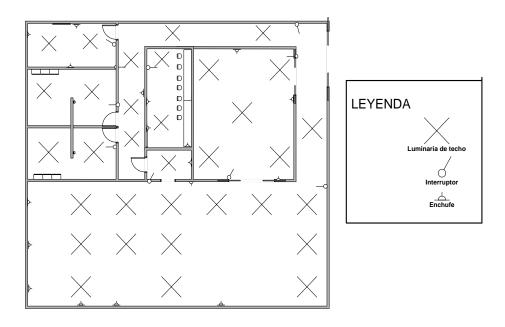
Areas	Superficie N	N°deCuadros	N° Asignado
Produccion	200	40	1
Resepcion	10	2	2
Oficinas	25	5	3
Comedor	25	5	4
Mantenimiento	5	1	5
Banos y Vestidoi	35	7	6
Almacen	60	12	7
total	360	72	

Anexo E. Clasificación y potencial de extintores portátiles.

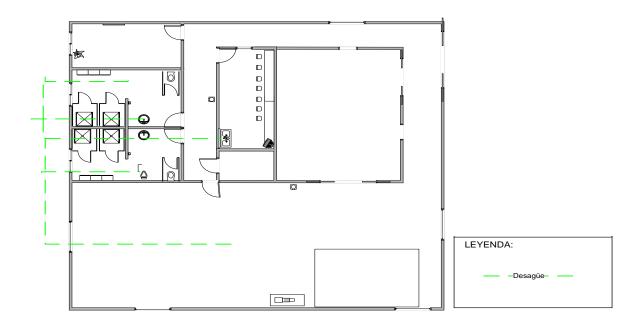
Tabla 64. Clasificación de los extintores según el agente de extinción y del método expulsión

A. Extinguidor	P. de extinción Básico	Auto expulsión	Presurización indirecta	Presurización directa	Por bombeo
Agua	Enfriamiento		Х	Х	Х
Agua +Agente Humectante	Enfriamiento		х		
Polvo químico (A,B,C)	Acción química sobre la reacción en cadena		х	Х	
Bióxido de Carbono	Ahogamiento	х			
Polvo químico (B,C)	Acción química sobre la reacción en cadena		х	х	
Hidrocarburo Halógenos	Acción química sobre la reacción en cadena	Х		Х	
Polvo químico para metales reactivos	Ahogamiento		х	х	

Fuente: (Extintores portatiles generalidades. COVENIN 1040, 1989)


Tabla 65. Potencial efectivo de los extintores contra fuego clase "A".

				Área (m	1^2)						
		250	250 251-500 501-750 751-1000				1251- 1500				
Clase de riesgo	Carga Calorífica		Potencial de Efectividad								
	Baja	2A	3A	4A	6A	8A	10A				
Leve	Media	3A	4A	6A	8A	10A	12A				
	Alta	4A	6A	8A	10A	12A	14A				
	Baja	3A	4A	6A	8A	10A	12A				
Moderado	Media	4A	6A	8A	10A	12A	14A				
	Alta	6A	8A	10A	12A	14A	16A				
	Baja	6A	8A	10A	12A	14A	16A				
Alto	Media	10A	12A	14A	16A	18A	20A				
	Alta	14A	16A	18A	20A	22A	24A				


Fuente: (Extintores portatiles generalidades. COVENIN 1040, 1989)

Anexo F. Plano de iluminación, aguas blancas, negras y desagüe.

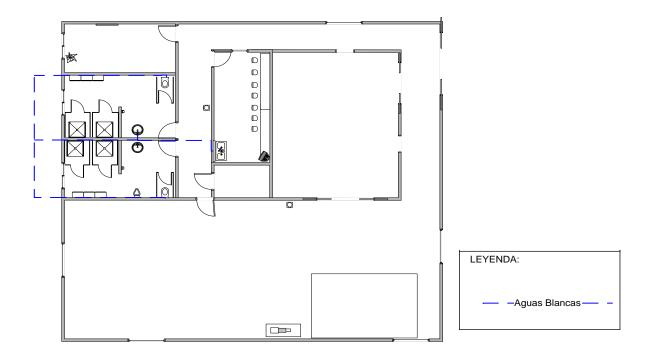


Figura 20. Puntos de iluminación del taller. **Fuente:** Elaboración Propia 2015.

