ABELIS SALAZAR

NICOLA BUONANNO

ENERO, 2012

Agradecimientos

Quiero agradecer a todas las personas que lograron que este Trabajo de Grado se realizara con éxito

A Dios que en ningún momento me dejó sola sin importar cuán difícil era él siempre estaba ahí para mí y fue mi mayor apoyo durante toda esta carrera.

A mi familia por apoyarme en todo momento y ayudarme para lograr llegar a este momento tan esperado.

Al profesor Nicola Buonanno por convertirse no solo en mi tutor y profesor sino en un padre que me sirvió de guía y apoyo en este camino a quien le estaré agradecida toda la vida.

A Carlos Porras, Luz Planchart y Claudia Almonacid por enseñarme el significado de la amistad, que a pesar del tiempo o la distancia la amistad verdadera siempre dura, por darme fuerzas y apoyarme en los momentos más difíciles de la carrera, y en los más felices también.

Al profesor Beltran Chauran, por ayudarme en todo el desarrollo de este trabajo, darme fuerzas y guiarme para culminarlo con éxito

Al Profesor Berardo DiAttanasio por siempre darme su mejor recomendación y guía para obtener el mejor desarrollo de este trabajo

A los que de alguna manera u otra siempre estuvieron ahí para darme fuerzas, apoyo y consejos cuando más lo necesitaba Mileydis Martinez y Javier Barrios.

A todos ustedes Mil Gracias.

Contenido

Capítulo I. Planteamiento del Problema	14
I.1. Justificación del Proyecto	15
I.2. Objetivo General	15
I.3. Objetivos Específicos	15
Capítulo II. Marco Teórico	17
II.1. Radiación electromagnética	17
II.2. Antena	17
II.3. Directividad	17
II.4. Patrón de radiación	17
II.5. Potencia isotrópica efectiva Radiada	17
II.6. Factor de Atenuación	18
II.7. Impedancia de Entrada	18
II.8. La televisión digital	19
II.8.1. Ventajas de la televisión digital sobre la Televisión analógica	19
II.8.2. TDT. Televisión digital terrestre	19
II.8.3. Estándares de televisión Digital:	20
II.9. Mecanismos de Propagación.	25
II.9.1. Modelos de Propagación en el espacio Libre	26
II.9.2. Modelo Okumura Hata	27
II.9.3. Modelo Longley Rice	29
II.9.4. COST231 o Walfisch-Ikegami	32
Capítulo III. Metodología	37
Capítulo IV. Desarrollo	39

IV.1. Recolección de Datos atmosféricos	39
IV.2. Análisis de Locaciones actuales de antenas	40
IV.2.1. Punto de transmisión de RCTV	40
IV.2.2. Puntos de transmisión Meridiano TV	41
IV.3. Simulaciones Prácticas	43
IV.4. Análisis de resultados	43
Capítulo V. Análisis y Resultados	44
V.1. Simulaciones con Path Calc	44
V.1.1. Mcedores	44
V.1.2. Caricuao	57
V.1.3. El Volcán	66
V.1.4. EL Cuño	79
V.2. Simulaciones con Cloud RF	91
V.2.1. Para 520 MHz con 2m de altura en el Rx y umbral de -70 dBm	92
V.2.2. Para 520 MHz con 45m altura (edificio 15 pisos) en el Recepto	r con
umbral de -100dBm	97
V.2.1. Para 525 MHz con 45m altura (edificio 15 pisos) en el Recepto	r con
umbral de -100dBm	103
V.2.2. Para 525 MHz con 2m de altura en el Receptor con umbral de -70 108)dBm
V.3. Análisis de Precios de software	113
Capítulo VI. Conclusiones y Recomendaciones	114
Capítulo VII. Bibliografía	116
ANEXOS	119
ANEXO A	120

Manual para uso de Path Calc	120
ANEXO B	126
Frecuencia Canal 24	126

Índice de Ilustraciones

ILUSTRACIÓN 1. DESPLIEGUE DE LOS ESTÁNDARES DE LA DTV
ILUSTRACIÓN 2. MAPA EUROPEO DE LA DISTRIBUCIÓN DE TDT Y DVB-T
ILUSTRACIÓN 3. ESQUEMA DE DISTRIBUCIÓN DE FRECUENCIA DIFERENCIA ENTRE
ANALÓGICA Y DIGITAL
ILUSTRACIÓN 4. ESQUEMA DE PROPAGACIÓN Y RECEPCIÓN ISDB-T25
ILUSTRACIÓN 5. DESCRIPCIÓN DE COST231 CON NLOS
ILUSTRACIÓN 6. VISTA DE PERFIL DE ESCENARIO NLOS COST231
ILUSTRACIÓN 7. GRÁFICO DE PRECIPITACIÓN PROMEDIO ANUAL DTTO. FEDERAL (MM)40
ILUSTRACIÓN 8. PUNTO DE TRANSMISIÓN MECEDORES, EL ÁVILA. FUENTE. ELABORACIÓN
PROPIA41
ILUSTRACIÓN 9. PUNTO DE TRANSMISIÓN CARICUAO. FUENTE ELABORACIÓN PROPIA41
ILUSTRACIÓN 10. PUNTO DE TRANSMISIÓN EL VOLCÁN. EDO MIRANDA. FUENTE:
ELABORACIÓN PROPIA42
ILUSTRACIÓN 11. PUNTO DE TRANSMISIÓN AVILA 5. FUENTE: ELABORACIÓN PROPIA42
ILLISTRACIÓN 12 DUNTO DE TRANSMISIÓN MECEDODES ÁVILA CARACAS (ELENTE)
ILUSTRACIÓN 12.FUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE.
ELABORACIÓN PROPIA)
ELABORACIÓN 12. PUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ELABORACIÓN 12.PUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PONTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
 ELABORACIÓN 12.PUNTO DE TRANSMISION MECEDORES, AVILA CARACAS. (PUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PONTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (PUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PONTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (PUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PONTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (PUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.FUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.FUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.FUNITO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FOENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.FUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (FUENTE: ELABORACIÓN PROPIA)
ILUSTRACIÓN 12.PUNTO DE TRANSMISIÓN MECEDORES, AVILA CARACAS. (POENTE. ELABORACIÓN PROPIA)

ILUSTRACIÓN 22 RESUMEN DE SEÑAL RECIBIDA CON RX A 5.08KM DE MECEDORES Y - 70DBM
ILUSTRACIÓN 23. RESUMEN DE DATOS DE SEÑAL RECIBIDA A 5.08KM DE MECEDORES Y -
/0DBM
ILUSTRACIÓN 24. INTRODUCCIÓN DE LOS DATOS A 5.08KM DE MECEDORES CON -100DBM51
ILUSTRACIÓN 25. RESUMEN DE SEÑAL RECIBIDA CON RX A 5.08KM DE MECEDORES Y -
ILUSTRACION 26. RESUMEN DE DATOS DE SENAL RECIBIDA A 5.08KM DE MECEDORES Y -
100DBM
ILUSTRACIÓN 27. INTRODUCCIÓN DE LOS DATOS A 2.5KM DE MECEDORES CON -70DBM53
ILUSTRACIÓN 28. RESUMEN DE SEÑAL RECIBIDA CON RX A 2.5KM DE MECEDORES Y -
70DBM
ILUSTRACIÓN 29. RESUMEN DE DATOS DE SEÑAL RECIBIDA A 2.5KM DE MECEDORES Y -
70DBM
ILUSTRACIÓN 30. INTRODUCCIÓN DE LOS DATOS A 2.5KM DE MECEDORES CON -100DBM55
ILUSTRACIÓN 31. RESUMEN DE SEÑAL RECIBIDA CON RX A 2.5KM DE MECEDORES Y -
100DBM
ILUSTRACIÓN 32. RESUMEN DE DATOS DE SEÑAL RECIBIDA A 2.5KM DE MECEDORES Y -
100DBM
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
 ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
 ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES
 ILUSTRACIÓN 33. VISIÓN FINAL DE LAS RUTAS DESDE MECEDORES

ILUSTRACIÓN 47. VISIÓN FINAL DE LAS RUTAS DESDE CARICUAO65
ILUSTRACIÓN 48. INTRODUCCIÓN DE DATOS EN EL TRANSMISOR EL VOLCAN66
ILUSTRACIÓN 49. INTRODUCCIÓN DE LOS DATOS A 5KM DE RX CON -100DBM67
ILUSTRACIÓN 50 RESUMEN DE SEÑAL RECIBIDA CON RX A 1.9KM DE EL VOLCAN Y -70DBM
ILUSTRACIÓN 51. RESUMEN DE SEÑAL RECIBIDA CON RX A 1.9KM DE EL VOLCAN Y -70DBM
68
ILUSTRACIÓN 52. INTRODUCCIÓN DE LOS DATOS A 5KM DE RX CON -100DBM
ILUSTRACIÓN 53. RESUMEN DE SEÑAL RECIBIDA CON RX A 2KM DE EL VOLCAN Y -100DBM
ILUSTRACIÓN 54. RESUMEN DE SEÑAL RECIBIDA CON RX A 2KM DE EL VOLCAN Y -100DBM
ILUSTRACIÓN 55. INTRODUCCIÓN DE LOS DATOS A 5.2KM DE RX CON -100DBM
ILUSTRACIÓN 56. RESUMEN DE SEÑAL RECIBIDA CON RX A 5.2KM DE EL VOLCAN Y 🐳
100DBM
ILUSTRACIÓN 57. RESUMEN DE SEÑAL RECIBIDA CON RX A 5.2KM DE EL VOLCAN Y 100DBM
ILUSTRACIÓN 58. INTRODUCCIÓN DE LOS DATOS A 5.2KM DE RX CON -70DBM73
ILUSTRACIÓN 59. RESUMEN DE SEÑAL RECIBIDA CON RX A 5.2KM DE EL VOLCAN Y -70DBM
ILUSTRACIÓN 60. RESUMEN DE SEÑAL RECIBIDA CON RX A 5.2KM DE EL VOLCAN Y -70DBM 74
ILUSTRACIÓN 61. INTRODUCCIÓN DE LOS DATOS A 9.4KM DE RX CON -70DBM
ILUSTRACIÓN 62. RESUMEN DE SEÑAL RECIBIDA CON RX A 9.4KM DE EL VOLCAN Y -70DBM 75
ILUSTRACIÓN 63. RESUMEN DE SEÑAL RECIBIDA CON RX A 9.4KM DE EL VOLCAN Y -70DBM 76
ILUSTRACIÓN 64. INTRODUCCIÓN DE LOS DATOS A 9.4KM DE EL VOLCAN CON -100DBM EN EL RX
ILUSTRACIÓN 65. RESUMEN DE SEÑAL RECIBIDA CON RX A 9.4KM DE EL VOLCAN Y
ILUSTRACIÓN 66. RESUMEN DE SEÑAL RECIBIDA CON RX A 9.4KM DE EL VOLCAN Y 100DBM
ILUSTRACIÓN 67. VISIÓN FINAL DE LAS RUTAS DESDE EL VOLCAN
ILUSTRACIÓN 68. INTRODUCCIÓN DE DATOS EN EL TRANSMISOR EL CUÑO
ILUSTRACIÓN 69. INTRODUCCIÓN DE LOS DATOS A 1.7KM DE EL CUÑO CON RX DE -70DBM 80
ILUSTRACIÓN 70. RESUMEN DE SEÑAL RECIBIDA CON RX A1.7KM DE EL CUÑO Y -70DBM81

ILUSTRACIÓN 71. RESUMEN DE SEÑAL RECIBIDA CON RX A 1.7KM DE EL CUÑO Y -70DBM ..81 ILUSTRACIÓN 72. INTRODUCCIÓN DE LOS DATOS A 1.7KM DE EL CUÑO CON RX DE -100DBM

ILUSTRACIÓN 73. RESUMEN DE SEÑAL RECIBIDA CON RX A1.7KM DE EL CUÑO Y -100DBM.82 ILUSTRACIÓN 74. RESUMEN DE SEÑAL RECIBIDA CON RX A1.7KM DE EL CUÑO Y -100DBM.83 ILUSTRACIÓN 75. INTRODUCCIÓN DE LOS DATOS A 5KM DE EL CUÑO CON RX DE -70DBM ...84 ILUSTRACIÓN 76. RESUMEN DE SEÑAL RECIBIDA CON RX A 5KM DE EL CUÑO Y -70DBM84 ILUSTRACIÓN 77. RESUMEN DE SEÑAL RECIBIDA CON RX A 5KM DE EL CUÑO Y -70DBM85 ILUSTRACIÓN 78.INTRODUCCIÓN DE LOS DATOS A 5KM DE EL CUÑO CON RX DE -100DBM ..85 ILUSTRACIÓN 79. RESUMEN DE SEÑAL RECIBIDA CON RX A 5KM DE EL CUÑO Y -100DBM ...86 ILUSTRACIÓN 80. RESUMEN DE SEÑAL RECIBIDA CON RX A 5KM DE EL CUÑO Y -100DBM ...86 ILUSTRACIÓN 81. INTRODUCCIÓN DE LOS DATOS A 9KM DE EL CUÑO CON RX DE -70DBM ...87 ILUSTRACIÓN 82. RESUMEN DE SEÑAL RECIBIDA CON RX A 9KM DE EL CUÑO Y -70DBM87 ILUSTRACIÓN 83. RESUMEN DE SEÑAL RECIBIDA CON RX A 9KM DE EL CUÑO Y -70DBM88 ILUSTRACIÓN 84. INTRODUCCIÓN DE LOS DATOS A 9KM DE EL CUÑO CON RX DE -100DBM.89 ILUSTRACIÓN 85. RESUMEN DE SEÑAL RECIBIDA CON RX A 9KM DE EL CUÑO Y -100DBM ... 89 ILUSTRACIÓN 86. RESUMEN DE SEÑAL RECIBIDA CON RX A 9KM DE EL CUÑO Y -70DBM90 ILUSTRACIÓN 87. VISIÓN FINAL DE LAS RUTAS DESDE EL CUÑO......90 ILUSTRACIÓN 88. REGLA ARCO-IRIS UTILIZADA PARA MEDICIÓN EN CLOUD RF......91 ILUSTRACIÓN 89. DISTRIBUCIÓN DE EDIFICIOS UTILIZADA PARA MEDICIÓN CON CLOUD RF ILUSTRACIÓN 90. ANTENA UTILIZADA PARA REALIZAR LAS MEDICIONES CON CLOUD RF...92 ILUSTRACIÓN 91. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES CON 2M EN EL ILUSTRACIÓN 92. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL CUÑO CON 2M EN EL RX ILUSTRACIÓN 93. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL CUÑO Y MECEDORES CON ILUSTRACIÓN 94. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL VOLCAN CON 2M EN EL ILUSTRACIÓN 95. DISTRIBUCIÓN DE ALCANCE DE LAS TRES ANTENAS CON 2M EN EL RX Y -ILUSTRACIÓN 96. DISTRIBUCIÓN DE ALCANCE DE LAS TRES ANTENAS CON 45M EN EL RX Y -ILUSTRACIÓN 97. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES CON 40M EN EL

ILUSTRACIÓN 98. DISTRIBUCIÓN DE ALCANCE DE LA ANTENAEL CUÑO CON 40M EN EL RX Y
-100DBM
ILUSTRACIÓN 99. DISTRIBUCIÓN DE ALCANCE DE LAS ANTENAS EL CUÑO Y MECEDORES
CON 40M EN EL RX Y -100DBM
ILUSTRACIÓN 100. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL VOLCAN CON 40M EN EL
RX Y -100DBM
ILUSTRACIÓN 101. DISTRIBUCIÓN DE ALCANCE DE LAS ANTENAS MECEDORES, EL CUÑO Y
EL VOLCAN CON 40M EN EL RX Y -100DBM
ILUSTRACIÓN 102. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA CARICUAO CON 40M EN EL
RX Y -100DBM
ILUSTRACIÓN 103. DISTRIBUCIÓN DE ALCANCE DE LAS CUATRO ANTENAS CON 40M EN EL
RX Y -100DBM
ILUSTRACIÓN 104. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES CON 45M EN EL
RX Y -100DBM
ILUSTRACIÓN 105. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA CARICUAO CON 45M EN EL
RX Y -100DBM
ILUSTRACIÓN 106. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES Y CARICUAO
CON 45M EN EL RX Y -100DBM
ILUSTRACIÓN 107. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL VOLCAN CON 45M EN EL
RX Y -100DBM
ILUSTRACIÓN 108DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES CON 45M EN EL
RX Y -100DBM
ILUSTRACIÓN 109. DISTRIBUCIÓN DE ALCANCE TODAS LAS ANTENAS CON 45M EN EL RX Y -
100DBM
ILUSTRACIÓN 110. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL VOLCÁN CON 2M EN EL
RX Y -70DBM
ILUSTRACIÓN 111.DISTRIBUCIÓN DE ALCANCE DE LA ANTENA EL CUÑO CON 2M EN EL RX Y
-70DBM
ILUSTRACIÓN 112. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA MECEDORES CON 2M EN EL
RX Y -70DBM
ILUSTRACIÓN 113. DISTRIBUCIÓN DE ALCANCE DE LA ANTENA CARICUAO CON 2M EN EL
RX Y -70DBM
ILUSTRACIÓN 114. DISTRIBUCIÓN DE ALCANCE DE LAS CUATRO ANTENAS CON 2M EN EL
RX Y -70DBM
ILUSTRACIÓN 115. ELECCIÓN DE MODELO DE PROPAGACIÓN EN PATHCALC120
ILUSTRACIÓN 116. ELECCIÓN DEL SISTEMA DE COORDENADAS EN PATHCALC121
ILUSTRACIÓN 117. CONFIGURACIÓN DE LA CIUDAD EN PATHCALC121

ILUSTRACIÓN 118. CONFIGURACIÓN DEL TRANSMISOR EN PATHCALC
ILUSTRACIÓN 119. CONFIGURACIÓN DEL RECEPTOR EN PATHCALC123
ILUSTRACIÓN 120. CALCULAR LOS DATOS EN PATHCALC
ILUSTRACIÓN 121. DESPLIEGUE DEL DISPLAY PATH BUDGET
ILUSTRACIÓN 122. PATH BUDGET DE PATH CALC
ILUSTRACIÓN 123. OVERVIEW DE PATH CALC
ILUSTRACIÓN 124. DECODIFICADOR DE TV DIGITAL UTILIZADO PARA EL ANÁLISIS DE
FRECUENCIAS
ILUSTRACIÓN 125. MUESTRA DE LA SEÑAL DE LOS CANALES 22 Y 23 CON SUS RESPECTIVAS
PORTADORAS128
ILUSTRACIÓN 126. MUESTRA DE FRECUENCIA DEL CANAL 24128