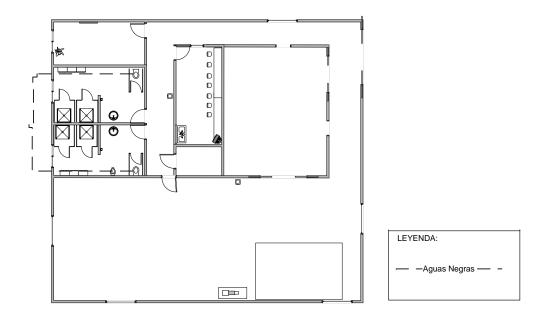


Figura21. Desagüe de la instalación **Fuente:** Elaboración propia 2015.

Figura22. Aguas Blancas. **Fuente:** Elaboración Propia 2015

Anexo G. Costos de mano de obra.

Tabla 66. Costo de mano de obra (operadores y secretaria).

OBRERO (CON SUELDO	O MINIMO				
Perido	Dias/mes	Dias lab/mes	,	Sueldo Mensua	ıl	
Pendo	Dias/files	Dias lab/liles	Básico	%Utili + BV	Integral	
Año: 2015						
Enero	31	22	5708,52	1189,28	6897,80	
Febrero	28	18	5703,15	1188,16	6891,30	
Marzo	31	22	5706,08	1188,77	6894,85	
Abril	30	20	6681,82	1392,05	8073,87	
Mayo	31	20	6687,53	1393,23	8080,76	
Junio	30	21	6688,67	1393,47	8082,14	
Julio	31	20	6705,79	1397,04	8102,82	
Agosto	31	0	6726,90	1401,44	8128,34	
Septiembre	30	22	6722,90	1400,60	8123,51	
Octubre	31	22	7953,87	1657,06	9610,92	
Noviembre	30	21	7974,71	1661,40	9636,11	
Diciembre	31	17	7967,31	1659,86	9627,17	
Total		225	81227,24	16922,34	98149,58	

Fuente: Elaboración propia 2015.

Tabla 67. Costo de mano de obra (operadores y secretaria).

	Administracion	<u> </u>					
Perido	Diag/mag	Dias lab/mes	Sueldo Mensual				
Pendo	Dias/mes	Dias lab/mes	Básico	%Utili + BV	Integral		
Año: 2015							
Enero	31	22	11184,72	2330,15	13514,87		
Febrero	28	18	11174,18	2327,95	13502,14		
Marzo	31	22	11179,93	2329,15	13509,08		
Abril	30	20	13091,70	2727,44	15819,14		
Mayo	31	20	13102,88	2729,77	15832,65		
Junio	30	21	13105,12	2730,23	15835,35		
Julio	31	20	13138,65	2737,22	15875,87		
Agosto	31	0	13180,02	2745,84	15925,86		
Septiembre	30	22	13172,19	2744,21	15916,40		
Octubre	31	22	15584,02	3246,67	18830,70		
Noviembre	30	21	15624,86	3255,18	18880,04		
Diciembre	31	17	15610,37	3252,16	18862,53		
Total		225	159148,65	33155,97	192304,62		

Fuente: Elaboración propia 2015.

Tabla 68. Costo de mano de obra (Supervisor general).