Índice de Tablas

TABLA 1. DISTRIBUCIÓN DE FRECUENCIAS DE CANALES DE TELEVISIÓN EN VENEZUELA	24
TABLA 2. DISTRIBUCIÓN DE FRECUENCIA DE VENEZUELA	24
TABLA 3. TABLA DE VALORES DE PERMEABILIDAD Y CONDUCTIVIDAD DE LONGLEY RIC	E30
TABLA 4. INFORMACIÓN DE PRECIPITACIÓN PROMEDIO. DTTO. FEDERAL.	39
TABLA 5. DATOS DEL TRANSMISOR MECEDORES	44
TABLA 6. DATOS RX A 9.6KM DE MECEDORES Y 100DBM	45
TABLA 7. DATOS RX A 9.6KM Y 70DBM DE MECEDORES	46
TABLA 8. DATOS RX A 5.08KM Y -70DBM DE MECEDORES	48
TABLA 9. DATOS RX A 5.08KM Y -100DBM DE MECEDORES	50
TABLA 10. DATOS RX A 2.5KM Y -70DBM DE MECEDORES	52
TABLA 11. DATOS RX A 2.5KM Y -100DBM DE MECEDORES	54
TABLA 12. DATOS DEL TRANSMISOR CARICUAO	57
TABLA 13. DATOS RX A 1.98KM Y -70DBM DE CARICUAO	58
TABLA 14. DATOS RX A1.9KM Y -100DBM DE CARICUAO	60
TABLA 15. DATOS RX A 5KM Y -70DBM DE CARICUAO	62
TABLA 16. DATOS RX A 5KM Y -100DBM DE CARICUAO	63
TABLA 17. DATOS DEL TRANSMISOR EL VOLCÁN	66
TABLA 18. DATOS RX A 2KM Y -70DBM DE EL VOLCAN	67
TABLA 19. DATOS RX A 2KM Y -100DBM DE EL VOLCAN	68
TABLA 20. DATOS RX A 5.2KM Y -100DBM DE EL VOLCAN	70
TABLA 21 DATOS RX A 5.2KM Y -70DBM DE EL VOLCAN	72
TABLA 22. DATOS RX A 9.4KM Y -70DBM DE EL VOLCAN	74
TABLA 23. DATOS RX A 9.4KM Y -100DBM DE EL VOLCAN	76

TABLA 24. DATOS DEL TRANSMISOR EL CUÑO	79
TABLA 25. DATOS RX A 1.7KM Y -70DBM DE EL CUÑO	80
TABLA 26. DATOS RX A 1.7KM Y -100DBM DE EL CUÑO	81
TABLA 27. DATOS RX A 1.7KM Y -70DBM DE EL CUÑO	83
TABLA 28. DATOS RX A 5KM Y -100DBM DE EL CUÑO	85
TABLA 29. DATOS RX A 9KM Y -70DBM DE EL CUÑO	87
TABLA 30. DATOS RX A 9KM Y -100DBM DE EL CUÑO	88
TABLA 31. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD R	F ANTENA
MECEDORES 2M RX Y -70DBM	93
TABLA 32. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTEN	A EL CUÑO
2M RX Y -70DBM	94
TABLA 33. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF A	ANTENA EL
VOLCAN 2M RX Y -70DBM	95
TABLA 34. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTENA	CARICUAO
45M RX Y -100DBM	97
TABLA 35. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD R	F ANTENA
MECEDORES 40M EN EL RX Y -100DBM	98
TABLA 36. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTEN	A EL CUÑO
40M EN EL RX Y -100DBM	99
TABLA 37.PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTENA	EL VOLCAN
40M EN EL RX Y -100DBM	100
TABLA 38. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTENA	CARICUAO
40M EN EL RX Y -100DBM	102
TABLA 39. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD R	F ANTENA
MECEDORES 45M EN EL RX Y -100DBM	103
TABLA 40. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTENA	CARICUAO
45M EN EL RX Y-100DBM	104
TABLA 41. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF A	ANTENA EL
VOLCAN 45M EN EL RX Y -100DBM	106
TABLA 42. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTEN	A EL CUÑO
45M EN EL RX Y -100DBM	107
TABLA 43. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF A	ANTENA EL
VOLCAN 2M EN EL RX Y -70DBM	108
TABLA 44. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD RF ANTEN	A EL CUÑO
CON 2M EN EL RX Y -70DBM	109
TABLA 45. PARÁMETROS UTILIZADOS PARA CÁLCULOS CON CLOUD R	F ANTENA
MECEDORES CON 2M EN EL RX Y -70DBM	110

TABLA 46 . PARÁMETROS UTILIZ	ADOS PARA CA	ÁLCULO	S CON CLOUD F	RF ANTENA CAR	ICUAO
CON 2M EN EL RX Y	-70DBM				111
TABLA 47. TABLA DE COMPARA	CIÓN DE COSTO	OS DE SO	FTWARE		113
TABLA 48. ESPECIFICACIONES	COLOCADAS	EN EL	ANALIZADOR	DE ESPECTRO	PARA
REALIZAR LAS MEDICIONES	5				126
TABLA 49. TABLA DE ESPECIFICA	ACIONES TÉCN	ICAS DE	L VT7200E		127

Índice de Ecuaciones

ECUACIÓN 1. ECUACIÓN DE POTENCIA ISOTRÓPICA EFECTIVA RADIADA	18
ECUACIÓN 2. ATENUACIÓN EN EL ESPACIO LIBRE	26
ECUACIÓN 3. PÉRDIDAS EN EL ESPACIO LIBRE	26
ECUACIÓN 4. PÉRDIDAS CONSIDERADAS PARA EL MODELO URBANO	28
ECUACIÓN 5. ECUACIÓN QUE MODELA LAS PÉRDIDAS DE COS231	32
ECUACIÓN 6. FACTOR DE CORRECCIÓN PARA EL MODELO COS 231	33
ECUACIÓN 7. PÉRDIDAS DE PROPAGACIÓN EN ESPACIO LIBRE PARA COS231	33
ECUACIÓN 8. PÉRDIDAS DE PROPAGACIÓN EN EL ESPACIO LIBRE	35

Resumen.

Desde que el hombre ha buscado evolucionar en el campo de la televisión se han implementado varios estándares que buscan adoptar las mejores técnicas en transmisión de imágenes, data y audio dependiendo de los países que lo utilizan, para poder implementar estos estándares es necesario realizar un estudio de propagación de ondas electromagnéticas y evaluar, por medio de cálculos e infraestructura de la zona cuál es el modelo de propagación más apropiado para su aplicación en un determinado país o región. El estándar que actualmente se está empezando a implementar en Venezuela es el ISDTB-T. El presente proyecto utiliza este estándar como referencia, para dar una aproximación más certera en cuanto a las tecnologías aplicadas. Este estudio permitirá realizar una aproximación sobre el modelo más apropiado a aplicar en la región de la Gran Caracas, donde a través de simulaciones basadas en software de radio propagación y cálculos teóricos se realiza la aproximación.

Palabras Clave: modelos, atmosférico, ISDTB-T, estándar, televisión digital, software, propagación.

Introducción

Los modelos de propagación electromagnética se han constituido desde mucho tiempo en bases sólidas para estipular los parámetros en la transmisión mundial. Dichos modelos han sido generados por estudios de expertos en la materia de distintos países.

Si bien, muchos países han adoptado el modelo que mejor les conviene según las condiciones atmosféricas de propagación, hay otros que además de adoptarlo lo han adaptado a las condiciones de su país, generando derivaciones de estos modelos. Algunos modelos que se pueden mencionar son Okumura, Okumura Hata, Lee. COS231, siendo los dos últimos, derivaciones de los primeros.

En Venezuela debido a la falta de reglamentación en el uso de parámetros o bien por la falta de documentación se han adoptado los modelos de: Okumura, Okumura-Hata y Longley Rice, utilizados a convención de la empresa que efectúa la transmisión en función de la relación costo vs beneficio que aportan y no aplicado en base a un análisis de estudio de condiciones ambientales y orográficas en el medio de propagación

Este trabajo se ha realizado con la finalidad de realizar un estudio sobre los modelos que se han adoptado para realizar los cálculos de dispersión en la zona de Caracas, y determinar el más apto para esta zona del país, así como poder recomendar los datos a modificar a la hora de realizar algún otro modelo específico para esta región.

Para este trabajo se tomaron en cuenta los software Path Calc para simular el modelo Okumura-Hata y el Cloud RF para simular el modelo Longley Rice; dichos software trabajaron con las especificaciones de ISDTB dentro de la zona geográfica de la Gran Caracas.

Todo este contexto se presenta con el fin de facilitarle al lector la comprensión del objetivo del proyecto, para la cual se optó por seguir la metodología investigativa donde una vez teniendo todos los elementos claves para analizar un modelo atmosférico se procedió a desarrollar un método demostrativo por medio del uso de simuladores que ejemplificaban con gran exactitud la dispersión de la señal en la región de Caracas.

El presente trabajo está dividido en seis capítulos donde se detallan todos los elementos relacionados con el estudio del modelo de propagación que mejor se adapte para la ciudad de Caracas. En el Primer capítulo se presenta el planteamiento del problema, los objetivos, los alcances y las limitaciones del trabajo. En el siguiente capítulo se despliega toda la información documental sobre las antenas y los aspectos que envuelven la trasmisión de ondas

electromagnéticas como lo son, antenas, patrones de radiación para dar paso al desarrollo de la televisión digital, específicamente el desarrollo del estándar ISDB-T que es el escogido para desarrollar este trabajo, seguidamente se realiza un resumen de los modelos de propagación mas usados en Venezuela que sirve de base en la escogencia de los dos modelos más comunes para continuar con el desarrollo del trabajo, como lo son Okumura-Hata y Longley Rice. En el tercer capítulo se describe la metodología empleada y desarrollada en el proyecto en cada una de las tres fases en las que se dividió la ejecución del trabajo. En el cuarto capítulo se presenta todo el desarrollo que tiene el trabajo, el cual muestra entre otras cosas el análisis de los puntos de transmisión actuales y la recolección de datos atmosféricos, que servirán de base para la realización de las simulaciones. En el capítulo cinco se presentan los resultados obtenidos y los análisis de estos que dan paso a las conclusiones y recomendaciones presentadas en el capítulo siguiente. Finalmente en el capítulo sexto se listan todas las fuentes bibliográficas consultadas como referencia para la realización de este trabajo.

Capítulo I. Planteamiento del Problema

Para que un mensaje de un sistema de comunicación pueda ser transmitido y recibido, es necesario que exista un canal, que según sus características es capaz de transportar uno, varios o muchos sub-canales de distintos tipos de información. El canal físico que transporta la información, puede ser alámbrico o inalámbrico. A diferencia del medio alámbrico, el medio inalámbrico no es predecible para la propagación de las ondas electromagnéticas, debido a las condiciones atmosféricas que condicionan la caracterización misma del canal de transmisión.

Para el estudio de la propagación inalámbrica, se hace referencia a un modelo para el cual se toma en cuenta las condiciones de las características atmosféricas, climatológicas, constructivas y poblacionales de una ciudad en la cual se desea estudiar tales condiciones.

En efecto, el modelo Okamura realizado para la ciudad de Tokio, por ser esta una ciudad particularmente poblada, con abundantes edificaciones, estado característico de temperatura, humedad y condiciones de contaminación ambiental, se ha adoptado como referencia para el estudio de un modelo estándar en el proceso de planificación de un canal de transmisión.

Al mismo tiempo en Europa como en otros continentes se ha adoptado COS-231 para que sea útil de referencia a las condiciones topográficas y atmosféricas que se presentan en las regiones.

A pesar que se siguen estudiando los modelos de propagación, en Venezuela ninguno se ha adaptado a las condiciones atmosféricas y topográficas debido a la orografía tipológica de las regiones del país en cuanto a situaciones geográficas y de tipo de clima tropical presente, generando problemas en las estaciones de radio y televisión para ser utilizado como modelo que pueda satisfacer las condiciones óptimas de propagación.

En Venezuela y con particularidad, en la Ciudad de Caracas, por su constitución orográfica, gran cantidad poblacional y una ecografía cambiante dependiente de la diversificada constitución urbanística, es sumamente difícil configurar un patrón de modelo de propagación.

En la actualidad, el mundo de las telecomunicaciones vive una transición tecnológica, específicamente en el campo de la televisión en la manera como es distribuida la información. La distribución de forma digital provee nuevos métodos y herramientas para el manejo de la información de manera más eficiente, flexible y segura. En este sentido, es imprescindible

considerar en qué difiere la transmisión analógica de la información digital y las condiciones de cómo se dimensionan las zonas de coberturas en el análisis de propagación. En Venezuela se ha definido el estándar Japonés como el ISDB-T con la modificaciones hechas por Brasil; sin embargo, para garantizar el acceso a los servicios por parte de los usuarios debe existir un proceso de transición que implica el uso de una banda de frecuencia para el despliegue de los canales de Televisión donde se use el modelo digital ISDB-T de esta manera al definir las tecnologías, las bandas de frecuencias y los procedimientos asociados, no se deben dimensionar los nuevos sistemas digitales de la misma forma que se dimensionan los sistemas analógicos.

En este trabajo de grado se propone analizar los principales modelos de propagación utilizados por los medios de telecomunicaciones locales evaluando sus rangos de transmisión efectiva para así proponer cuál modelo se adapta mejor a las condiciones planteadas sirviendo como base para futuros estudios y modificaciones de proyectos a desarrollar dentro de la banda asignada para la transición a Televisión digital usando el esquema ISDB-T. Para ese análisis se proponen los siguientes interrogantes ¿Es necesario un nuevo modelo? ¿Qué parámetros se deberían tomar en cuenta de ser necesario otro modelo?

I.1. Justificación del Proyecto

La factibilidad de este proyecto podrá generar una guía que sirve de base a futuras investigaciones en el campo de las telecomunicaciones y más específicamente de la Televisión Digital venezolana, realizado para definir un modelo de distribución y escogencia adecuada de un modelo de propagación para la cuidad capital, Caracas.

I.2. Objetivo General

Estudiar los modelos de propagación en banda de televisión abierta ISDB-T con base a las condiciones atmosféricas de la Gran Caracas.

I.3. Objetivos Específicos

- Evaluar la evolución de la televisión analógica en Venezuela
- Describir el sistema de transmisión Digital ISDB-T
- Estudiar los modelos de Propagación de Señales Electromagnéticas

• Determinar los principales parámetros que influyen mayormente en los valores obtenidos para la definición de un modelo de propagación característico en La Gran Caracas.

Capítulo II. Marco Teórico

Para realizar un estudio de modelos de propagación de ondas, es necesario tener a la mano conceptos básicos de Ingeniería que hacen referencia al estudio de ondas electromagnéticas y su propagación, entre otros, es por esto que a continuación se presentarán algunos conceptos básicos que se manejaran a lo largo del presente trabajo.

II.1. Radiación electromagnética

Se puede describir como una combinación de campos magnéticos que tienden a oscilar perpendicularmente entre si y se propagan en el espacio, transportando energía de un lugar a otro. La radiación electromagnética se puede propagar en el vacío.

II.2. Antena

Tomasi [1] define la antena como" un sistema de conductor metálico capaz de radiar y capturar las ondas electromagnéticas". Las antenas son usadas para conectar las ondas de transmisión con el espacio libre y viceversa. Actualmente en nuestra vida cotidiana vemos un gran número de antenas; debido a su diversidad las antenas son empleadas para transmitir en todo tipo de ondas bien sea, radio, televisión, celular, etc. La principal función de las antenas en convertir las ondas electromagnéticas en corriente eléctrica, para poder procesarlas y viceversa las antenas comprenden el inicio y el final de un sistema de transmisión.

II.3. Directividad

Es la relación de la densidad de potencia irradiada en una dirección particular entre la densidad de potencia irradiada al mismo punto por una antena de referencia, suponiendo que ambas antenas estén irradiando a una misma potencia [1]

II.4. Patrón de radiación

Diagrama que representa la magnitud relativa de la potencia radiada por la antena en cada dirección azimutal. El nivel de referencia es la dirección de máxima radiación, en la cual la curva tiene un valor de uno (1). Suele representarse en un diagrama polar [2]

II.5. Potencia isotrópica efectiva Radiada

Se define como la potencia equivalente a la transmisión

 $ERP = P_{ent}A_t$

P_{ent} = potencia total de entrada de la antena(watts)

 $A_t = ganancia de potencia de la antena de transmisión(adimensional)$

$$EIRP_{(dBm)} = 10 \log\left(\frac{P_{ent}A_t}{0.001}\right)$$

 $EIRP_{(dBW)} = 10log(P_{ent}A_t)$

Ecuación 1. Ecuación de Potencia Isotrópica Efectiva Radiada (Fuente: Tomasi, 2003)

II.6. Factor de Atenuación

[3] Define el factor de atenuación como el factor que determina la pérdida que se produce en cada punto de la antena. La atenuación consiste en la reducción de la potencia de la señal a medida que se propaga. La atenuación es descrita por la denominada Ley de Beer: $\frac{dp}{dz} = \alpha P$

donde P es la potencia de la señal y a es el coeficiente de atenuación (expresado típicamente en

dB/Km) que si bien presenta el mismo símbolo que el coeficiente de absorción, no sólo considera las características de absorción del material constituyente del medio de propagación sino también otros componentes de atenuación a tomar en cuenta.

II.7. Impedancia de Entrada

Es la impedancia que presenta la antena en su punto de alimentación, es importante conocerla para conseguir un buen acoplamiento con la impedancia del generador de la señal a transmitir y la línea de transmisión .

Todo esto hay que tomarlo en cuenta a la hora de transmitir algún tipo de señal sea de radio o de televisión. La televisión ha traído desde sus inicios cambios trascendentales, pasando de las imágenes en blanco y negro a imágenes a color y ahora en sus ejecuciones digitales. Actualmente en Venezuela se está empezando a incursionar en este campo buscando conseguir mejoras en la calidad de imagen que la DTV ofrece, abriendo también las puertas a otros servicios que ésta puede ofrecer como la interactividad y la recepción móvil.

II.8. La televisión digital

La televisión digital se define por la tecnología que se utiliza para transmitir su señal, pasando a transmitir ondas de forma analógica hasta codificar la señal de forma binaria con la posibilidad de transmitir más canales, mayor definición de imagen y sonido, [4]. La televisión digital permite diversificar su programación debido a que es mucho más eficiente al distribuir el espectro radioeléctrico. [5]

II.8.1. Ventajas de la televisión digital sobre la Televisión analógica

• La electrónica digital ofrece mayor fiabilidad de funcionamiento al no necesitar ajustes periódicos, como lo precisa la tecnología analógica.

• Los equipos digitales se diseñan modularmente con mínima interdependencia, en lugar de bloques monolíticos difíciles de sustituirse en caso de avería, mientras que los módulos enchufables pueden intercambiarse sin problemas

• La circuitería digital puede disponer, con mucha más facilidad que la analógica, de sistemas autodiagnóstico de averías que indican qué placa o subsistema hay que cambiar.

• La automatización digital ofrece muchas más posibilidades que la analógica, por lo cual, en el caso de la televisión digital se mejora la producción y la emisión automática de programas.

• La imagen digital es compatible o coexiste con datos y sonidos digitales, pudiendo ser tratados los tres al mismo tiempo.

• Bastan 15dB de relación señal a ruido para la recepción frente a los 45dB necesarios para la transmisión analógica.