	Administracior	1				
Perido	Dias/mes	Dias lab/mes	S	Sueldo Mensua	il	
Perido	Dias/files	Dias lab/files	Básico	%Utili + BV	Integral	
Año: 2015						
Enero	31	22	17125,57	3567,83	20693,40	
Febrero	28	18	17109,44	3564,47	20673,91	
Marzo	31	22	17118,24	3566,30	20684,54	
Abril	30	20	20045,46	4176,14	24221,60	
Mayo	31	20	20062,58	4179,70	24242,28	
Junio	30	21	20066,00	4180,42	24246,42	
Julio	31	20	20117,36	4191,12	24308,47	
Agosto	31	0	20180,69	4204,31	24385,01	
Septiembre	30	22	20168,71	4201,81	24370,53	
Octubre	31	22	23861,60	4971,17	28832,77	
Noviembre	30	21	23924,13	4984,19	28908,32	
Diciembre	31	17	23901,94	4979,57	28881,51	
Total		225	243681,73	50767,03	294448,75	

Fuente: Elaboración propia 2015.

Tabla 69. Cotos total anual de mano de obra.

	Sueldo base	Sueldo integral	Seguro social 7%	15 dias cada	Bono			Utilidades 30 dias	2%	lhabitacional	N° de Persnal requerido	Total anual por trabajador	Total
Obrero	81.227,24	98.149,58	5.248,53	13.542,48	16.875,00	3.384,47	3.384,47	13.537,87	1.962,99	1.962,99	8	239.275,63	1.914.205,04
Secretaria	81.227,24	98.149,58	5.248,53	13.542,48	16.875,00	3.384,47	3.384,47	13.537,87	1.962,99	1.962,99	1	239.275,63	239.275,63
Administrador	159.148,65	192.304,62	10.283,45	26.533,80	16.875,00	6.631,19	6.631,19	26.524,77	3.846,09	3.846,09	1	452.624,87	452.624,87
Supervisor general	243.681,73	294.448,75	15.745,59	40.627,45	16.875,00	10.153,41	10.153,41	40.613,62	5.888,98	5.888,98	1	684.076,89	684.076,89
Total	565.284,85	683.052,54	36.526,10	94.246,22	67.500,00	23.553,54	23.553,54	94.214,14	13.661,05	13.661,05	11	1.615.253,02	3.290.182,43

Anexo H. Lista de materiales e insumos, por proveedores.

Tabla 70. Lista de costos de materiales e insumos por proveedor.

Materiales	Costo por unidad Bs.	Proveedor
· Tableros	3.500,00	Masisa
· 62 Tornillos 6x2"(A).	8,00	Epa
· 52 Tornillos de 5/8(B).	9,00	Epa
· 10 Tornillo para ramplús(C).	10,00	Epa
· 10 Tornillo de bisagra (D).	8,00	Epa
· 2 Bisagras de brazo curvo.	300,00	Epa
· 8 Ramplús.	0,60	Epa
· 6 bases y cuerpo de las patas.	140,00	Epa
· 6 tiradores de puerta.	255,00	Epa
· 1 gal de Barniz.	1.200,00	Epa
· 1 gal de Pintura.	1.000,00	Epa
· 1 par de Correderas telescópicas.	1.600,00	Epa
· Lentes de protección.	550,00	Mercado Libre
· Papel burbuja.	850,00	Mercado Libre
· Caja de embalaje.	90,00	Mercado Libre
· Botas de protección.	2.000,00	Mercado Libre
· Tapa bocas.	450,00	Mercado Libre
· Mascara para pintura.	2.000,00	Mercado Libre
· Guantes.	500,00	Mercado Libre

Anexo I. Costo de materiales e insumos.

Tabla 71. Costo de materia prima para el escenario optimista.