• El cifrado de la imagen digital se implementa más fácilmente que el de la señal analógica y ofrece un nivel de deformación discreta mucho mayor. [6]

II.8.2. TDT. Televisión digital terrestre

Es la tecnología de última generación para la difusión a través de la atmósfera de señales de televisión, es el resultado de la aplicación de las tecnologías digitales de procesamiento de la información contenida en una señal de televisión, la cual es posteriormente transmitida por la atmosfera por medios inalámbricos. [7]

II.8.3. Estándares de televisión Digital:

Descripción				
Sistema	Explicación			
DVB-T	La transmisión mediante DVB-T ya se ha puesto en práctica			
DVB-T adoptado	Países que se han decidido por el sistema DVB-T.			
DVB-T en prueba	En estos países, el estándar DVB-T está en período de prueba.			
RRC06	Los países señalados participan en la Conferencia Regional de Radiocomunicaciones 2006 de la ITU (International Telecommunication Union). Se presupone que todos los países participantes se decidirán por el sistema DVB-T cuando pasen de la transmisión analógica de televisión a la digital.			
ATSC	La transmisión mediante el sistema ATSC ya se ha puesto en práctica.			
ATSC adoptado	Países que se han decidido por el sistema ATSC.			
ATSC en prueba	En estos países, el estándar ATSC está en período de prueba.			
ISDB-T	La transmisión mediante ISDB-T ya se ha puesto en práctica			
ISDB-T adoptado	Países que se han decidido por el sistema ISDB-T.			
ISDB-T en prueba	En estos países, el estándar ISDB-T está en período de prueba.			
SBTVD-T	La transmisión mediante SBTVD-T ya se ha puesto en práctica.			
SBTVD-T adoptado	Países que se han decidido por el sistema SBTVD-T.			
DTMB	La transmisión mediante DTMB ya se ha puesto en práctica.			
DTMB adoptado	Países que se han decidido por el sistema DTMB.			
DTMB en prueba	En estos países, el estándar DTMB está en período de prueba.			
Servicio comercial del DVB-T	Ninguna adopción formal de un estándar de TDT.			
	Países que aún no se han decidido.			

Ilustración 1. Despliegue de los Estándares de la DTV

(Fuente: Status, DTV, 2011)

Básicamente se han definido tres estándares adoptados por diferentes países y sustentados por diversas organizaciones gubernamentales.

En Europa Se desarrolló el **DVB** siglas que significan en español Difusión de video digital, la cual inició su desarrollo en 1991 cuando los principales operadores e industrias involucradas en el equipo de recepción discutían acerca de la elaboración de una plataforma paneuropea que permitiese sentar las bases para la implementación de la televisión digital en la región. DVB posee un gran impacto en el mundo de la difusión así como en las diferentes tecnologías y mercados relacionados con el ámbito digital. DVB es un conjunto de normas que abarca diferentes sistemas de transmisión DVB-S para sistemas de satélite, DVB-C para sistemas de cable y DVB-T para Sistemas digitales Terrestres. [8]

El estándar **DVB-T** es el más difundido a nivel mundial, implementado en 35 países ofrece varios marcos de referencia en el proceso de migración que se tiene que realizar en la validación de equipos y procedimientos con una gran oportunidad en el intercambio de experiencias en el proceso de migración técnicos de ejecución de la tecnología digital especifica [9]. El DVB se ha establecido como procedimiento de codificación y compresión el denominado MEPG-2 (Moving Pictures Expert Group), debido a que se trata de una tecnología suficientemente experimentada en las prestaciones necesarias para esta aplicación.

El estándar DVB-T2 es la nueva versión del estándar DVB-T, que en la actualidad se encuentra en periodo de prueba en países como Reino Unido, Suecia, Italia y Rusia. [9]

Ilustración 2. Mapa Europeo de la distribución de TDT y DVB-T

(Fuente: Leiva, Maria Trinidad, 2008)

El estándar adoptado en Estados Unidos por la FCC (Federal Communications Comisions) es el ATSC (Advanced Television System Comittee), el cual tiene su origen en un grupo de empresas de la industria de la radiodifusión y fabricantes de equipos denominada "Grand Alliance". Se oficializó en 1996 y se definieron los tiempos de implementación para 1998. [5]. El estándar ATSC es un estándar de transmisión terrestre que define el contenido de la secuencia de bits, su transporte y transmisión digital en un ancho de banda RF de 6MHz.

Posteriormente se desarrolló en Japón el estándar de Televisión Digital Terrestre, denominado ISDB-T (Terrestrial Integrated Services Digital Broadcasting) el cual tuvo sus inicios 1980 y pasa a ser liberado en los años 90. Este estándar también toma como base MPEG-2 para la compresión de video y se basa en la modulación COFDM del estándar DVB-T. Este estándar fue aprobado por el consejo japonés de telecomunicaciones en 1998. Los parámetros que caracterizan este sistema son: alta calidad en la emisión de sonidos, capacidad de desarrollo multimedia, recepción estable en el campo de las recepciones móviles, el ancho de banda, el cual posee elementos técnicos comunes relacionados con la televisión digital terrestre y por satélite, uso efectivo de las frecuencias radioeléctricas, empleo de estándares universales de ancho de banda.

Las principales técnicas del sistema ISTDB-T son: uso de controladores de señales que informan al receptor de la multiplexación y configuración de modulación empleada; compresión digital MPGE-2, uso flexible del espectro de modulación y recepción parcial. [8]

El sistema ISDTB-T tiene un conjunto de cualidades técnicas que le adjudica una serie de ventajas, tales como:

• Posibilidad de desarrollo de la televisión de alta definición (HDTV) en ella, así como de multicanales, comprimidos en MPEG-2, con definición estándar (SDTV) en una misma frecuencia radioeléctrica.

• Posibilidades de desarrollo de servicios avanzados de emisión, como por ejemplo, los servicios multimedia interactivos.

• Alta calidad de video, de audio y de dato que son capaces de ser recibidos en receptores móviles.

• Un segmento de Ancho de Banda que puede ser independientemente transmitido como audio y dato para su recepción parcial por parte de receptores portátiles.

• Capacidad de desarrollo de redes de frecuencia únicas, que hace posible el uso efectivo de las frecuencias radioeléctricas.

(Fuente: FUSEDA, Hideo, 2007)

Este sistema es uno de los claros ejemplos de adaptación del sistema europeo a la realidad propia de una región o país. [8]

Tras estos tres estándares están implícitas las aspiraciones de ejercer el predominio en la evolución y desarrollo de la televisión digital en el escenario mundial actual. Estos estándares no funcionan por si sólo requieren de un estudio previo de transmisión y de propagación de ondas, ya que a pesar de que no se usan ondas analógicas la transmisión digital se efectúa al aire libre y dicha data va a sufrir atenuación por obstáculos y disipación por la longitud del trayecto; es por esto que se requiere realizar un estudio de propagación de ondas electromagnéticas en el espacio libre.

Actualmente en Venezuela se están realizando pruebas para adaptar la nueva tecnología japonesa y es por esto que se le han asignado a los distintos canales de transmisión distintas frecuencias justificados en tabla 1. En este trabajo se estará trabajando con los canales 22, 23 que corresponden al rango de frecuencia entre 518MHz y 530MHz como se muestra en la tabla 2 donde se especifican los canales que se utilizan para la tecnología digital en Venezuela, se había planteado estudiar también el canal 24, pero por la

verdadera ubicación del canal explicada en el Anexo B el estudio se realizó solo en los canales 22 y 23

Canal digital	Televisora	Resolución	Canal digital	Televisora	Resolución
22.1	VTV	4:3, 480i, SD	23.3	Meridiano TV	4:3, 480i, SD
22.2	123TV	4:3, 480i, SD	23.4	Televen	4:3, 480i, SD
22.3	Colombeia	4:3, 480i, SD	23.5	TeleSur Móvil	320×240 px
22.4	Venevisión	4:3, 480i, SD	24.1	TVes	4:3, 480i, SD
22.5	VTV Móvil	320×240 px	24.2	ANTV	4:3, 480i, SD
23.1	ViVe	4:3, 480i, SD	24.3	VTV HD	16:9, 1080i, HD
23.2	TeleSur	4:3, 480i, SD	24.4	TVes Móvil	320×240 px

Tabla 1. Distribución de frecuencias de Canales de Televisión en Venezuela(Fuente: Venevisión, Departamento de Transmisión, 2012)

Tabla 2. Distribución de frecuencia de Venezuela (Fuente: Pantsios, Carlos. 2012)

Número del Canal	Frecuencia (MHz)	Número del Canal	Frecuencia (MHz)	Número del Canal	Frecuencia (MHz
2	54-60	25	536-542	48	674-680
3	60-66	26	542-548	49	680-686
4	66-72	27	548-554	50	686-692
5	76-82	28	554-560	51	692-698
6	82-88	29	560-566	52	698-704
7	174-180	30	566-572	53	704-710
8	180-186	31	572-578	54	710-716
9	186-192	32	578-584	55	716-722
10	192-198	33	584-590	56	722-728
11	198-204	34	590-596	57	728-734
12	204-210	35	596-602	58	734-740
13	210-216	36	602-608	59	740-746
(14	470-476	37	608-614	60	746-752
15	476-482	38	614-620	61	752-758
16	482-488	39	620-626	62	758-764
17	488-494	40	626-632	63	764-770
18	494-500	41	632-638	64	770-776
19	500-506	42	638-644	65	776-782
20	506-512	43	644-650	66	782-788
21	512-518	44	650-656	67	788-794
22	518-524	45	656-662	68	794-800
23	524-530	46	662-6 68	69	800-806
24	530-536	47	668-674		

La ISDTB hace posible recibir SDTV o HDTV mientras los usuarios del servicio están en movimiento proporcionando la posibilidad de disfrutar al mismo tiempo un nuevo servicio de broadcasting a los usuarios, así mismo proporciona una libre recepción digital móvil como un Broadcasting de Tv común.

Según Justificación de Hirohiko Sakashita [10] se encontraron que los receptores desde Setop Box, Integrados en TV hasta portátiles manejan sensibilidades que van desde - 75dBm a -110dBm aproximadamente y esto a una altura en el receptor entre 1.5m moviles y entre 10m y 45m< en casas y edificios.

Ilustración 4. Esquema de propagación y recepción ISDB-T (Fuente: Sakashita, Hirohiko, 2008)

II.9. Mecanismos de Propagación.

Son todos los mecanismos que intervienen en el proceso de propagación de ondas electromagnéticas. El caso más simple de propagación de ondas electromagnéticas se tiene cuando la onda viaja del transmisor al receptor en el espacio libre. El espacio libre es una zona en la cual la onda viaja libremente sin presentar pérdidas, donde las condiciones son isotrópicas y homogéneas. [11]

La atenuación del espacio libre se define como la relación entre la potencia isotrópica recibida y la potencia isotrópica radiada.

$$\alpha_{EL} = \frac{P_{iso}}{P_{RAD}} = \frac{1}{r^2} \left(\frac{\lambda}{4\pi}\right)^2$$

Ecuación 2. Atenuación en el espacio libre.

La atenuación en el espacio libre tiene por finalidad evaluar en qué medida afecta el medio de propagación a la energía electromagnética transportada por él entre una antena transmisora y una receptora.

Existen dos tipos de modelos: los modelos empíricos que utilizan la intensidad del campo eléctrico y los modelos estadísticos, los cuales se basan en las mediciones de la propagación de la señal en una determinada región [11].

Los Modelos empíricos se basan en el ajuste de leyes de decaimiento de la potencia recibida en función de la distancia, altura de antenas, frecuencia y tipología en torno a datos medidos.

Existen varios modelos de propagación que se utilizan para calcular los parámetros usados en una transmisión que varían por países y condiciones físicas de propagación dependiendo de los distintos canales de televisión por su practicidad y adaptación a las condiciones ambientales para este informe se tomarán en cuenta los siguientes:

II.9.1. Modelos de Propagación en el espacio Libre

Este modelo es utilizado cuando entre el transmisor y el receptor hay una clara línea de vista. Este modelo predice que la potencia transmitida decae dependiendo de la distancia que separe al transmisor y al receptor. Las pérdidas de espacio libre, serían como las pérdidas que existirían entre dos antenas enfrentadas sin obstáculo alguno, la Ecuación que representa lo anterior es la siguiente:

$$L_{ft} = \left[\frac{4\pi df}{c}\right]^2$$

Ecuación 3. Pérdidas en el espacio Libre

Donde d es la distancia, f es la frecuencia de la portadora y c es la velocidad de la luz $c = 3 \times 10^3 m/_s$; los valores convertidos en decibeles vienen expresados como $L_{fs}[dB] = 32.44 + 20\log(d) + 20\log(f)$ cabe destacar que en condiciones ideales se

podría utilizar esta fórmula, pero las condiciones difícilmente son así debido a las condiciones atmosféricas y los parámetros que se analicen.

II.9.2. Modelo Okumura Hata

A partir de una extensa campaña de medidas llevada a cabo en Tokio, en el rango de 100 MHz a 1920 MHz, Okumura y Hata publicaron uno de los modelos más utilizados para la predicción de la pérdida de propagación en áreas urbanas. El principal resultado del trabajo de Okumura fue un conjunto de curvas que proporcionan el nivel de atenuación media relativa al espacio libre, en función de la frecuencia, la distancia entre transmisor y receptor, la altura de las antenas de la estación base y la estación móvil, además de varios factores de corrección específicos para diferentes tipos de trayecto. Este modelo está considerado entre los más simples y mejores en términos de su precisión en el cálculo de las pérdidas en el trayecto y se ha convertido en la planificación de sistemas móviles en Japón. [12]

Con el objetivo de hacer que este método fuera más fácil de aplicar, Hata estableció una serie de relaciones numéricas que describen el método gráfico propuesto por Okumura. Dichas expresiones de carácter empírico, son conocidas bajo el nombre de modelo de **Okumura-Hata**, también llamado modelo de Hata. [13]

Este modelo fue realizado a partir de medias tomadas en la ciudad de Tokio. En donde las pérdidas de propagación L se evalúan según:

$$\frac{P_L}{P_T} = -L + G_r + G_R (dB)$$

Donde L es la pérdida de propagación y G_r Ganancia de Tx y G_R Ganancia del Rx que pueden calcular para distancias R>1 como diferenciadas y diferentes perdidas tomando en cuenta otros parámetros según las siguientes formulas expresadas en dB:

Zona urbana densa	$L = A + B \log R - E \ (dB)$
Zona Urbana de Baja densidad	L=A+B logR-C (dB)
Zona Rural	$L=A+B \log R-D (dB)$

donde R es la distancia en km y los parámetros A, B, C, D y E se relacionan con la altura de la antena de la estación base (h_b) , la altura de la antena terminal (h_{tn}) , ambas expresadas en metros y la frecuencia (f) [14]. Este modelo no requiere de información cartográfica para la estimación de pérdidas de propagación con una efectividad de hasta 150MHz.

Las pérdidas consideradas para este modelo vienen dadas por la siguiente ecuación

$$\begin{split} L_{(urbano)}[dB] &= 69.55 + 26.16 \log(f_c) - 13.82 \log(h_{tx}) - a(h_{rx}) \\ &+ [44.9 - 6.55 \log(h_{tx})] \log(d) \end{split}$$

Ecuación 4. Pérdidas consideradas para el modelo urbano

donde :

 $f_c = Frecuencia de la portadora en MHz$ $h_c = Altura de la antena transmissora málida m$

$$egin{aligned} h_{tx} &= Altura \; de \; la \; antena \; transmisora \; válido \; para \; 30m < h_{tx} < 200m \ h_{rx} &= Altura \; de \; la \; antena \; receptora, válido \; para \; 1m < h_{rx} < 10m \ a(h_{rx}) &= Factor \; de \; corrección \; para \; la \; altura \; efectiva \; de \; la \; antena \; móvil \ d &= \; distancia \; entre \; el \; transmisor \; y \; el \; receptor \; en \; km \end{aligned}$$

La corrección de altura puede tomar varios valores dependiendo del ambiente en el cual se desarrolla el estudio de propagación. Entonces hrx se define como

$$a(h_{rx})[dB] = (1.1 \log(f_c) - 0.7)h_{rx} - (1.56 \log[f_c] - 0.8 \text{ Para}$$
 ciudades
pequeñas y medianas y $a(h_{rx})[dB] = 3.2 (\log[11.75 h_{rx}])^2 - 4.97$ para ciudades
grandes.

Aunque el modelo ésta realizado para áreas urbanas, ésta ha tenido algunas modificaciones para lugares suburbanos $L[dB] = L_{(urbano)} - 2\left(\log\left[\frac{f_c}{28}\right]\right) - 5.4$

y para áreas rurales $L[dB] = L_{(urbano)} - 4.78 (log[f_c])^2 + 18.33 log(f_c) - 40.94$ [15]

II.9.3. Modelo Longley Rice

También conocido como el Irregular Terrain Model, se desarrolla en los años 60 destinado al planeamiento de la transmisión de televisión en VHF y UHF y la correspondiente asignación en frecuencias en los Estados Unidos. Este modelo ha sido implementado en la mayoria de los simuladores de propagación por su facilidad a la hora de realizar análisis.

Para el cálculo de la propagación, el modelo Longley-Rice tiene los siguientes parámetros comunes al de otros modelos de propagación:

- Frecuencia el rango de frecuencias nominales para el modelo varía entre 20MHz y 20GHz.
- ERP (Effective Radiated Power): potencia efectiva de radiación, se introducen en las unidades que fije el usuario en la opción de configuración del sistema (mW, W, kW, dBm,dBW, dBk). Antena: se asume antena omnidireccional, cardioidal, esquina reflectora, dipolo y Yagui, a menos que se especifique el uso de una antena especifica. Altura de la antena: altura a la que se sitúa la antena, medido en pies o metros, (sobre el nivel del mar), para transmitir y recibir. El programa computará las alturas efectivas necesarias para ajustarse a los cálculos del modelo.
- **Polarización**: debe especificarse si se trabaja con polarización horizontal o vertical. El modelo de Longley-Rice asume que ambas antenas tienen la misma polarización, vertical y horizontal.
- **Refractividad:** la refractividad de la atmósfera determina la cantidad de "bending" o curvatura que sufrirán las ondas de radio. En otros modelos, el parámetro de refractividad puede introducirse como la curvatura efectiva de la tierra, típicamente 4/3 (1.333). Para el modelo Longley-Rice, hay tres formas de especificar la refractividad. Se puede introducir el valor de refractividad de superficie directamente, típicamente en el rango de 250 a 400 unidades de n (correspondiente a valores de curvatura de la tierra de 1.232 a 1.767). Una curvatura efectiva de la tierra de 4/3 (=1.333) corresponde a una refractividad de superficie de valor aproximadamente 301

Unidades de n. Longley y Rice recomiendan este último valor para condiciones atmosféricas promedio.

Se dice que la onda está en condiciones de k = 4/3, que es el valor para una atmósfera estándar, ya que de acuerdo a valores experimentales se encontró que éste era el valor medio. De manera que el factor k multiplicado por el radio terrestre da el radio ficticio de la Tierra.

La relación entre los parámetros "k" y "n", viene dada por la siguiente expresión

$$N_p = 179.3 \ln\left[\frac{1}{0.046665} \left(1 - \frac{1}{K}\right)\right]$$

 Permitividad: la permitividad relativa o constante dieléctrica del medio (ε), tiene unos valores típicos tabulados. Conductividad: la conductividad, medida en Siemens por metro, tiene unos valores típicos tabulados [16]

Tabla 3. Tabla de valores de permeabilidad y conductividad de Longley Rice

Fuente: Manual de Radio Mobile YS10	Ġ
-------------------------------------	---

	PERMITIVIDAD	CONDUCTIVIDAD
Tierra media	15	0.005
Tierra pobre	4	0.001
Tierra rica	25	0.020
Agua fresca	81	0.010
Agua mar	81	5.000

Donde la permitividad se expresa en F/m y la conductividad en S/m

• El tipo de clima: siete códigos de clima se clasifican en el modelo Longley-Rice: Ecuatorial (Congo), Continental Subtropical (Sudan), Marítimo Subtropical (costa oeste de África), Desértico (Sahara), Continental Templado, Marítimo templado sobre la tierra (Reino Unido y costas continentales del oeste), y Marítimo templado sobre el mar.