Materiales	Unidades	Total	Costo por unidad Bs.	Costo anual Bs.
· Tableros	2	3.155,00	3500	11.042.500,00
· 62 Tornillos 6x2"(A).	62	80.228,00	8	641.824,00
· 52 Tornillos de 5/8(B).	52	67.288,00	9	605.592,00
· 10 Tornillo para ramplús(C).	10	12.940,00	10	129.400,00
· 10 Tornillo de bisagra (D).	10	12.940,00	8	103.520,00
· 2 Bisagras de brazo curvo.	2	2.588,00	300	776.400,00
· 8 Ramplús.	8	10.352,00	0,6	6.211,20
· 6 bases y cuerpo de las patas.	6	7.764,00	140	1.086.960,00
· 6 tiradores de puerta.	6	7.764,00	255	1.979.820,00
· 1 gal de Barniz.	1	1.294,00	1200	1.552.800,00
· Papel burbuja	1	215,67	850	183.316,67
· Cajade embalaje	1	1.294,00	90	116.460,00
· 1 gal de Pintura.	1	1.294,00	1000	1.294.000,00
· 1 par de Correderas telescópicas.	4	5.176,00	1600	8.281.600,00
Total				27.800.403,87

Fuente: Elaboración Propia 2015

Tabla 72. Costos de materiales e insumos de personal proyectados. Escenario Optimista.

Bs/A	Año	2015	2016	2017	2018	2019	2020
Mat	eriales	27.820.953,87	49.231.953,31	87.086.389,97	154.067.448,29	272.592.868,96	482.373.115,32

Tabla 73. Costo de materia prima para el escenario pesimista.

Materiales	Unidades	Total	costo por unidad Bs.	Costo anual Bs.
· Tableros	2	1.577,50	3.500,00	5.521.250,00
· 62 Tornillos 6x2"(A).	62	40.114,00	8,00	320.912,00
· 52 Tornillos de 5/8(B).	52	33.644,00	9,00	302.796,00
· 10 Tornillo para ramplús(C).	10	6.470,00	10,00	64.700,00
· 10 Tornillo de bisagra (D).	10	6.470,00	8,00	51.760,00
· 2 Bisagras de brazo curvo.	2	1.294,00	300,00	388.200,00
· 8 Ramplús.	8	5.176,00	0,60	3.105,60
· 6 bases y cuerpo de las patas.	6	3.882,00	140,00	543.480,00
· 6 tiradores de puerta.	6	3.882,00	255,00	989.910,00
· 1 gal de Barniz.	1	647,00	1.200,00	776.400,00
· Papel burbuja	1	107,83	850	91.658,33
· Cajade embalaje	1	1.294,00	90	116.460,00
· 1 gal de Pintura.	1	647,00	1.000,00	647.000,00
· 1 par de Correderas telescópicas.	4	2.588,00	1.600,00	4.140.800,00
Total				13.958.431,93

Tabla 74. Costo de materia prima para el escenario pesimista.

Bs/Año	2015	2016	2017	2018	2019	2020
Materiales	13.978.981,93	24.722.259,45	43.708.204,75	77.327.613,36	136.804.767,61	242.077.310,22

Anexo J. Ingresos

Tabla 75. Ingreso anuales proyectados, escenario optimista.

Bs/Año	2015	2016	2017	2018	2019	2020
Ingreso por unidad	34.421,67	57.713,27	96.752,21	162.251,71	272.172,96	456.714,85
Ingreso Anual	44.541.640,04	78.415.014,96	138.030.083,99	243.047.664,65	428.091.341,51	754.268.383,45

Fuente: Elaboración propia 2015.

Tabla 76. Ingresos anuales proyectados, escenario pesimista.

Bs/Año	2015	2016	2017	2018	2019	2020
Ingreso por unidad	34.421,67	57.713,27	96.752,21	162.251,71	272.172,96	456.714,85
Ingreso Anual	22.270.820,02	39.207.507,48	69.015.042,00	121.523.832,33	214.045.670,75	377.134.191,73

Anexo K. Estado de ganancias y pérdidas.

Tabla 77. Estado de ganancias y pérdidas, Escenario optimista.