En variabilidad se definen cuatro modos. El modo seleccionado determina el significado de fiabilidad y de confianza de los valores utilizados en el modelo. Los modos están definidos como: el modo de mensaje único, el modo individual, el modo móvil, y el modo de transmisión. Existen tres tipos de variabilidad: variabilidad de tiempo, de ubicación, y de situación.

- Variabilidad de tiempo: representa las variaciones de los valores medios por hora de la atenuación debida a, por ejemplo, cambios lentos en la refracción atmosférica o en las intensidades de las turbulencias atmosféricas. La variabilidad del tiempo describe los efectos de estos cambios en el tiempo. Para el cálculo se expresa como un porcentaje del 0,1% al 99,9%. Este valor da la fracción de tiempo durante el cual se espera que la intensidad de campo real recibida sea igual o superior al campo por hora promedio calculado por el programa. Esta variable le permite especificar cómo desea tratar con la variabilidad del tiempo o cambios atmosféricos (y otros). Si se ingresan valores de confiabilidad alto en porcentaje efectivamente reduce la variabilidad resultante de estos factores. La intensidad del campo resultante previsto por el programa será menor, pero tendrá mayor confiabilidad que el campo real medido que sería igual o superior al valor calculado en un momento dado.
- Variabilidad de ubicación: Esta variable representa las variaciones estadísticas a largo plazo, que se producen de camino a la ruta, debido a, por ejemplo, las diferencias en los perfiles del terreno o las diferencias ambientales entre los caminos. La variabilidad de ubicación para el cálculo se expresa como un porcentaje del 0,1% al 99,9%.. Esta variable le permite especificar cómo quiere hacer frente a la variabilidad del lugar.
- Variabilidad de situación: se trata de las variaciones entre los "que aparecen como" sistemas junto con los parámetros y las condiciones ambientales, incluyendo las diferencias en la capacidad de los individuos para tomar lecturas de la intensidad de campo con precisión. Es en este punto donde se ingresan, variables cuyos efectos no entendemos o no se han elegido para controlar. Los valores de estas variables se encuentran en el entorno haciendo notoria la diferencia entre lo que sería una situación idéntica. Los efectos de estas diferencias producen cambios en las estadísticas observadas. Este modelo no provee una forma de determinar correcciones debido a factores ambientales en las proximidades del receptor,

así como tampoco considera el efecto de edificios, árboles, y de la multitrayectoria. [17]

II.9.4. COST231 o Walfisch-Ikegami

Este modelo surge de la combinación de los modelos Walfisch-Bertoni, el modelo de Ikegami y de las contribuciones de los miembros del COST 231 Subgroup on Propagation Models. El modelo nace ante la inminente necesidad de usar frecuencias cada vez más grandes, lo que hizo que no fuera suficiente el uso del modelo de Okumura-Hata. Este modelo está diseñado para bandas que operen entre 800MGHz y 2000MGHz en entornos urbanos densos. El modelo tiene en cuenta la altura de los edificios, la separación entre las calles, la separación entre los edificios y el sentido de las calles según la propagación de la señal. Es recomendado para macro-células en escenarios urbanos y suburbanos, con buenos resultados de las pérdidas en el trayecto para antenas transmisoras situadas por encima de la altura media de los tejados. Sin embargo, el error en las predicciones aumenta considerablemente a medida que la altura del transmisor se acerca a la altura de los tejados, llegando a tener un rendimiento muy pobre para transmisores situados por debajo de ese nivel.

Respecto a modelos precedentes como Okumura-Hata, el modelo COST 231 incluye una serie de parámetros adicionales al proceso de cálculo, además de ampliar el rango de frecuencias en el cual puede usarse (800 - 2000 MHz). El modelo realiza un cálculo más detallado de la atenuación, basándose en cuatro parámetros adicionales:

- Altura de los edificios
- Ancho de las calles
- Separación entre edificios
- Orientación de la calle respecto a la dirección de propagación

Este modelo puede extrapolarse a 3.5GHz donde también se asume una menor precisión de los resultados.

El modelo indica las pérdidas con la ecuación 5

```
Ecuación 5. Ecuación que modela las pérdidas de COS231

L(urbano)[dB] = 46.3 + 33.9 \cdot Log(f_z) - 13.82 \cdot Log(h_x) - a(h_x) + (44.9 - 6.55 \cdot Log[h_x]) \cdot Log(d) + C_M
```

Donde Cm es un factor de corrección donde se puede extender la frecuencia para el que opera el modelo. EL factor de corrección se basa en pruebas empíricas donde se demuestra que para grandes ciudades es mayor que para áreas sub urbanas, Cm puede tomar los siguientes valores

Ecuación 6. Factor de corrección para el modelo COS 231

- C_M= 0 dB para ciudades medianas y áreas suburbanas.
- C_M = 3 dB para centros metropolitanos.

El resultado para el valor de la ganancia de hrx se calcula con las mismas ecuaciones que para el modelo de Okumura Hata. Este modelo tiene mejor desempeño a distancias entre 1km y 20km (Pozo, 2007).

Para escenarios LOS, la pérdida de propagación considera únicamente la pérdida en espacio libre, $L_b = L_{0(LOS)}$:

Ecuación 7. Pérdidas de propagación en espacio libre para COS231 $L_{o(LOS)} = 42.6 + 26 \log(d) + 20 \log(f)$

donde d es expresada en km y f en MHz.

El trayecto NLOS típico descrito en el modelo COST 231, se representa en las Figuras 5 y 6.

Ilustración 5. Descripción de COST231 con NLOS (Fuente: Pozo,2007)

Ilustración 6. Vista de perfil de escenario NLOS COST231 (Fuente: Pozo,2007)

Los parámetros definidos en el modelo COST 231 son los siguientes:

- h_r : altura media de los edificios (m)
- *w* : anchura de la calle (m)
- *b* : separación media entre edificios (m)
- ϕ : ángulo formado por la dirección de propagación y el eje la calle (grados)
- h_b : altura de la antena de la estación base (m)
- h_m : altura de la antena del dispositivo móvil (m)
- $\Delta h_m = h_r h_m$ (m)
- $\Delta h_b = h_b h_r (\mathbf{m})$
- *l* : distancia total entre el primer y el último edificio del trayecto (m)
- *d* : distancia entre estación base y dispositivo móvil (km)
- f: frecuencia (MHz)

La pérdida básica de propagación para el escenario NLOS viene dada por:

$$L_{b} = \begin{cases} L_{o} + L_{rts} + L_{msd} & Para L_{rts} + L_{msd} > 0\\ L_{o} & Para L_{rts} + L_{msd} \le 0 \end{cases}$$

La pérdida de propagación en condiciones de espacio libre, L_0 , se obtiene según la expresión:

Ecuación 8. Pérdidas de propagación en el espacio libre $L_0 = 32.4 + 20 \log(d) + 20 \log(f)$

El término L_{rts} tiene en cuenta la anchura de la calle y su orientación con respecto a la dirección de propagación del rayo. Su definición está basada en los principios de difracción tejado-calle dados por el modelo de Ikegami. La expresión para el cálculo de L_{rts} , es aceptada por la UIT-R en su Recomendación P.1411, y viene dada por:

$$L_{\rm rm} = -8.2 - 10 \log (w) + 10 \log (f) + 20 \log (\Delta h_{\rm m}) + L_{\rm ori}$$

donde:

$$L_{ori} = \begin{cases} -10 + 0.354\varphi & \text{para} \quad 0^{\circ} \le \varphi < 35^{\circ} \\ 2.5 + 0.075(\varphi - 35) & \text{para} \quad 35^{\circ} \le \varphi < 55^{\circ} \\ 4.0 - 0.114(\varphi - 55) & \text{para} \quad 55^{\circ} \le \varphi \le 90^{\circ} \end{cases}$$

El término L_{ori} es un factor de corrección que cuantifica las pérdidas debido a la orientación de la calle. En caso de que el valor de $L_{rts} < 0$, se debe considerar $L_{rts} = 0$.

La pérdida por difracción multipantalla, L_{msd} , es función de la frecuencia, la distancia entre el dispositivo móvil y la estación base, además de la altura de ésta y la de los edificios. Al igual que L_{rts} , en caso de que L_{msd} sea negativo, se considera $L_{msd} = 0$. Su valor se calcula mediante la expresión:

$$L_{msd} = L_{bsh} + k_a + k_d \log (d) + k_f \log (f) - 9 \log (b)$$

donde:

$$L_{bsh} = \begin{cases} -18\log_{10}\left(1 + \Delta h_b\right) & \text{for} \quad h_b > h_r \\ 0 & \text{for} \quad h_b \le h_r \end{cases}$$

es un término que depende de la altura de la estación base. Además se definen los siguientes parámetros:

 $k_a = \begin{cases} 54 & \mathbf{para} \quad h_b > h_r \\ 54 - 0.8 \Delta h_b & \mathbf{para} \quad h_b \le h_r \mathbf{y} \ d \ge 0.5 \mathbf{km} \\ 54 - 0.8 \Delta h_b \ d / 0.5 & \mathbf{para} \quad h_b \le h_r \mathbf{y} \ d < 0.5 \mathbf{km} \end{cases}$

$$k_{d} = \begin{cases} 18 & \text{for } h_{b} > h_{r} \\ 18 - 15 \frac{\Delta h_{b}}{h_{r}} & \text{for } h_{b} \le h_{r} \end{cases}$$

$$k_{f} = \begin{cases} -4 + 0.7(f/925 - 1) & \text{para ciudades de tamaño medio y entornos suburbanos} \\ & \text{con densidad moderada de vegetación} \\ -4 + 1.5(f/925 - 1) & \text{para centros metropolit anos} \end{cases}$$

El término k_a presenta el incremento de la pérdida en el trayecto para el caso de estaciones bases ubicadas por debajo de la altura media de los edificios. Los términos k_d y k_f controlan la dependencia de L_{msd} respecto a la distancia y a la frecuencia, respectivamente. En el caso de que no existieran datos sobre los edificios en el trayecto, el modelo COST 231 recomienda emplear:

•
$$h_r = 3 m x (N^o de pisos) + altura del techo$$

 $altura del techo = \begin{cases} 3 & \mathbf{m} & techo inclinado \\ 0 & \mathbf{m} & techo plano \end{cases}$

•
$$b = 20 - 50 m$$

•
$$w = b/2$$

• $\varphi = 90^{\circ}[15]$

Capítulo III. Metodología

En este capítulo se desarrollarán cada una de las fases para la elaboración del Trabajo Especial de Grado. En este trabajo se plantean tres fases esenciales que permitieron el desarrollo del estudio de los modelos de propagación en banda de TV abierta ISDTB con base a las condiciones atmosféricas de la Gran Caracas estas fases son Investigativa, analítica y comparativa.

Se empezó con una fase investigativa donde se realizó la documentación bibliográfica de los modelos de propagación más utilizados en el mundo y se estudiaron los parámetros que estos tienen como base para generar una guía a las televisoras que les sirve como modelo de transmisión de aquí se obtuvieron los parámetros de estudio a tomar en cuenta en el desarrollo de este proyecto. Posteriormente se obtuvieron los datos atmosféricos de entes como el INAMEH y datos geográficos obtenidos de la plataforma Google Earth, que junto con lo anterior sirve de soporte para generar los cálculos de las condiciones actuales en Caracas. Con estos datos se pudo realizar las simulaciones con software como Cloud RF de la empresa Farrant Consulting, Ltdy Path Calc de soporte libre, para realizar un estudio y comparación de los resultados obtenidos teóricamente con los arrojados por el software.

Después de una investigación del medio televisivo, se pudo observar que en Venezuela los modelos de propagación más utilizados son el Okumura –Hata y Longley Rice los cuales adaptan según las necesidades de cada estación de televisión. Cloud RF se escoge gracias a que el software contiene detalles atmosféricos y terrestres que pueden ser modificables según las condiciones geográficas de cada lugar, además de dar al usuario la facilidad de implementarlo por medio de Google Earth para elaborar las mediciones de terreno propias de cada medición solicitada este simulador trabaja con el modelo Longley Rice y le permite al usuario ampliar su alcance dependiendo de las necesidades que tenga.

Se utiliza el simulador Path Calc para simular los cálculos de terrenos realizados para el modelo Okumura-Hata este software a pesar de no tener la facilidad gráfica que tiene Cloud RF puede realizar todos los cálculos que se necesiten y toma en cuenta la distancia en el terreno por medio de las coordenadas geográficas que se le indican permitiendo así realizar cálculos más precisos sobre la dispersión de la señal transmitida

Todos estos cálculos se tomarán como referencia para comparar con los usados actualmente por las televisoras de la ciudad, y así poder generar un análisis cercano a lo que debería ser un esquema de transmisión en base a los modelos de propagación junto con esto se estudiará qué parámetros hay que modificar en las fórmulas de propagación, bien sea por su versatilidad o por su inconsistencia con la realidad para así poder obtener un cálculo exacto a la hora de generar parámetros de medición.

Capítulo IV. Desarrollo

Este capítulo se centra en la explicación del procedimiento seguido durante el desarrollo de las actividades para la realización de la investigación, de tal forma que sus productos específicos sean mostrados en el capítulo de resultados

IV.1. Recolección de Datos atmosféricos

Gracias a la información suministrada por el INAMEH se pudo observar cuál de estos datos servirán para la investigación. Se ha decidido seleccionar los datos correspondientes a las precipitaciones atmosféricas de los últimos diez años debido a la poca continuidad de la información se toma de referencia el promedio de precipitaciones anuales obtenidas, para tomar en cuenta al momento de realizar cálculos teóricos y colocación de parámetros en la simulación.

Es importante destacar que todos los puntos de este Trabajo de Grado estarán guiados a obtener los mejores resultados solo en la región de Caracas es por esto que de los datos suministrados a nivel Nacional sólo se tomarán en cuenta aquellos que pertenecen al Distrito Federal y parte norte del litoral.

En la siguiente tabla podebos visualizar los valores pluviométricos que se utilizaron como referencia para la zona de Dtto. Federal

DATOS	MENSU	ALES DE	PRECIP	ITACION	(mm)							6000		
A¥0 1971	ENE 6.9	FEB 7.1	MAR 10.4	ABR 51.6	MAY 84.0	JUN 61.1	JUL 107.3	AGO 102.7	SEP 67.9	OCT 156.0	NOV	DIC 34.6	ANUAL 767.4	
1973 1976 1977	- 0	2.0	21.6	0	18.8	166.0	131.4	91.4 - 62.2	104_4	212.4	117.2 102.8	13.5	-	
1978 1979	13.0 63.1	1.6 .4	4.2	212.8 31.2	69.6 76.7	96.2 119.2	95.8 75.4	43.2 118.8	25.6	140.4 63.5	64.6 144.3	38.2 133.8	805.2 941.2	
1980	34.0	13.9	.0	24.6	-	-	-	-	-	-	-	-	-	
PROM:	23.7	4.8	8.1	62.6	62.7	98.5	91.5	83.7	88.1	127.3	100.1	46.2	797.3	
PORC :	3.0	.6	1.0	7.9	7.9	12.4	11.5	10.5	11.1	16.0	12.6	5.8		
D. STD	22.9	5.0	8.4	76.3	32.9	46.7	31.8	30.6	41.5	55.2	28.5	45.8		
CV:	96.6	104.4	103.6	121.8	52.6	47.5	34.8	36.6	47.1	43.4	28.4	99.1		

Tabla 4. Información de Precipitación Promedio. Dtto. Federal.
(Fuente INAMEH,2012)

Generando con dichos valores una tabla de precipitación promedio que nos ayudarà a ver mas ràpidamente los puntos críticos que se tienen en el Dtto Federal a largo del año

Ilustración 7. Gráfico de Precipitación promedio anual Dtto. Federal (mm) (Fuente: Elaboración Propia)

IV.2. Análisis de Locaciones actuales de antenas

Gracias a la información suministrada por los canales de televisión como Venevisión, Meridiano TV, y RCTV (que por circunstancias adversas ahora la transmisión le pertenece a TVES), se pudo obtener una guía territorial de las actuales estaciones de televisión que se encuentran funcionando, esto junto con la aproximación proporcionada por Cloud RF sirvió de guía para validar las aproximaciones realizadas por los caculos teóricos y las ofrecida por el simulador. De igual forma funciona para el simulador Path Calc el cual a pesar de tener una estructura diferente también toma en cuenta la distribución territorial para ofrecer datos de transmisión.

IV.2.1. Punto de transmisión de RCTV

Para el estudio de las antenas de RCT se tomaron los puntos Parque Nacional el Avila Figura 8, Estación de Caricuao Figura 9 y Punto de transmisión el Volcán Figura 10 por considerarse los más apropiados para este estudio por su alcance en la región capital

1. Estación de Mecedores ubicada en el Parque Nacional el Ávila en Caracas.

Ilustración 8. Punto de Transmisión Mecedores, El Ávila. Fuente. Elaboración propia

2. Estación de Caricuao.

Ilustración 9. Punto de Transmisión Caricuao. Fuente Elaboración propia

IV.2.2. Puntos de transmisión Meridiano TV

Para el estudio de las antenas de Meridiano TV se tomaron los El volcán Figura 10, Punto de Transmisión Avila 5 Figura 11 y Punto de transmisión Mecedores Figura 12 y punto de transmisión El Junquito Figura 13 por considerarse los más apropiados para este estudio por su cobertura en Caracas

Ilustración 10. Punto de Transmisión El Volcán. Edo Miranda. Fuente: Elaboración Propia

Ilustración 11. Punto de Transmisión Avila 5. Fuente: Elaboración Propia

Ilustración 12. Punto de Transmisión Mecedores, Ávila Caracas. (Fuente: Elaboración Propia)

Ilustración 13. Punto de Transmisión El junquito Km 12. (Fuente: Elaboración Propia)

IV.3. Simulaciones Prácticas

En la fase de simulaciones prácticas se procedió a analizar todos los datos teóricos usando como herramientas los simuladores de Cloud Rf y Path Calc ya que estos usan los modelos Longley Rice y Okumura Hata respectivamente. Gracias a la precisión ofrecida por Cloud Rf se puede observar si los valores y localidades utilizadas por las televisoras son las ideales para los parámetros que comúnmente toman en cuenta para realizar las transmisiones, esto para generar una alerta en cuanto a las mejores aproximaciones que se tienen en cuanto a transmisión. Gracias a estos valores se pudo observar cuál es el modelo que mejor se aproxima a los valores que se utilizan actualmente.

IV.4. Análisis de resultados

Debido a las ciertas discrepancias que pueden haber entre los modelos de propagación, se procedió a generar un patrón de evaluación, el cual consiste en verificar qué parámetros hay que tomar en cuenta a la hora de modificar algún modelo de propagación, cuidando los datos obtenidos en las simulaciones y en la teoría, Sirve de base, los buenos niveles de transmisión que tienen ciertas televisoras y los problemas a los que tienen que enfrentarse comúnmente

Capítulo V. Análisis y Resultados

V.1. Simulaciones con Path Calc

Las siguientes mediciones se realizaron con el simulador Path Calc, el cual trabaja con el modelo Okumura-Hata.

V.1.1. Mcedores

Para el estudio realizado con la antena ubicada en mecedores se tomaron los siguientes valores descritos en la Tabla 5 los cuales fueron introducidos en el simulador Path Calc como se muestra en la figura 14 para realizar las simulaciones

Antena	Mecedores
Latitud	10°31'51.61''
Longitud	66°52'31.4''
Potencia de Salida	1000W
Altura de la antena	96m
Feeder	96
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 5. Datos del Transmisor Mecedores (Fuente: Elaboración propia)

)verview Transmitter Receiver Vokomura/Hata Settings Notes						
Co-Ordinates Lat 10 1 152 151.61 North V Long 66 152 131.4 West V UTM Coordintes Easting Northing Zone 19P 732511 1164917	Antenna 1 • × 1/2 Wave Dipole • Gain 0.00 dBd Height AGL 96 ÷ mtr Feeder 96 ÷ mtr UR-67 • Feeder Losses 14.624 dB					
Power Output	Diplexer/Circulator Losses U dB					
Power 1000 ÷ W •	No. of Connectors					
ERP 34.3 W	Connector Losses 0.023 dB					

Ilustración 14. Introducción de datos en el transmisor Mecedores (Fuente: Elaboración propia)

El estudio para esta antena se dividió en tres rutas para medir la intensidad de la señal dependiendo de la distancia de cobertura

V.1.1.I Ruta 1

La primera ruta se dividió el estudio en dos niveles de intensidad de la señal 100dbm y 70dbm tal y como se muestran los parámetros de las tablas 6 y 7

Distancia al Receptor	9.6 km
Latitud	10°26'38.72"N
Longitud	66°52′41.88″O
Input	100 dBm
Altura en el Rx	10m
Feeder	10m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 6. Datos Rx a 9.6km de Mecedores y 100dBm (Fuente: Elaboración propia)

Los Datos descritos anteriormente fueron introducidos en el sistema Path Calc como se muestra en la Ilustración 16

Overview Transmitter Receiver Yokomura/Hata S	ettings Notes
Co-Ordinates	Antenna 1 💌 X 1/2 Wave Dipole 💌
Deg Min Secs Lat 10 26 38.72 North ▼	Gain 0.00 dBd Height AGL 10 📩 mtr
Long 66 + 52 + 41.88 West -	Feeder
UTM Coordintes Easting Northing	10 🕂 mtr UR-67 💌
Zone 19P 732257 1155299	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 🛃 dB
Power 0 🔹 mW 💌	No. of Connectors 2
ERP 500.0 mW	Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 🗧 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 15. Introducción de datos en el RX a 9.6km de Mecedores y -100dBm (Fuente: Elaboración propia)

Los resultados a esta simulación de se pueden observar en las ilustraciones 17 y 18 mostrando en esta última el comportamiento de la señal en este punto

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	60.0	dBm	Free Space Loss	124.736	dB	Receiver Threshold	0	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	14.624	dB	Ground Losses	0.000	dB	Feeder Loss	1.523	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.023	dB
			User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	45.353	dBm	Total Path Loss	<mark>124.736</mark>	dB	Receiver Gain	-1.546	dBm
Received Signal								
Input Signal = (Ra	Input Signal = (Radiated Power - Total Path Loss + Receiver Gain) = -80.929 dBm							
Fade Margin = Input Signal								

Ilustración 16. Resumen de Señal recibida con Rx a 9.6km de Mecedores y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes						
Transmitter	Receiver					
Location	Location					
Latitude 10* 31' 51.61'' North	Latitude 10° 26' 38.72" North					
Longitude 66° 52' 31.4" West	Longitude 66° 52' 41.88'' West					
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr					
Bearing 181.918 deg	Bearing 1.918 deg					
Frequency 458 • MHz C GHz	Signal Volts 635.36 µV					
	Signal dB 40.9 dBm					
Reliability Results	CFM60.929 dB					
Multipath Outage 0 SES/yr Path Reliabilitu (2) 100.00000	Path Distance 9.670 km 6.010 Miles					
	FSL -124.736 dB					
Bearing						
te uno lo magnetic						

Ilustración 17. Resumen de Datos de señal recibida a 9.6km de Mecedores y -100dBm (Fuente: Elaboración propia)

Tabla 7. Datos Rx a 9.6km y 70dBm de Mecedores (Fuente: Elaboración propia)

Distancia al Receptor	9.6 km
Latitud	10°26′38.72″N
Longitud	66°52'41.88"O
Input	70dBm
Altura en el Rx	1.5m
Feeder	1.5m
Numero de Conectores	0
Cable Coaxial	R-67

Overview Transmitter Receiver Yokomura/Hata S	ettings Notes
Co-Ordinates	Antenna 1 💌 X 1/2 Wave Dipole 💌
Deg Min Secs Lat 10 26 38.72 North ▼	Gain 0.00 dBd Height AGL 1.5 📩 mtr
Long 66 🛨 52 🕂 41.88 West 💌	Feeder
UTM Coordintes Easting Northing	1.5 • mtr UR-67 •
Zone 19P 732257 1155299	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 🗧 🕂 dB
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 🕂 dB
Impedance 50 💌 ohms	Noise Factor 0 📩 dB

Ilustración 18. Introducción de los datos a 9.6km de Mecedores con -70dBm (Fuente: Elaboración propia)

En las ilustraciones 20 y 21 podemos ver el comportamiento de la señal después de haber introducido los datos tal y como se muestra en la ilustración 19

Transmitter Output			Path Losses/Gains			Receiver Input	
Power Output	60.0	dBm	Free Space Loss	143.665	dB	Receiver Threshold -70 dBm	
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain 0.00 dB	
Feeder Loss	14.624	dB	Ground Losses	0.000	dB	Feeder Loss 0.229 dB	
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss 0 dB	
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss 0.000 dB	
			User Defined Loss	0	dB	PreAmp Gain 0 dB	
			Height Gain	0.000	dB	PreAmp Noise Factor 0 dB	
Radiated Power	45.353	dBm	Total Path Loss	143.665	dB	Receiver Gain -0.229 dBm	
Received Signal							
Input Signal = (Radiated Power - Total Path Loss + Receiver Gain) = -98.541						-98.541 dBm	
Fade Margin = Input Signal - Receiver Threshold)					=	-28.541 dB	

Ilustración 19. Resumen de Señal recibida con Rx a 9.6km de Mecedores y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes						
Transmitter	Receiver					
Location	Location					
Latitude 10° 31' 51.61" North	Latitude 10* 26' 38.72'' North					
Longitude 66° 52' 31.4" West	Longitude 66° 52' 41.88'' West					
Height ASL 0 📩 mtr	Height ASL 0 + mtr					
Bearing 181.918 deg	Bearing 1.918 deg					
Frequency 458 • MHz C GHz	Signal Volts 83.65 µV					
Reliability Results	Signal dB .98.5 dBm					
Multipath Prob of Outage 0.00000000						
Multipath Outage 0 SES/yr	Path					
Path Reliability (%)	Distance 9.670 km 6.010 Miles					
	FSL -143.665 dB					
Bearing						
🖲 Lind 🔿 Magnetic						

Ilustración 20. Resumen de Datos de señal recibida a 9.6km de Mecedores y -70dBm (Fuente: Elaboración propia)

V.1.1.II RUTA 2

Para la ruta dos se decidió dividir el estudio tomando los dos niveles límites para este trabajo de Grado 70 dbm y 100dbm los parámetros utilizados se describen en las tablas 8 y 9. Los resultados que corresponden a los datos ingresados en la tabla 8 se pueden observar en la ilustración 23 y 24. Los valores que corresponden a los datos ingresados en la tabla 9 se pueden observar en la ilustración 26 y 27

Distancia al Receptor	5.08 km
Latitud	10°20′10.41″N
Longitud	66°53'05.8''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 8. Datos Rx a 5.08km y -70dBm de Mecedore	s
(Fuente: Elaboración propia)	

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Co-Ordinates	Antenna			
	1 ▼ X 1/2 Wave Dipole	•		
Deg Min Secs	Gain 0.00 dBd Height AGL 1.5	i mtr		
Lat 10 29 10.41 North V				
Long 66 + 53 + 05.88 West -	Feeder			
UTM Coordintes Easting Northing	1.5 + mtr UR-67	•		
Zone 19P 732257 1155299	Feeder Losses 0.229	dB		
Output	Diplexer/Circulator Losses	÷ d₿		
Power 0 🔹 mW 💌	No. of Connectors	÷		
ERP 500.0 mW	Connector Losses 0.000	dB		
Input	PreAmp			
Threshold -70 dBm	Gain 0	÷ dB		
Impedance 50 💌 ohms	Noise Factor	÷ dB		

Ilustración 21. Introducción de los datos a 5.08km de Mecedores con -70dBm (Fuente: Elaboración propia)

Resultado

Transmitter Output	Path Losses/Gains		Receiver Input			
Power Output 64.8	dBm Free Space Loss	134.763 dB	Receiver Threshold	-70	dBm	
Antenna Gain 0.00	dB Clutter Losses	0.0 dB	Antenna Gain	0.00	dB	
Feeder Loss 14.624	dB Ground Losses	0.000 dB	Feeder Loss	0.229	dB	
Diplexer Loss 0	dB Confidence Margin	0 dB	Diplexer Loss	0	dB	
Connector Loss 0.023	dB Rain fade Margin	0 dB	Connector Loss	0.000	dB	
	User Defined Loss	0 dB	PreAmp Gain	0	dB	
	Height Gain	0.000 dB	PreAmp Noise Factor	0	dB	
Radiated Power 50.124	dBm Total Path Loss	134.763 dB	Receiver Gain	-0.229	dBm	
Received Signal Input Signal = (Radiated Power - Total Path Loss + Receiver Gain) = -84.860 dBm Fade Margin = Input Signal - Receiver Threshold) = -14.868 dB						

Ilustración 22 Resumen de Señal recibida con Rx a 5.08km de Mecedores y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Transmitter	Receiver			
Location	Location			
Latitude 10° 31' 51.61'' North	Latitude 10° 29' 10.41" North			
Longitude 66* 52' 31.4" West	Longitude 66° 53' 05.8'' West			
Height ASL 0 🕂 mtr	Height ASL 0 🕂 mtr			
Bearing 192.046 deg	Bearing 12.046 deg			
Frequency 458 • MHz C GHz	Signal Volts 403.74 µV			
	Signal dB 484.9 dBm			
Reliability Results	CFM -14.868 dB			
Multipath Prob of Outage 0.00000000				
Multipath Outage 0 SES/yr	Path			
Path Patiskiity (%)	Distance 5.088 km 3.162 Miles			
	FSL -134.763 dB			
Bearing	,			

Ilustración 23. Resumen de Datos de señal recibida a 5.08km de Mecedores y -70dBm (Fuente: Elaboración propia)

Para 10m de altura en el Rx

Distancia al Receptor	5.08 km
Latitud	10°20′10.41″N
Longitud	66°53'05.8''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 9. Datos Rx a 5.08km y -100dBm de Mecedores (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Co-Ordinates	Antenna			
Deg Min Secs Lat 10 29 10.41 North •	Gain 0.00 dBd Height AGL 10 + mtr			
Long 66 ÷ 53 ÷ 05.88 West •	Feeder			
UTM Coordintes Easting Northing	10 • mtr UR-67 •			
Zone 19P 731496 1159956	Feeder Losses 1.523 dB			
Output	Diplexer/Circulator Losses 0 📩 dB			
Power 0 🔹 mW 💌	No. of Connectors			
ERP 500.0 mW	Connector Losses 0.023 dB			
Input	PreAmp			
Threshold -100 dBm	Gain 0 📩 dB			
Impedance 50 v ohms	Noise Factor			

Ilustración 24. Introducción de los datos a 5.08km de Mecedores con -100dBm (Fuente: Elaboración propia)

Resultado

Ilustración 25. Resumen de Señal recibida con Rx a 5.08km de Mecedores y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Transmitter	Receiver			
Location	Location			
Latitude 10° 31' 51.61" North	Latitude 10° 29' 10.41'' North			
Longitude 66° 52' 31.4" West	Longitude 66* 53' 05.88'' West			
Height ASL 0 🕂 mtr	Height ASL 0 🕂 mtr			
Bearing 192.073 deg	Bearing 12.073 deg			
Frequency 458 • MHz C GHz	Signal Volts 1.77 mV			
	Signal dB 72.0 dBm			
Reliability Results	CFM 27.971 dB			
Multipath Prob of Outage 0.00000000	·			
Multipath Outage 0 SES/yr	Path			
Path Reliability (%)	Distance 5.088 km 3.162 Miles			
	FSL -115.836 dB			
Bearing				
 Grid C Magnetic 				

Ilustración 26. Resumen de Datos de señal recibida a 5.08km de Mecedores y -100dBm (Fuente: Elaboración propia)

V.1.1.III RUTA 3

A 2.5 km de la antena transmisora, esta línea de cobertura se tomó por ser la de menor distancia que se tenía de la antena emisora los valores suministrados en path calc se pueden observar en la tabla 10 y en la ilustración 28, teniendo como resultado los mostrados en las ilustraciones 29 y 30

Distancia al Receptor	2.5km
Latitud	10°30'32.49''N
Longitud	66°52'08.42''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 10. Datos Rx a 2.5km y -70dBm de Mecedores (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Deg Min Secs Lat 10 ± 30 ± 32.49 North Image: North	Anterna 1 • × 1/2 Wave Dipole • Gain 0.00 dBd Height AGL 1.5 + mtr Feeder 1.5 + mtr UR-67 •			
Zone 19P 733226 1162490	Feeder Losses 0.229 dB			
Output	Diplexer/Circulator Losses 0 + dB			
Power 0 🔹 mW 💌	No. of Connectors			
ERP 500.0 mW	Connector Losses 0.000 dB			
-Input	PreAmp			
Threshold ·70 dBm	Gain 0 📩 dB			
Impedance 50 v ohms	Noise Factor 0 📩 dB			

Ilustración 27. Introducción de los datos a 2.5km de Mecedores con -70dBm (Fuente: Elaboración propia)

Resultado

Transmitter Output			Path Losses/Gains			Rec	eiver Input		
Power Output	60.0	dBm	Free Space Loss	125.143	dB	R	eceiver Threshold	-70	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	A	ntenna Gain	0.00	dB
Feeder Loss	14.624	dB	Ground Losses	0.000	dB	F	eeder Loss	0.229	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	D	iplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	С	onnector Loss	0.000	dB
			User Defined Loss	0	dB	P	reAmp Gain	0	dB
			Height Gain	0.000	dB	P	reAmp Noise Factor	0	dB
Radiated Power	45.353	dBm	Total Path Loss	125.143	dB	R	eceiver Gain	-0.229	dBm
Received Signal									
Input Signal = (Ra	diated Pov	ver – Tota	al Path Loss 🕂 Recei	iver Gain)	=	-80.01	19 dBm		
Fade Margin = Input Signal - Receiver Threshold)				=	-10.01	19 dB			

Ilustración 28. Resumen de Señal recibida con Rx a 2.5km de Mecedores y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Transmitter	Receiver			
Location	Location			
Latitude 10° 31' 51.61" North	Latitude 10° 30' 32.49" North			
Longitude 66° 52' 31.4" West	Longitude 66° 52' 08.42" West			
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr			
Bearing 16.196 deg	Bearing 196.196 deg			
Frequency 458 • MHz C GHz	Signal Volts 705.56 µV			
	Signal dB 480.0 dBm			
Reliability Results	CEM 10.019 dP			
Multipath Prob of Outage 0.00000000				
Multipath Outage 0 SES/yr	Path			
Path Reliability (%)	Distance 2.542 km 1.580 Miles			
	FSL -125.143 dB			
Bearing				
 Grid Magnetic 				

Ilustración 29. Resumen de Datos de señal recibida a 2.5km de Mecedores y -70dBm (Fuente: Elaboración propia)

Para 2.5m en el Receptor con una intensidad de -100 dBm podemos tener los valores que se muestran en la tabla 11 y en la ilustración 31, teniendo como resultado los mostrados en las ilustraciones 32 y 33

Distancia al Receptor	2.5km
Latitud	10°30′32.49′′N
Longitud	66°52'08.42''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 11. Datos Rx a 2.5km y -100dBm de Mecedores (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes			
Co-Ordinates	Antenna 1 • × 1/2 Wave Dipole •		
Deg Min Secs Lat 10 - 30 - 32.49 North ▼	Gain 0.00 dBd Height AGL 10 📩 mtr		
UTM Coordintes Easting Northing	Feeder 10 + mtr UR-67 -		
Zohe 13P 733220 1102430	Feeder Losses 1.523 dB		
Output	Diplexer/Circulator Losses 0 🗧 🕇 dB		
Power 0 🕂 mW 💌	No. of Connectors		
ERP 500.0 mW	Connector Losses 0.023 dB		
Input	PreAmp		
Threshold -100 dBm	Gain 0 🕂 dB		
Impedance 50 💌 ohms	Noise Factor 0 📩 dB		

Ilustración 30. Introducción de los datos a 2.5km de Mecedores con -100dBm (Fuente: Elaboración propia)

Resultado

Ilustración 31. Resumen de Señal recibida con Rx a 2.5km de Mecedores y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	attings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 31' 51.61'' North	Latitude 10° 30' 32.49" North
Longitude 66° 52' 31.4" West	Longitude 66° 52' 08.42'' West
Height ASL 0 🕂 mtr	Height ASL 0 🕂 mtr
Bearing 16.196 deg	Bearing 196.196 deg
Frequency 458 • MHz C GHz	Signal Volts 5.36 mV
	Signal dB 62.4 dBm
Reliability Results	CEM 27.502 dP
Multipath Prob of Outage 0.000000000	
Multipath Outage 0 SES/yr	Path
D-W-D-C-KSK(%)	Distance 2.542 km 1.580 Miles
	FSL 106 214 dp
Bearing	i i i i i i i i i i i i i i i i i i i
Grid C Magnetic	

Ilustración 32. Resumen de Datos de señal recibida a 2.5km de Mecedores y -100dBm (Fuente: Elaboración propia)

Se puede observar en la ilustración 34 la visión final de las rutas estudiadas por el simulador path calc donde la más corta se refiere a la distancia de 2.5 km, la de longitud media es de 5.08km y la más larga equivale a una longitud de aproximadamente 10km, todas estas estudiadas con dos niveles de intensidad.

Ilustración 33. Visión final de las rutas desde Mecedores (Fuente: Elaboración propia)

V.1.2. Caricuao

Para el estudio en Caricuao se tomó al antena ubicada en las coordenadas 10°26'2.44''N 66°58'58.05''O donde las características básicas de la antena las podemos visualizar en la tabla 12 y en la ilustración 35.

Antena	Caricuao
Latitud	10°26′2.44′′N
Longitud	66°58′58.05″O
Potencia de Salida	300W
Altura de la antena	60 m
Feeder	60m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla	12.	Datos	del	Transm	isor	Caricuao
	(Fu	ente: I	Elab	oración	proj	pia)

verview Transmitter Receiver Yokomura/Hata Settings Notes			
Co-Ordinates Deg Min Secs Lat 10 → 26 → 42.24 North ▼	Antenna 1 • × 1/2 Wave Dipole • Gain 0.00 dBd Height AGL 60 • mtr		
Long 66 58 58.05 West UTM Coordintes Easting Northing Zone 13P 720813 1155332	Feeder 2 • mtr UR-67 Feeder Losses 0.305 dB		
Power Dutput Power 333 ÷ W v ERP 308.8 W	Diplexer/Circulator Losses 0 ÷ dB No. of Connectors 2 ÷ Connector Losses 0.023 dB		

Ilustración 34. Introducción de datos en el transmisor Caricuao (Fuente: Elaboración propia)

V.1.1.IV Ruta 1

La primera ruta corresponde a la ubicación más cercana que se tiene de la antena transmisora al punto de recepción, en esta oportunidad se basó el estudio en dos intensidades de señal teniendo los primeros datos de estudios en la tabla 13 que corresponden a un input de -70dBm teniendo como resultados los mostrados en las tablas

37 y 38. De igual forma el estudio se realizó para un input de -100dBm con los datos contenidos en la tabla 14 y cuyos resultados se exponen en las ilustraciones 40 y 41.