Bs/Año	2016	2017	2018	2019	2020	
Ingreso por	78.415.014,96	138.030.083.99	243.047.664.65	428.091.341.51	754.268.383.45	
ventas	76.413.014,90	136.030.063,99	243.047.004,03	420.091.341,31	734.208.363,43	
C. Materia prima	49.231.953,31	87.086.389,97	154.067.448.29	272.592.868,96	492 272 115 22	
e insumos	49.231.933,31	07.000.309,97	154.007.446,29	212.592.808,90	482.373.115,32	
Mano de obra	4.897.601,05	9.341.568,20	15.740.542,42	26.522.813,98	44.690.941,55	
Carga fabril	114.599,78	193.100,62	325.374,55	548.256,11	923.811,55	
Utilidad bruta	24.170.860,83	41.409.025,20	72.914.299,40	128.427.402,45	226.280.515,04	
Depreciación	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	
Utilidad	17 002 024 00	35,130,999,17	66,636,273,37	122,149,376,43	220 002 490 01	
Operativa	17.892.834,80	35.130.999,17	00.030.273,37	122.149.570,45	220.002.489,01	
ISLR 34%	6.083.563,83	11.944.539,72	22.656.332,95	41.530.787,99	74.800.846,26	
Utilidad Neta	23.976.398,64	47.075.538,89	89.292.606,32	163.680.164,42	294.803.335,28	

Fuente: Elaboración Propia 2015

Tabla 78. Estado de ganancias y pérdidas, Escenario optimista.

Bs/Año	2016	2017	2018	2019	2020
Ingreso por ventas	39.207.507,48	69.015.042,00	121.523.832,33	214.045.670,75	377.134.191,73
C. Materia prima e insumos	24.722.259,45	43.708.204,75	77.327.613,36	136.804.767,61	242.077.310,22
Mano de obra	4.897.601,05	9.341.568,20	15.740.542,42	26.522.813,98	44.690.941,55
Carga fabril	114.599,78	193.100,62	325.374,55	548.256,11	923.811,55
Utilidad bruta	9.473.047,20	15.772.168,42	28.130.302,00	50.169.833,05	89.442.128,41
Depreciación	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Utilidad Operativa	3.195.021,18	9.494.142,40	21.852.275,97	43.891.807,03	83.164.102,39
ISLR 34%	1.086.307,20	3.228.008,41	7.429.773,83	14.923.214,39	28.275.794,81
Utilidad Neta	4.281.328,38	12.722.150,81	29.282.049,81	58.815.021,42	111.439.897,20

$\boldsymbol{Anexo}\;\boldsymbol{L}$. Capital de trabajo.

Tabla 79. Capital de trabajo, escenario optimista.

	Optimista				
	Anual	Costo a 4 Meses			
C. Fabril	68.011,74	11.335,29			
M. de obra	3.290.182,43	548.363,74			
Mat. Prima	27.500.627,20	4.583.437,87			
Insumos de personal	20.550,00	3.425,00			
Total	30.879.371,36	5.146.561,89			

Fuente: Elaboración Propia 2015

Tabla 80. Capital de trabajo, escenario pesimista.

	Pesimista				
	Anual	Costo a 4 Meses			
C. Fabril	68.011,74	11.335,29			
M. de obra	3.235.378,44	539.229,74			
Mat.Prima	13.750.313,60	2.291.718,93			
Insumos de personal	20.550,00	3.425,00			
Total	17.074.253,78	2.845.708,96			

Anexo M. Flujo de caja.

Tabla 81. Flujo de caja escenario Optimista.