Distancia al Receptor	1.98 km
Latitud	10°25′39.26″ N
Longitud	66°58'46.20''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 13. Datos Rx a 1.98km y -70dBm de Caricuao (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Co-Ordinates	Antenna
Lat 10 + 25 + 39.26 North -	Gain 0.00 dBd Height AGL 1.5 📩 mtr
Long 66 ÷ 58 ÷ 46.20 West •	Feeder
UTM Coordintes Easting Northing	1.5 • mtr UR-67 •
Zone 19P 721186 1153399	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 🛨 dB
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 t
Impedance 50 💌 ohms	Noise Factor

Ilustración 35. Introducción de los datos a 1.98km de Caricuao con -70dBm (Fuente: Elaboración propia)

Resultado

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	55.2	dBm	Free Space Loss	124.879	dB	Receiver Threshold	-70	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	0.305	dB	Ground Losses	0.000	dB	Feeder Loss	0.229	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.000	dB
	,		User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	54.897	dBm	Total Path Loss	124.879	dB	Receiver Gain	-0.229	dBm
Received Signal								
Input Signal = (Ra	diated Por	wer – Tota	l Path Loss 🕂 Recei	iver Gain)	=	-70.210 dBm		
Fade Margin = Input Signal _ Receiver Threshold) =			= İ	-0.210 dB				

Ilustración 36. Resumen de Señal recibida con Rx a 1.98km de Mecedores y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Se	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 26' 42.24" North	Latitude 10/10° 25' 39.26" North
Longitude 66* 58' 58.05'' West	Longitude 66* 58' 46.20'' West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 10.656 deg	Bearing 190.656 deg
Frequency 458 • MHz C GHz	Signal Volts 2.18 mV
	Signal dB 70.2 dBm
Heliability Hesults Multipath Prob of Outage 0.00000000	CFM 0.210 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 1.978 km 1.230 Miles
	FSL -124.879 dB
Bearing	

Ilustración 37. Resumen de Señal recibida con Rx a 1.9km de Mecedores y -70dBm (Fuente: Elaboración propia)

A 10 mts de altura en el receptor

Tabla 14. Datos Ry	x a1.9km y -100dBm d	le Caricuao
(Fuente	: Elaboración propia))

Distancia al Receptor	1.9km
Latitud	10°25′39.26″ N
Longitud	66°58'46.20''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Overview Transmitter Receiver Yokomura/Hata Settings Notes

Co-Ordinates	Antenna
Deg Min Secs Lat 10 + 25 + 39.26 North ▼	Gain 0.00 dBd Height AGL 10 mtr
Long 66 ÷ 58 ÷ 46.20 West v UTM Coordintes Easting Northing	Feeder
Zone 19P 721186 1153399	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 + mW -	No. of Connectors
ERP 500.0 mW	Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 🕂 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 38. Introducción de los datos a 1.98km de Caricuao con -100dBm (Fuente: Elaboración propia)

Resultado

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	55.2	dBm	Free Space Loss	116.135	dB	Receiver Threshold	-100	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	0.305	dB	Ground Losses	0.000	dB	Feeder Loss	1.523	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.023	dB
			User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	54.897	dBm	Total Path Loss	116.135	dB	Receiver Gain	-1.546	dBm
Received Signal	diated Por out Signal	wer – Tot – Receive	al Path Loss 🕂 Recei er Threshold)	iver Gain)	=	-62.785 dBm 37.215 dB		

Ilustración 39 Resumen de Señal recibida con Rx a 1.98km de Caricuao y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 26' 42.24" North	Latitude 10/10* 25' 39.26" North
Longitude 66° 58' 58.05'' West	Longitude 66* 58' 46.20'' West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 10.656 deg	Bearing 190.656 deg
Frequency 458 • MHz C GHz	Signal Volts 5.13 mV
	Signal dB 62.8 dBm
Reliability Results	
Multipath Prob of Outage 0.00000000	UFM 37.215 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 1.978 km 1.230 Miles
	FSL -116.135 dB
Bearing	
Grid C Magnetic	

Ilustración 40. Resumen de Señal recibida con Rx a 1.98km de Caricuao y -100dBm (Fuente: Elaboración propia)

V.1.1.V Ruta 2

La corresponde a la ubicación a una distancia aproximada de 5km de la antena transmisora de Caricuao encontrando su configuración en la Tabla 15 e ilustración 42, para esta ruta tenemos el estudio realizado para -100dBm donde se obtuvieron como resultados las ilustraciones 46 y 47.

Distancia al Receptor	5 km
Latitud	10°24′43.29′′N
Longitud	67°00'50.22''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 15. Datos Rx a 5km y -70dBm de Caricuao (Fuente: Elaboración propia)

Dverview	Transmitter	Receiver	Yokomura/Hata	Settings	Notes	I
----------	-------------	----------	---------------	----------	-------	---

Co-Ordinates	Antenna
Deg Min Secs Lat 10 ★ 24 ↓ 43.29 North ▼	Gain 0.00 dBd Height AGL 1.5 → mtr
Long 67 + 00 + 50.22 West -	Feeder
UTM Coordintes Easting Northing	1.5 + mtr UR-67 -
Zone 19P 717424 1151655	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 📩 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 🕂 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 41. Introducción de los datos a 5km de Caricuao con -70dBm (Fuente: Elaboración propia)

Resultado

Ilustración 42. Resumen de Señal recibida con Rx a 5km de Caricuao y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 26' 42.24'' North	Latitude 10/10° 24' 43.29" North
Longitude 66* 58' 58.05'' West	Longitude 67° 00' 50.22" West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 223.320 deg	Bearing 43.320 deg
Frequency 458 📀 MHz C GHz	Signal Volts 465.47 μV
	Signal dB
Reliability Results	CEM 13.632 dB
Multipath Prob of Outage 0.00000000	
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 5.011 km 3.114 Miles
	FSL -138.300 dB
Bearing	
 Grid Magnetic 	

Ilustración 43. Resumen de Señal recibida con Rx a 5km de Caricuao y -70dBm (Fuente: Elaboración propia)

A 10m de altura en el receptor

Tabla 16. Datos Rx a 5km y -100dBm de Caricuao (Fuente: Elaboración propia)

Distancia al Receptor	5 km
Latitud	10°24'43.29''N
Longitud	67°00'50.22''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Overview Transmitter Receiver Yokomura/Hata Settings Notes		
Co-Ordinates Deg Min Secs Lat 10 1 44 43.29 North V	Antenna 1 • X 1/2 Wave Dipole • Gain 0.00 dBd Height AGL 10 • mtr	
Long 67 + 00 + 50.22 West UTM Coordintes Easting Northing	Feeder	
Zone 19P 717424 1151655	Feeder Losses 1.523 dB	
Output	Diplexer/Circulator Losses	
Power 0 🔹 mW 💌	No. of Connectors	
ERP 500.0 mW	Connector Losses 0.023 dB	
Input	PreAmp	
Threshold -100 dBm	Gain 0 🕂 dB	
Impedance 50 💌 ohms	Noise Factor	

Ilustración 44. Introducción de los datos a 5km de Caricuao con -100dBm (Fuente: Elaboración propia)

Resultado

Ilustración 45. Resumen de Señal recibida con Rx a 5km de Caricuao y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Set	tings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 26' 42.24" North	Latitude 10/10° 24' 43.29" North
Longitude 66° 58' 58.05'' West	Longitude 67° 00' 50.22'' West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 223.320 deg	Bearing 43.320 deg
Frequency 458 @ MHz C GHz	Signal Volts 1.09 mV
	Signal dB -76.2 dBm
Reliability Results Multipath Prob of Outage 0.000000000	CFM 23.794 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%) 100.00000	FSL -129.557 dB
Bearing	
Grid C Magnetic	

Ilustración 46. Resumen de Señal recibida con Rx a 5km de Caricuao y -100dBm (Fuente: Elaboración propia)

En la ilustración 48 se pueden observar la distribución geográfica de todas las rutas, las dos líneas medias corresponden a una longitud de 5km pero por la incidencia de la señal se tomó la que mejor recepción ofrecía.

Ilustración 47. Visión final de las rutas desde Caricuao (Fuente: Elaboración propia)

V.1.3. El Volcán

Para la antena ubicada en el volcán se pueden observar en la tabla 17 y en la figura 49 los datos de transmisión utilizados para la medición.

Antena	El Volcan
Latitud	10°25′0.26″′N
Longitud	66°51′4.06″O
Potencia de Salida	333W
Altura de la antena	60 m
Feeder	60m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 17. Datos del Transmisor El Volcán
(Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Settings Notes		
Co-Ordinates	Antenna	
Deg Min Secs	1 • × 1/2 Wave Dipole •	
Lat 10 + 25 + 0.26 North -	Gain 0.00 dBd Height AGL 60 • mtr	
Long 66 51 4.06 West UTM Coordintes Easting Northing Zone 19P 720813 1155332	Feeder 2 mtr UR-67 Feeder Losses 0.305 dB	
Power Output	Diplexer/Circulator Losses 0 dB	
Power 333 + W +	No. of Connectors 2	
ERP 308.8 W	Connector Losses 0.023 dB	

Ilustración 48. Introducción de datos en el transmisor El Volcan (Fuente: Elaboración propia)

V.1.1.VI Ruta 1

Para la Ruta 1 tenemos una distancia de 2 km aproximadamente del transmisor en la tabla 18 y en la ilustración 50 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm teniendo como resultados los visualizados en las ilustraciones 51 y 52. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 19 y en la ilustración 53, los resultados de estas mediciones los puede observar en las ilustraciones 54 y 55.

Distancia al Receptor	2 km
Latitud	10°25′43.91″N
Longitud	66°51'51,36''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 18. Datos Rx a 2km y -70dBm de El Volcan (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Settings Notes		
Co-Ordinates	Antenna	
Deg Min Secs Lat 10 - 25 - 43.91 North ▼	Gain 0.00 dBd Height AGL 1.5 📩 mtr	
Long 66 ÷ 51 ÷ 51.36 West •	Feeder	
UTM Coordintes Easting Northing	1.5 • mtr UR-67 •	
Zone 19P 717424 1151655	Feeder Losses 0.229 dB	
Output	Diplexer/Circulator Losses 0 🕂 dB	
Power 0 mW -	No. of Connectors	
ERP 500.0 mW	Connector Losses 0.000 dB	
Input	PreAmp	
Threshold -70 dBm	Gain 0 📩 dB	
Impedance 50 💌 ohms	Noise Factor	

Ilustración 49. Introducción de los datos a 5km de Rx con -100dBm (Fuente: Elaboración propia)

Resultado

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Transmitter	Receiver
Location	Location
Latitude 10* 25' 0.26" North	Latitude 10(10° 25' 43.91" North
Longitude 66° 51' 4.06'' West	Longitude 66° 51' 51.36'' West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 312.702 deg	Bearing 132.702 deg
Frequency 458 • MHz C GHz	Signal Volts 2.20 mV
	Signal dB
Heliability Hesults Multipath Prob of Outage 0.00000000	CFM 0.152 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 1.970 km 1.225 Miles
	FSL -124.820 dB
Bearing Grid C Magnetic	

Ilustración 50 Resumen de Señal recibida con Rx a 1.9km de El Volcan y -70dBm (Fuente: Elaboración propia)

Ilustración 51. Resumen de Señal recibida con Rx a 1.9km de El Volcan y -70dBm (Fuente: Elaboración propia)

Distancia al Recontor	2 km
Distancia al Receptor	Z KIII
Latitud	10°25′43.91″N
Longitud	66°51'51,36''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 19. Datos Rx a 2km y -100dBm de El Volcan (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Co-Ordinates	Antenna
Deg Min Secs	1 • × 1/2 Wave Dipole •
Lat 10 + 25 + 43.91 North -	Gain 0.00 dBd Height AGL 10 • mtr
Long 66 + 51 + 51.36 West -	Feeder
UTM Coordintes Easting Northing	10 • mtr UR-67 •
Zone 19P 733805 1153625	Eeeder Losses 1523 dB
Output Power 0 ÷ mW ▼ ERP 500.0 mW	Diplexer/Circulator Losses 0 + dB No. of Connectors 2 + Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 • dB
Impedance 50 - ohms	Noise Factor 0 • dB

Ilustración 52. Introducción de los datos a 5km de Rx con -100dBm (Fuente: Elaboración propia)

Resultados

Ilustración 53. Resumen de Señal recibida con Rx a 2km de El Volcan y -100dBm (Fuente: Elaboración propia)
Overview Transm	mitter Receiver Yokomura/Hata S	Settings Notes
Transmitter		Receiver
Location		Location
Latitude	10° 25' 0.26" North	Latitude 10/10* 25' 43.91" North
Longitude	66° 51' 4.06" West	Longitude 66° 51' 51.36'' West
Height ASL	0 ntr	Height ASL 0 📩 mtr
Bearing	312.702 deg	Bearing 132.702 deg
Frequency	458 • MHz O GHz	Signal Volts 5.17 mV
		Signal dB 62.7 dBm
Reliability Result:	S	CFM 37.273 dB
Multipath Prob o	of Outage 0.000000000	
Multipath Outage	je 0 SES/yr	Path
Path Beliabilitu ((%) 100.00000	Distance 1.970 km 1.225 Miles
- data folidbility ((*)	FSL -116.077 dB
Bearing		
Grid	d C Magnetic	

Ilustración 54. Resumen de Señal recibida con Rx a 2km de El Volcan y -100dBm (Fuente: Elaboración propia)

V.1.1.VII Ruta 2

Para la Ruta 2 tenemos una distancia de 5 km aproximadamente del transmisor en la tabla 20 y en la ilustración 56 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm teniendo como resultados los visualizados en las ilustraciones 57 y 58. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 21 y en la ilustración 59, los resultados de estas mediciones los puede observar en las ilustraciones 60 y 61.

Distancia al Receptor	5.2 km
Latitud	10°26°7′28.95″′N
Longitud	66°49'42.38''W
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 20. Datos Rx a 5.2km y -100dBm de El Volcan (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes			
Co-Ordinates	Antenna		
	1 ▼ X 1/2 Wave Dipole ▼		
Deg Min Secs Lat 10 ↓ 27 ↓ 28.95 North ▼	Gain 0.00 dBd Height AGL 10 📩 mtr		
Long 66 + 49 + 42.38 West -	Feeder		
UTM Coordintes Easting Northing	10 • mtr UR-67 •		
Zone 19P 733805 1153625	Feeder Losses 1.523 dB		
Output	Diplexer/Circulator Losses 0 + dB		
Power 0 🗧 mW 💌	No. of Connectors		
ERP 500.0 mW	Connector Losses 0.023 dB		
Input	PreAmp		
Threshold -100 dBm	Gain 0 🕂 dB		
Impedance 50 💌 ohms	Noise Factor		

Ilustración 55. Introducción de los datos a 5.2km de Rx con -100dBm (Fuente: Elaboración propia)

Resultado

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	55.2	dBm	Free Space Loss	116.077	dB	Receiver Threshold	-100	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	0.305	dB	Ground Losses	0.000	dB	Feeder Loss	1.523	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.023	dB
			User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	54.897	dBm	Total Path Loss	116.077	dB	Receiver Gain	-1.546	dBm
Received Signal								
Input Signal = (Radiated Power - Total Path Loss + Receiver Gain) = -62.727 dBm								
Fade Margin = Input Signal _ Receiver Threshold) = 37.273 dB								

Ilustración 56. Resumen de Señal recibida con Rx a 5.2km de El Volcan y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Set	tings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 25' 0.26" North	Latitude 10° 27' 28.95" North
Longitude 66° 51' 4.06'' West	Longitude 66° 49' 42.38'' West
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr
Bearing 28.781 deg	Bearing 208.781 deg
Frequency 458 • MHz C GHz	Signal Volts 1.19 mV
Deficiency Decode	Signal dB
Multipath Prob of Outage 0.00000000	CFM 24.544 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 5.220 km 3.244 Miles
- Deside	FSL -119.971 dB
© Grid C Magnetic	

Ilustración 57. Resumen de Señal recibida con Rx a 5.2km de El Volcan y -100dBm (Fuente: Elaboración propia)

Distancia al Receptor	5.2 km	
Latitud	10°26°7′28.95″N	
Longitud	66°49'42.38''W	
Input	-70dBm	
Altura en el Rx	1.5 m	
Feeder	1.5 m	
Numero de Conectores	0	
Cable Coaxial	R-67	

Tabla 21 Datos Rx a 5.2km y -70dBm de El Volcan (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes			
Co-Ordinates	Antenna 1 • × 1/2 Wave Dipole •		
Deg Min Secs Lat 10 27 28.95 North ▼	Gain 0.00 dBd Height AGL 1.5 📩 mtr		
Long 66 ÷ 49 ÷ 42.38 West •	Feeder		
UTM Coordintes Easting Northing	1.5 • mtr UR-67 •		
Zone 19P 737707 1156880	Feeder Losses 0.229 dB		
Output	Diplexer/Circulator Losses 0 📩 dB		
Power 0 🔹 mW 🗸	No. of Connectors		
ERP 500.0 mW	Connector Losses 0.000 dB		
Input	PreAmp		
Threshold -70 dBm	Gain 0 🕂 dB		
Impedance 50 💌 ohms	Noise Factor		

Ilustración 58. Introducción de los datos a 5.2km de Rx con -70dBm (Fuente: Elaboración propia)

Resultados

Ilustración 59. Resumen de Señal recibida con Rx a 5.2km de El Volcan y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata S	ettings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 25' 0.26" North	Latitude 10 10° 27' 28.95" North
Longitude 66° 51' 4.06" West	Longitude 66° 49' 42.38" West
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr
Bearing 28.781 deg	Bearing 208.781 deg
Frequency 458 • MHz C GHz	Signal Volts 434.88 µV
	Signal dB
Reliability Results	CFM _14,222 dB
Multipath Prob of Outage 0.00000000	
Multipath Outage 0 SES/yr	Path
Path Beliability (%)	Distance 5.220 km 3.244 Miles
· • • • • • • • • • • • • • • • • • • •	FSL -138.891 dB
Bearing	

Ilustración 60. Resumen de Señal recibida con Rx a 5.2km de El Volcan y -70dBm (Fuente: Elaboración propia)

V.1.1.VIII Ruta 3

Para la Ruta 3 tenemos una distancia de 5 km aproximadamente del transmisor en la tabla 22 y en la ilustración 62 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm teniendo como resultados los visualizados en las ilustraciones 63 y 64. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 23 y en la ilustración 65, los resultados de estas mediciones los puede observar en las ilustraciones 66 y 67.

Distancia al Receptor	9.43 km
Latitud	10°29'06.60''N
Longitud	66°47'50,91''W
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 22. Datos Rx a 9.4km y -70dBm de El Volcan
(Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata S	ettings Notes
Co-Ordinates	Antenna 1 💌 × 1/2 Wave Dipole 💌
Lat 10 + 29 + 06.60 North -	Gain 0.00 dBd Height AGL 1.5 📩 m
Long 66 + 47 + 50.91 West -	Feeder
UTM Coordintes Easting Northing	1.5 ÷ mtr UR-67 •
Zone 19P //410// 1100900	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 📩 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 🕂 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 61. Introducción de los datos a 9.4km de Rx con -70dBm (Fuente: Elaboración propia)

Resultados

Ilustración 62. Resumen de Señal recibida con Rx a 9.4km de El Volcan y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Se	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10* 25' 0.26'' North	Latitude 10/10* 29' 06.60'' North
Longitude 66° 51' 4.06'' West	Longitude 66* 47' 50.91'' West
Height ASL 0 🕂 mtr	Height ASL 0 🕂 mtr
Bearing 38.099 deg	Bearing 218.099 deg
Frequency 458 • MHz C GHz	Signal Volts 157.70 µV
	Signal dB dBm
Reliability Results Multipath Prob of Outage 0.00000000	CFM 23.033 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%) 100.00000	FSL -147.701 dB
Bearing	,
Grid C Magnetic	

Ilustración 63. Resumen de Señal recibida con Rx a 9.4km de El Volcan y -70dBm (Fuente: Elaboración propia)

Distancia al Receptor	9.6 km
Latitud	10°29'06.60''N
Longitud	66°47'50,91''W
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 23. Datos Rx a 9.4km y -100dBm de El Volcan (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ittings Notes
Co-Ordinates	Antenna 1 • × 1/2 Wave Dipole •
Deg Min Secs Lat 10 29 06.60 North ▼	Gain 0.00 dBd Height AGL 10 📩 mtr
Long 66 + 47 + 50.91 West -	Feeder
UTM Coordintes Easting Northing	10 🕂 mtr UR-67 💌
Zone 19P 741077 1159905	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 • mW •	No. of Connectors 2
ERP 500.0 mW	Connector Losses 0.023 dB
	PreAmp
Threshold -100 dBm	Gain 0 dB
Impedance 50 - ohms	Noise Factor

Ilustración 64. Introducción de los datos a 9.4km de El Volcan con -100dBm en el Rx (Fuente: Elaboración propia)

Resultados

Ilustración 65. Resumen de Señal recibida con Rx a 9.4km de El Volcan y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	attings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 25' 0.26" North	Latitude 10(10° 29' 06.60'' North
Longitude 66° 51' 4.06'' West	Longitude 66° 47' 50.91'' West
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr
Bearing 38.099 deg	Bearing 218.099 deg
Frequency 458 • MHz C GHz	Signal Volts 370.76 µV
	Signal dB 85.6 dBm
Multipath Prob of Outage 0.00000000	CFM 14.392 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Uistance 9.609 km 5.972 Miles
Bearing	ab ab
 Grid Magnetic 	

Ilustración 66. Resumen de Señal recibida con Rx a 9.4km de El Volcan y -100dBm (Fuente: Elaboración propia)

En la ilustración 68 se pueden observar la distribución geográfica de todas las rutas, donde la de menor distancia corresponde la de 2km le sigue la de 5 km y la más larga es la de 10 km aproximadamente.

Ilustración 67. Visión final de las rutas desde El Volcan (Fuente: Elaboración propia)

V.1.4. EL Cuño

Para la antena ubicada en el volcán se pueden observar en la tabla 24 y en la figura 69 los datos de transmisión utilizados para la medición.

Antena	El Cuño
Latitud	10°30′58.59″N
Longitud	66°48′52.70′′O
Potencia de Salida	333W
Altura de la antena	60 m
Feeder	60m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 24. Datos del Transmisor El Cuño
(Fuente: Elaboración propia)

Els Madel Mars Hale	
File Model View Help	
] 🗋 🚔 📕 Σ 📁 🎒 💡	
Overview Transmitter Receiver Yokomura/Hata	Settings Notes
Co-Ordinates	Antenna
	1 • × 1/2 Wave Dipole •
Deg Min Secs Lat 10 + 30 + 58.59 North ▼	Gain 0.00 dBd Height AGL 60 📩 mtr
Long 66 + 48 + 52.70 West -	Feeder
UTM Coordintes Easting Northing	60 ÷ mtr UR-67 v
Zone 19P 739174 1163334	Feeder Losses 9.140 dB
Power Output	Diplexer/Circulator Losses 0 + dB
Power 333 🐳 W 💌	No. of Connectors
ERP 40.4 W	Connector Losses 0.023 dB
Signal: 951.63µV -77.4dBm Model: Yokomur	a/Hata 14-02-2013

Ilustración 68. Introducción de datos en el transmisor El Cuño (Fuente: Elaboración propia)

V.1.1.I Ruta 1

Para la Ruta 1 tenemos una distancia de 2 km aproximadamente del transmisor en la tabla 25 y en la ilustración 70 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm, teniendo como resultados los visualizados en las ilustraciones 71

y 72. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 26 y en la ilustración 73, los resultados de estas mediciones los puede observar en las ilustraciones 74 y 75.

Distancia al Receptor	1.7 km
Latitud	10°30′4.04″′N
Longitud	66°49'10.18''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 25. Datos Rx a 1.7km y -70dBm de El Cuño
(Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes

Co-Ordinates	Antenna
	1 ▼ × 1/2 Wave Dipole ▼
Deg Min Secs	Gain 0.00 dBd Height AGL 1.5 📩 mtr
Long 66 + 49 + 10.18 West -	Feeder
UTM Coordintes Easting Northing	1.5 • mtr UR-67 •
Zone 19P 738654 1161653	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 🗧 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 📩 dB
Impedance 50 - ohms	Noise Factor

Ilustración 69. Introducción de los datos a 1.7km de El Cuño con Rx de -70dBm (Fuente: Elaboración propia)

Resultado

Ilustración 70. Resumen de Señal recibida con Rx a1.7km de El Cuño y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ittings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 30' 58.59" North	Latitude 10/10* 30' 4.04" North
Longitude 66° 48' 52.70" West	Longitude 66* 49' 10.18'' West
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr
Bearing 197.768 deg	Bearing 17.768 deg
Frequency 458 @ MHz C GHz	Signal Volts 2.63 mV
	Signal dB 468.6 dBm
Heliability Hesults Multipath Prob of Outage 0.00000000	CFM 1.425 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%) 100.00000	FSL -123.244 dB
Bearing	,
Grid C Magnetic	

Ilustración 71. Resumen de Señal recibida con Rx a 1.7km de El Cuño y -70dBm (Fuente: Elaboración propia)

Distancia al Receptor	1.7 km
Latitud	10°30′4.04′′N
Longitud	66°49'10.18''O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 26. Datos Rx a 1.7km y -100dBm de El Cuño (Fuente: Elaboración propia)

Co-Ordinates	Antenna 1 V X 1/2 Wave Dipole V
Deg Min Secs Lat 10 → 30 → 4.04 North ▼	Gain 0.00 dBd Height AGL 10 + mtr
Long 66 + 49 + 10.18 West -	Feeder
UTM Coordintes Easting Northing	10 🔹 mtr UR-67 💌
Zone 19P 738654 1161653	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 • mW •	No. of Connectors
ERP 500.0 mW	Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 🗧 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 72. Introducción de los datos a 1.7km de El Cuño con Rx de -100dBm (Fuente: Elaboración propia)

Ilustración 73. Resumen de Señal recibida con Rx a1.7km de El Cuño y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Settings Notes				
Transmitter	Receiver			
Location	Location			
Latitude 10° 30' 58.59" North	Latitude 10° 30' 4.04" North			
Longitude 66° 48' 52.70'' West	Longitude 66* 49' 10.18'' West			
Height ASL 0 • mtr	Height ASL 0 🕂 mtr			
Bearing 197.768 deg	Bearing 17.768 deg			
Frequency 458 • MHz C GHz	Signal Volts 7.23 mV			
	Signal dB 59.8 dBm			
Reliability Results	CFM 40.191 dB			
Multipath Prob of Outage 0.00000000				
Multipath Outage 0 SES/yr	Path			
Path Baliability (%) 100.00000	Distance 1.767 km 1.098 Miles			
	FSL -104.324 dB			
Bearing				
Grid C Magnetic				

Ilustración 74. Resumen de Señal recibida con Rx a1.7km de El Cuño y -100dBm (Fuente: Elaboración propia)

V.1.1.II Ruta 2

Para la Ruta 2 tenemos una distancia de 5 km aproximadamente del transmisor en la tabla 27 y en la ilustración 76 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm, teniendo como resultados los visualizados en las ilustraciones 77 y 78. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 28 y en la ilustración 79, los resultados de estas mediciones los puede observar en las ilustraciones 80 y 81.

Distancia al Receptor	5.014 km
Latitud	10°28′19.44′′N
Longitud	66°49'25.15''O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 27. Datos Rx a 1.7km y -70dBm de El Cuño (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Co-Ordinates Deg Min Secs Lat 10 28 19.44 North V	Antenna 1 • X 1/2 Wave Dipole • Gain 0.00 dBd Height AGL 1.5 • mtr
Long 66 + 49 + 25.15 West -	Feeder
UTM Coordintes Easting Northing Zone 19P 738654 1161653	1.5 mtr UR-67 Feeder Losses 0.223 dB
Output	Diplexer/Circulator Losses
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 📩 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 75. Introducción de los datos a 5km de El Cuño con Rx de -70dBm (Fuente: Elaboración propia)

Resultados

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	55.2	dBm	Free Space Loss	138.317	dB	Receiver Threshold	-70	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	9.140	dB	Ground Losses	0.000	dB	Feeder Loss	0.000	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.000	dB
			User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	46.061	dBm	Total Path Loss	138.317	dB	Receiver Gain	0.000	dBm
-Dessived Signal								
Received Signal								
Input Signal = (Ra	diated Pov	wer – Tota	al Path Loss 🕂 Rece	iver Gain)	=	-92.256 dBm		
Fade Margin = Ing	out Signal	 Receive 	er Threshold)		=	-22.256 dB		

Ilustración 76. Resumen de Señal recibida con Rx a 5km de El Cuño y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Settings Notes				
Transmitter	Receiver			
Location	Location			
Latitude 10° 30' 58.59" North	Latitude 10* 28' 19.44'' North			
Longitude 66° 48' 52.70'' West	Longitude 66° 49' 25.15" West			
Height ASL 0 📩 mtr	Height ASL 0 📩 mtr			
Bearing 191.524 deg	Bearing 11.524 deg			
Frequency 458 • MHz C GHz	Signal Volts 172.46 µV			
	Signal dB 92.3 dBm			
Reliability Results	CFM .22.256 dB			
Multipath Prob of Uutage U.00000000				
Multipath Outage 0 SES/yr	Path			
Path Reliability (%)	Distance 5.014 km 3.116 Miles			
	FSL -138.317 dB			
Bearing				
 Grid Magnetic 				

Distancia al Receptor	5.01 km
Latitud	10°28'19.44''N
	66°49'25.15''W
Longitud	
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 28. Datos Rx a 5km y -100dBm de El Cuño (Fuente: Elaboración propia)

Overview | Transmitter Receiver | Yokomura/Hata | Settings | Notes |

Co-Ordinates	Antenna 1 • × 1/2 Wave Dipole •
Deg Min Secs Lat 10 - 28 - 19.44 North ▼	Gain 0.00 dBd Height AGL 10 📩 mtr
Long 66 + 49 + 25.15 West +	Feeder
UTM Coordintes Easting Northing	10 • mtr UR-67 •
Zone 19P 738220 1158435	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 📩 mW 🗸	No. of Connectors
ERP 500.0 mW	Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 📩 dB
Impedance 50 v ohms	Noise Factor 0 📩 dB

Ilustración 78.Introducción de los datos a 5km de El Cuño con Rx de -100dBm (Fuente: Elaboración propia)

Resultados

Transmitter Output			Path Losses/Gains			Receiver Input		
Power Output	55.2	dBm	Free Space Loss	129.565	dB	Receiver Threshold	-100	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB	Antenna Gain	0.00	dB
Feeder Loss	0.305	dB	Ground Losses	0.000	dB	Feeder Loss	1.523	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB	Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB	Connector Loss	0.023	dB
			User Defined Loss	0	dB	PreAmp Gain	0	dB
			Height Gain	0.000	dB	PreAmp Noise Factor	0	dB
Radiated Power	54.897	dBm	Total Path Loss	129.565	dB	Receiver Gain	-1.546	dBm
Dessived Cinnel								
Received signal						TO DI A JDw		
Input Signal = (Ra	diated Pov	wer – Tota	I Path Loss 🕂 Recei	ver Gain)	=	-76.214 dBm		
Fade Margin = Inj	out Signal	 Receive 	r Threshold)		=	23.786 dB		

Ilustración 79. Resumen de Señal recibida con Rx a 5km de El Cuño y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Set	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 30' 58.59" North	Latitude 10/10° 28' 19.44" North
Longitude 66° 48' 52.70'' West	Longitude 66° 49' 25.15" West
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr
Bearing 191.524 deg	Bearing 11.524 deg
Frequency 458 © MHz C GHz	Signal Volts 1.09 mV
	Signal dB .76.2 dBm
Heliability Hesults Multipath Prob of Outage 0.00000000	CFM 23.786 dB
Multipath Outage 0 SES/yr	Path
Path Reliability (%) 100.00000	FSI 129.565 JD
Bearing	
 Grid C Magnetic 	

Ilustración 80. Resumen de Señal recibida con Rx a 5km de El Cuño y -100dBm (Fuente: Elaboración propia)

V.1.1.III Ruta 3

Para la Ruta 3 tenemos una distancia de 10 km aproximadamente del transmisor en la tabla 29 y en la ilustración 82 se pueden observar los datos que se utilizaron para realizar los cálculos con -70 dBm, teniendo como resultados los visualizados en las ilustraciones 83 y 84. Seguidamente se procedió a realizar las mediciones con -100 dBm donde los valores utilizados para esta medición se encuentran en la tabla 30 y en la ilustración 85, los resultados de estas mediciones los puede observar en las ilustraciones 86 y 87.

Distancia al Receptor	9.06 km
Latitud	10°27'11.12"N
Longitud	66°45'43.55"O
Input	-70dBm
Altura en el Rx	1.5 m
Feeder	1.5 m
Numero de Conectores	0
Cable Coaxial	R-67

Tabla 29. Datos Rx a 9km y -70dBm de El Cuño
(Fuente: Elaboración propia)

Dverview Transmitter Receiver Yokomura/Hata S	ettings Notes
Co-Ordinates	Antenna 1 • × 1/2 Wave Dipole •
Deg Min Secs Lat 10 27 11.12 North •	Gain 0.00 dBd Height AGL 1.5 📩 mtr
Long 66 + 45 + 43.55 West -	Feeder
UTM Coordintes Easting Northing	1.5 🕂 mtr UR-67 🗸
Zone 19P 744976 1156383	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 dB
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 dB
Impedance 50 💌 ohms	Noise Factor 0 📩 dB

Ilustración 81. Introducción de los datos a 9km de El Cuño con Rx de -70dBm (Fuente: Elaboración propia)

Resultados

Ilustración 82. Resumen de Señal recibida con Rx a 9km de El Cuño y -70dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Vokomura/Hata Se	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 30' 58.59" North	Latitude 10/10* 27' 11.12" North
Longitude 66* 48' 52.70'' West	Longitude 66° 45' 43.55'' West
Height ASL 0 📩 mtr	Height ASL 0 🕂 mtr
Bearing 39.745 deg	Bearing 219.745 deg
Frequency 458 © MHz C GHz	Signal Volts 173.38 µV
	Signal dB
Reliability Results	CFM 22,210 dB
Multipath Prob of Outage 0.00000000	
Multipath Outage 0 SES/yr	Path
Path Reliability (%)	Distance 9.076 km 5.641 Miles
	FSL -146.878 dB
Bearing	
 Grid C Magnetic 	

Ilustración 83. Resumen de Señal recibida con Rx a 9km de El Cuño y -70dBm (Fuente: Elaboración propia)

Distancia al Receptor	9.06 km
Latitud	10°27'11.12''N
Longitud	66°45'43.55"O
Input	-100dBm
Altura en el Rx	10 m
Feeder	10 m
Numero de Conectores	2
Cable Coaxial	R-67

Tabla 30. Datos Rx a 9km y -100dBm de El Cuño
(Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes
Co-Ordinates	Antenna
Deg Min Secs Lat 10 27 11.12 North ▼ 	Gain 0.00 dBd Height AGL 10 📩 mtr
UTM Coordintes Easting Northing	Feeder
Zone 19P 738220 1158435	Feeder Losses 1.523 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.023 dB
Input	PreAmp
Threshold -100 dBm	Gain 0 📩 dB
Impedance 50 💌 ohms	Noise Factor

Ilustración 84. Introducción de los datos a 9km de El Cuño con Rx de -100dBm (Fuente: Elaboración propia)

Resultados

Ilustración 85. Resumen de Señal recibida con Rx a 9km de El Cuño y -100dBm (Fuente: Elaboración propia)

Overview Transmitter Receiver Yokomura/Hata Se	ttings Notes
Transmitter	Receiver
Location	Location
Latitude 10° 30' 58.59" North	Latitude 10/10* 27' 11.12" North
Longitude 66° 48' 52.70'' West	Longitude 66° 45' 43.55" West
Height ASL 0 ntr	Height ASL 0 🕂 mtr
Bearing 39.745 deg	Bearing 219.745 deg
Frequency 458 • MHz C GHz	Signal Volts 407.63 µV
	Signal dB 84.8 dBm
Reliability Results	
Multipath Prob of Outage 0.00000000	CFM 10.216 dB
Multipath Outage 0 SES/yr	Path
D-46 D-5-630 (%)	Distance 9.076 km 5.641 Miles
	FSL -138.135 dB
Bearing	
Grid C Magnetic	

Ilustración 86. Resumen de Señal recibida con Rx a 9km de El Cuño y -70dBm (Fuente: Elaboración propia)

En la ilustración 88 se pueden observar la distribución geográfica de todas las rutas, donde la de menor distancia corresponde la de 2km le sigue la de 5 km y la más larga es la de 10 km aproximadamente.

Ilustración 87. Visión final de las rutas desde El Cuño (Fuente: Elaboración propia)

Para este simulador se tuvo que emplear entre dos y tres rutas para poder observar cómo se comportaba la señal en los trayectos y así poder crear un patrón en tres diferentes distancias, desde las antenas y por impedimento del modelo, no se pudo llegar más allá de un radio de 10 Km cosa que limita el estudio de dispersión de la señal ya que Caracas posee un radio más amplio (aprox 30km). Dentro de las pruebas se pudo observar que en las regiones de El Cuño Ruta 1 a -70dBm, El Cuño Ruta2 a -70dBm, Caricuao Ruta 1 -70dBm y El Volcan Ruta 1 y 2 a -100 dBm la señal de recepción se encontraba por debajo del umbral estudiado lo que genera que la señal no llegue en estos puntos.

V.2. Simulaciones con Cloud RF

Consideraciones

- El sistema usa huttle Radar Topography Mission, version 2, data de la NASA
- Se usa la siguiente regla arcoíris Ilustración 89 con escala de 0dBm a 120dBm para determinar la potencia de llegada en los diferentes puntos

Ilustración 88. Regla Arco-iris utilizada para medición en Cloud RF (Fuente: Cloud RF, 2010)

Esta regla nos va a mostrar en la región estudiada como se dispersa la señal y qué potencia llega en determinadas zonas según las configuraciones realizadas en la tabla de datos, esto para tener una perspectiva visual del alcance de potencia del estudio.

• La distribución de edificios se realiza colocando un máximo de 50 edificios con alturas comprendidas entre 12m y 100m de altura tal y como se expresa en la ilustración 90.