100%Optimo

Año	2.015	2.016	2.017	2.018	2.019	2.020
Ingreso	-	78.415.014,96	138.030.083,99	243.047.664,65	428.091.341,51	754.268.383,45
Costo	-	54.890.510,47	96.621.058,79	170.133.365,26	299.663.939,05	527.987.868,42
Depreciación		6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Interés de préstamo	-	3.553.116,68	3.038.499,38	2.440.514,08	1.745.655,15	938.229,09
Ing Grab	-	13.693.361,79	32.092.499,80	64.195.759,30	120.403.721,27	219.064.259,92
ISLR	-	4.655.743,01	10.911.449,93	21.826.558,16	40.937.265,23	74.481.848,37
Ing Neto	-	9.037.618,78	21.181.049,87	42.369.201,14	79.466.456,04	144.582.411,55
Depreciación	-	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Flujo de caja Op	-	15.315.644,80	27.459.075,89	48.647.227,16	85.744.482,06	150.860.437,57
Cap. Trabajo	-5.146.561,89	-3.525.394,90	-5.940.290,40	-10.009.389,33	-16.865.821,02	41.487.457,54
Inversión	-29.243.758,66	-	-	-	-	-
Flujo de caja Inv	-34.390.320,55	-3.525.394,90	-5.940.290,40	-10.009.389,33	-16.865.821,02	41.487.457,54
Flujo de caja Finan	21.932.818,99	-3.176.650,00	-3.691.267,29	-4.289.252,60	-4.984.111,52	-5.791.537,58
Flujo de caja total	-12.457.501,56	8.613.599,91	17.827.518,19	34.348.585,24	63.894.549,53	186.556.357,53

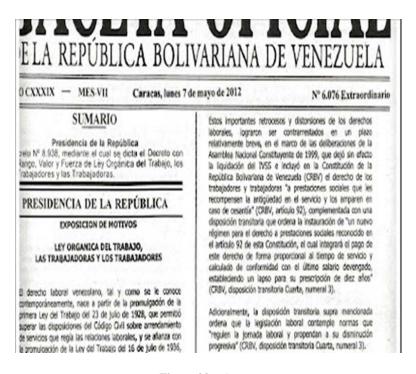

Fuente: Elaboración Propia 2015

Tabla 82. Flujo de caja, escenario pesimista.

, , , , , , , , , , , , , , , , , , ,						
Pesimo 50						
Año	2.015	2.016	2.017	2.018	2.019	2.020
Ingreso	1	39.207.507,48	69.015.042,00	121.523.832,33	214.045.670,75	377.134.191,73
Costo	-	30.302.548,65	53.125.068,81	93.209.106,04	163.579.159,52	287.206.237,34
Depreciación	-	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Interés de préstamo	-	3.553.116,68	3.038.499,38	2.440.514,08	1.745.655,15	938.229,09
Ing Grab	-	-926.183,87	6.573.447,79	19.596.186,19	42.442.830,05	82.711.699,27
ISLR	-	-314.902,52	2.234.972,25	6.662.703,30	14.430.562,22	28.121.977,75
Ing Neto	-	-611.281,36	4.338.475,54	12.933.482,88	28.012.267,83	54.589.721,52
Depreciación	-	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02	6.278.026,02
Flujo de caja Op	-	5.666.744,67	10.616.501,56	19.211.508,91	34.290.293,86	60.867.747,54
Cap. Trabajo	-2.845.708,96	-1.949.310,64	-3.284.588,43	-5.534.531,50	-9.325.685,58	22.939.825,11
Inversión	-29.243.758,66	-	-	-	-	-
Flujo de caja Inv	-32.089.467,62	-1.949.310,64	-3.284.588,43	-5.534.531,50	-9.325.685,58	22.939.825,11
Flujo de caja Finan	21.932.818,99	-3.176.650,00	-3.691.267,29	-4.289.252,60	-4.984.111,52	-5.791.537,58
Flujo de caja total	-10.156.648,63	540.784,03	3.640.645,84	9.387.724,81	19.980.496,76	78.016.035,07

Anexo N. Estatutos legales.

Figura 23. LOTTT. **Fuente:** Elaboración Propia 2015

Figura 24. LOPCYMAT. **Fuente:** Elaboración Propia 2015

Figura 25. Ley Orgánica de Precios Justos. **Fuente:** Elaboración Propia 2015