Ilustración 89. Distribución de edificios utilizada para medición con Cloud Rf (Fuente: Cloud RF, 2010)

• Se utiliza patrón de antena de la ilustración 91 para los transmisores.

Ilustración 90. Antena utilizada para realizar las mediciones con Cloud RF. (Fuente: Cloud RF, 2010)

V.2.1. Para 520 MHz con 2m de altura en el Rx y umbral de -70 dBm

Para el estudio de 520MHz con 2m de altura en el Rx y -70dBm se tomaron como referencia las antenas de Mecedores, El Cuño, El Volcan y Caricuao.

V.1.1.IV Antena Mecedores

Para el estudio de la antena Mecedores se utilizaron los parámetros que se muestran en la tabla 31 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 92.

Antena Tx	Mecedores
Frec Tx	520MHz
Potencia ERP	1000W
Altura de Antena	96m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	2m
Umbral de Rx	-70dBm

Tabla 31. Parámetros utilizados para Cálculos con CLoud RF Antena Mecedores 2m Rx y -70dBm (Fuente: Elaboración Propia)

Ilustración 91. Distribución de Alcance de la antena Mecedores con 2m en el RX y -70dBm (Fuente: Elaboración Propia)

V.1.1.V Antena El Cuño

Para el estudio de la antena el Cuño se utilizaron los parámetros que se muestran en la tabla 32 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 93.

Antena Tx	El Cuño
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	2m
Umbral de Rx	-70dBm

Tabla 32. Parámetros utilizados para Cálculos con CLoud RF Antena El Cuño 2m Rx y -70dBm (Fuente: Elaboración Propia)

Ilustración 92. Distribución de Alcance de la antena El Cuño con 2m en el RX y -70dBm (Fuente: Elaboración Propia)

V.1.1.VI Antena Mecedores y El Cuño

Podemos observar en la ilustración 94 como se presenta la dispersión de la señal con las antenas de Mecedores y El Cuño juntas.

Ilustración 93. Distribución de Alcance de la antena El Cuño y Mecedores con 2m en el RX y -70dBm (Fuente: Elaboración Propia)

V.1.1.VII Antena El Volcan

Para el estudio de la antena el Cuño se utilizaron los parámetros que se muestran en la tabla 33 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 95.

Antena Tx	El Volcan
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 91°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	2m
Umbral de Rx	-70dBm

Tabla 33. Parámetros utilizados para Cálculos con CLoud RF Antena El Volcan 2m Rx y -70dBm (Fuente: Elaboración Propia)

Ilustración 94. Distribución de Alcance de la antena El Volcan con 2m en el RX y -70dBm (Fuente: Elaboración Propia)

V.1.1.VIII Antenas El volcán, Mecedores y el Cuño

Podemos observar en la ilustración 96 como se presenta la dispersión de la señal con las antenas de Mecedores, El Cuño y el volcán juntas, donde podemos visualizar cómo se comportan las tres junta y así poder determinar dependiendo de la zona que se quiera abarcar de cual antena podemos prescindir.

Ilustración 95. Distribución de Alcance de las tres antenas con 2m en el RX y -70dBm (Fuente: Elaboración Propia)

V.1.1.IX Antena Caricuao

La antena Caricuao por tener al Ávila de por medio se estudió por separado con los parámetros que tenemos en la Tabla 34 y teniendo como resultado lo reflejado en la ilustración 97.

Antena Tx	Caricuao
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	45m
Umbral de Rx	-100dBm

Tabla 34. Parámetros utilizados para Cálculos con CLoud RF Antena Caricuao 45m Rx y -100dBm (Fuente: Elaboración Propia)

Ilustración 96. Distribución de Alcance de las tres antenas con 45m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2. Para 520 MHz con 45m altura (edificio 15 pisos) en el Receptor con umbral de -100dBm

Para el estudio de 520MHz con 45m de altura en el Rx y -100dBm se tomaron como referencia las antenas de Mecedores, El Cuño, El Volcan y Caricuao.

V.2.2.1 Antena Mecedores

Para el estudio de la antena Mecedores se utilizaron los parámetros que se muestran en la tabla 35 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 98.

(Fuence, Elaboración Fropia)	
Antena Tx	Mecedores
Frec Tx	520MHz
Potencia ERP	1000W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	40m
Umbral de Rx(-)	100dBm

Tabla 35. Parámetros utilizados para Cálculos con CLoud RF Antena Mecedores 40m en el Rx y -100dBm (Fuente: Elaboración Propia)

Ilustración 97. Distribución de Alcance de la antena Mecedores con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.2 Antena El Cuño

Para el estudio de la antena El Cuño se utilizaron los parámetros que se muestran en la tabla 36 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 99.

Antena Tx	El Cuño
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	40m
Umbral de Rx(-)	100dBm

Tabla 36. Parámetros utilizados para Cálculos con CLoud RF Antena El Cuño 40m en el Rx y -100dBm (Fuente: Elaboración Propia)

Ilustración 98. Distribución de Alcance de la antenaEl Cuño con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.3 Mecedores y El Cuño

Podemos observar en la ilustración 102 como se presenta la dispersión de la señal con las antenas de Mecedores y El Cuño juntas.

Ilustración 99. Distribución de Alcance de las antenas El Cuño y Mecedores con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.4 Antena El Volcán

Para el estudio de la antena El Volcán se utilizaron los parámetros que se muestran en la tabla 37 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 101.

Antena Tx	El Volcan
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 91°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	40m
Umbral de Rx(-)	100dBm

Tabla 37.Parámetros utilizados para Cálculos con CLoud RF Antena El Volcan 40m en el Rx y -100dBm (Fuente: Elaboración Propia)

Ilustración 100. Distribución de Alcance de la antena El Volcan con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.5 El volcán, Mecedores y EL Cuño

Podemos observar en la ilustración 102 como se presenta la dispersión de la señal con las antenas de El Volcán, Mecedores y El Cuño juntas.

Ilustración 101. Distribución de Alcance de las antenas Mecedores, El Cuño y El Volcan con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.6 Antena Caricuao

Para el estudio de la antena de Caricuao se utilizaron los parámetros que se muestran en la tabla 38 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 103.

Antena Tx	Caricuao
Frec Tx	520MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	40m
Umbral de Rx(-)	100dBm

Tabla 38. Parámetros utilizados para Cálculos con CLoud RF Antena Caricuao 40m en el Rx y -100dBm (Fuente: Elaboración Propia)

Ilustración 102. Distribución de Alcance de la antena Caricuao con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.7 Antenas Caricuao, Mecedores, El Cuño, EL Volcán

Podemos observar en la ilustración 104 como se presenta la dispersión de la señal con todas las antenas en estudio.

Ilustración 103. Distribución de Alcance de las Cuatro antenas con 40m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.1. Para 525 MHz con 45m altura (edificio 15 pisos) en el Receptor con umbral de -100dBm

V.2.2.8 Antena Mecedores

Para el estudio de la antena de Mecedores con 525MHz y -100dBm se utilizaron los parámetros que se muestran en la tabla 39 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 105.

(Fuente: Elaboración Propia)	
Antena Tx	Mecedores
Frec Tx	525MHz
Potencia ERP	1000W
Altura de Antena	96m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	40m
Umbral de Rx	-100dBm

Tabla 39. Parámetros utilizados para Cálculos con CLoud RF Antena Mecedores 45m en el Rx y 100dBm

Ilustración 104. Distribución de Alcance de la antena Mecedores con 45m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.9 Antena Caricuao

Para el estudio de la antena de Caricuao con 525MHz y -100dBm se utilizaron los parámetros que se muestran en la tabla 40 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 106.

Antena Tx	Caricuao
Frec Tx	525MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	45m
Umbral de Rx	-100dBm

Tabla 40. Parámetros utilizados para Cálculos con CLoud RF Antena Caricuao 45m en el Rx y-100dBm (Fuente: Elaboración Propia)

Ilustración 105. Distribución de Alcance de la antena Caricuao con 45m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.10 Antena Mecedores y Caricuao

En la ilustración 107 se puede observar la distribución que ofrecen las antenas de Mecedores y Caricuao juntas.

Ilustración 106. Distribución de Alcance de la antena Mecedores y Caricuao con 45m en el RX y -100dBm (Fuente: Elaboración Propia)
V.2.2.11 Antena El Volcán

Para el estudio de la antena de El Volcán con 525MHz y -100dBm se utilizaron los parámetros que se muestran en la tabla 41 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 108.

(Fuchic, Elaboration Fropia)		
Antena Tx	EL Volcan	
Frec Tx	525MHz	
Potencia ERP	300W	
Altura de Antena	60m	
Radio de Resolución	20km	
Tipo Antena	7413271768XCOP45V3	
Polarización	H 91°	
Dielectrico Terrestre	5	
Radio Climatico	Ecuatorial	
Altura del Rx	40m	
Umbral de Rx(-)	-100dBm	

Tabla 41. Parámetros utilizados para Cálculos con CLoud RF Antena El Volcan 45m en el Rx y -100dBm (Functo: Eleboración Propia)

Ilustración 107. Distribución de Alcance de la antena El Volcan con 45m en el RX y -100dBm (Fuente: Elaboración Propia)

V.2.2.12 Antena El Cuño

Para el estudio de la antena de El Cuño con 525MHz y -100dBm se utilizaron los parámetros que se muestran en la tabla 42 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 109.

(Fuence: Elaboración Propia)		
Antena Tx	El Cuño	
Frec Tx	525MHz	
Potencia ERP	300W	
Altura de Antena	60m	
Radio de Resolución	20km	
Tipo Antena	7413271768XCOP45V3	
Polarización	H 148°	
Dielectrico Terrestre	5	
Radio Climatico	Ecuatorial	
Altura del Rx	40m	
Umbral de Rx(-)	-100dBm	

Tabla 42. Parámetros utilizados para Cálculos con CLoud RF Antena El Cuño 45m en el Rx y -100dBm (Evente: Eleboración Propia)

Ilustración 108Distribución de Alcance de la antena Mecedores con 45m en el RX y -100dBm.

(Fuente: Elaboración Propia)

Caraca Digital Caraca Digital Caraca Digital Caraca Digital Digital Digital Caraca Digital
V.2.2.13 Mecedores, EL Cuño, El Volcan y Caricuao

Ilustración 109. Distribución de Alcance todas las antenas con 45m en el RX y -100dBm. (Fuente: Elaboración Propia)

V.2.2. Para 525 MHz con 2m de altura en el Receptor con umbral de -70dBm

V.2.2.14 Antena El Volcan

Para el estudio de la antena de El Volcán con 525MHz y -70dBm se utilizaron los parámetros que se muestran en la tabla 43 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 111.

Tabla 43. Parámetros utilizados para Cálculos con CLoud RF Antena El Volcan 2m en el Rx y -70dBm (Fuente: Elaboración Propia)

Antena Tx	El Volcan	
Frec Tx	525MHz	
Potencia ERP	300W	
Altura de Antena	60m	
Radio de Resolución	20km	
Tipo Antena	7413271768XCOP45V3	
Polarización	H 91°	
Dielectrico Terrestre	5	
Radio Climatico	Ecuatorial	
Altura del Rx	2m	
Umbral de Rx(-)	-70dBm	

Ilustración 110. Distribución de Alcance de la antena EL Volcán con 2m en el RX y -70dBm. (Fuente: Elaboración Propia)

V.2.2.15 Antena El Cuño

Para el estudio de la antena de El Cuño con 525MHz y -70dBm se utilizaron los parámetros que se muestran en la tabla 44 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 112.

/ oubiii		
Antena Tx	El Cuño	
Frec Tx	525MHz	
Potencia ERP	300W	
Altura de Antena	60m	
Radio de Resolución	20km	
Tipo Antena	7413271768XCOP45V3	
Polarización	H 148°	
Dielectrico Terrestre	5	
Radio Climatico	Ecuatorial	
Altura del Rx	2m	
Umbral de Rx(-)	-70dBm	

Tabla 44. Parámetros utilizados para Cálculos co	n CLoud RF A	Antena El (Cuño con 2	2m en e	l Rx y
-70dBm					

Ilustración 111.Distribución de Alcance de la antena EL Cuño con 2m en el RX y -70dBm. (Fuente: Elaboración Propia)

V.2.2.16 Antena Mecedores

Para el estudio de la antena de Mecedores con 525MHz y -70dBm se utilizaron los parámetros que se muestran en la tabla 45 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 113.

Antena Tx	Mecedores
Frec Tx	525MHz
Potencia ERP	1000W
Altura de Antena	96m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	2m
Umbral de Rx(-)	-70dBm

Tabla 45. Parámetros utilizados para Cálculos con CLoud RF Antena Mecedores con 2m en el Rx y -70dBm (Fuente: Elaboración Propia)

Ilustración 112. Distribución de Alcance de la antena Mecedores con 2m en el RX y -70dBm. (Fuente: Elaboración Propia)

V.2.2.17 Antena Caricuao

Para el estudio de la antena de Caricuao con 525MHz y -70dBm se utilizaron los parámetros que se muestran en la tabla 46 obteniendo un diagrama de dispersión de la señal como el que se encuentra en la ilustración 114.

Antena Tx	Caricuao
Frec Tx	525MHz
Potencia ERP	300W
Altura de Antena	60m
Radio de Resolución	20km
Tipo Antena	7413271768XCOP45V3
Polarización	H 148°
Dielectrico Terrestre	5
Radio Climatico	Ecuatorial
Altura del Rx	2m
Umbral de Rx(-)	-70dBm

Tabla 46 . Parámetros utilizados para Cálculos con CLoud RF Antena Caricuao con 2m en el Rx y -70dBm (Fuente: Elaboración Propia)

Ilustración 113. Distribución de Alcance de la antena Caricuao con 2m en el RX y -70dBm. (Fuente: Elaboración Propia)

En la ilustración 115 podemos observar la dispersión de la señal ofrecida por las cuatro antenas con una frecuencia de 525MHz y -70dBm de umbral de Rx.

Ilustración 114. Distribución de Alcance de las cuatro antenas con 2m en el RX y -70dBm. (Fuente: Elaboración Propia)

Como se pudo observar el alcance obtenido a -100dBm es mucho mejor que el obtenido con -70dBm, pero hay que recordar que esto es un rango de alcance en los distintos receptores que se podrán tener, por medio de estos resultados se puede garantizar que el terreno de cobertura se alcanzará para ambas bandas. En la Banda de 525MHz con un umbral de 70dBm, el alcance es mucho más amplio que en la banda de 520MHz quedando sin cubrir la zona norte-Oeste de fuerte Tiuna y la parte de las zonas aledañas a La Dolorita

V.3. Análisis de Precios de software

Software	Modelo Utilizado	Costo	Graficos
Radio Mobile	Longley Rice	Gratis	Descargable
	Okumura-Hata / Longley		
Path Calc	Rice	Gratis	No
Cloud RF	Longley Rice	20km Gratis	Google Earth/Propios
SoftWright	SoftWright Okumura -Hata		Propios
Path Loss	Okumura Hata-Cost231	2800\$-5800\$	Google Earth

Tabla 47. Tabla de comparación de costos de Software (Fuente:Elaboración Propia)

Para futuros estudios es importante tomar en cuenta que existen otros software que tienen mayor precisión, pero por motivos de costo no se utilizaron para este proyecto, pero su utilización no debería descartarse ya que ofrecen más datas gráficas que permiten observar con mejor detalle las zonas de cobertura donde se trabaja.

Capítulo VI. Conclusiones y Recomendaciones

De este trabajo y las pruebas realizadas se pudieron obtener las siguientes conclusiones:

No es recomendable el uso de Okumura –Hata para realizar estudios de dispersión y transmisión de señal sobre la ciudad de Caracas ya que dicho modelo no cumple con las condiciones urbanísticas y de longitud para estudiarla ya que, para usar este modelo la altura máxima de los receptores móviles no debe ser mayor a 10m y la longitud del cálculo no mayor a 10km, en caracas contamos con edificios de más de 45m de altura y el alcance para cubrir toda la ciudad debe ser de aproximadamente 35m

El modelo Okumura-Hata no explica en ningún momento como se calcularon las constantes que utiliza para su cálculo, por esto no es fiable usar los resultados que puede arrojar para otras ciudades diferentes de Tokio ya que no cuentan con la misma condición geográfica y climática.

En ninguna de las constantes del modelo Okumura-Hata se toma en cuenta la temperatura territorial y el tipo de superficie, es importante destacar que este modelo fue hecho en base a las condiciones geográficas y territoriales de Tokio, que posee un clima templado, distinto al clima ecuatorial que tenemos en Caracas, aunado a esto, la geografía de la ciudad es netamente montañosa por encontrarse la ciudad sumergida en un valle, esto es muy importante ya que la dispersión por obstáculo no es solamente por las edificaciones que pueden haber sino también por las montañas que puedan encontrarse entre el transmisor y el receptor.

En cuanto al modelo Longley Rice se adapta a la distribución territorial de Caracas junto con el tipo de clima, pero hay que considerar que los datos suministrados por el INAMEH no están completos y no coinciden fielmente con los que utiliza el Software RF Cloud para tomar sus mediciones ya que este toma en cuenta el Shuttle Radar Topography Mission, versión 2 de la NASA para sus cálculos atmosféricos. Al realizar cálculos Longley Rice es importante tener una data atmosférica actualizada y usar para los cálculos un software que permita modificar este patrón, porque si bien se encuentra dentro de un promedio la temperatura atmosférica cambia considerablemente aproximadamente cada 10 Años.

Usando el software RF Cloud se presentaron mejores resultados cuando se usaba un umbral de -100sBm lo cual indica que a medida que aumentamos el umbral se va a tener una mejor recepción en todo el territorio estudiado, esto para las dos bandas estudiadas 520MHz y525MHz.

Tomando en cuenta todos estos resultados se pueden considerar para futuras investigaciones los siguientes comentarios:

Es necesario actualizar las mediciones atmosféricas, presión, lluvia, temperatura, para ver si los resultados del promedio de estas coinciden con el tipo de clima asignado por la NASA.

Se puede observar que las antenas posicionadas actualmente no cubren en su totalidad la superficie terrestre de la gran Caracas, es necesario realizar un estudio territorial para asignar la mejor ubicación a la o las antenas que se necesiten para cubrir en su totalidad la región capitalina.

Es necesario tener en cuenta la ubicación en el rango de las frecuencias del canal 24 ya que esto puede causar confusiones para futuros estudios.

Es importante obtener toda la data de configuración de los sistemas para realizar un cálculo con mejor aproximación, datos como altura de la antena, frecuencia, configuración, patrón, sensibilidad del receptor, potencia de transmisión, entre otros.

Capítulo VII. Bibliografía

W. Tomasi, Sistemas de Comunicaciones Electrónicas, Mexico: Pearson1] Prentice-Hall, 2003.

CONATEL, PROVIDENCIA ADMINISTRATIVA N° 581, Caracas, 2005.

2]

31

R. N. Freire, «Sistemas de Transmisión por fibra óptica basados en Orthogonal Frequency-Division Multiplexing,» Universidad Politecnica de Cataluña, Barcelona,

España, 2010.

C. N. d. T. (CNTV), «Televisión Digital Terrestre. Informe,» Comisión Nacional 4] de Televisión, 2008.

Y. Castañeda, «La televisión digital en Venezuela. ¿Cuál sistema se adoptará?,»5] CONATEL, Caracas, Venezuela, 2009.

M. Cubero, La Televisión Digital. Fundamentos y Teorias, Barcelona, España:

6] Edit. Marcombo, 2009.

C. n. d. T. Colombia, «CNTV,» Comisión nacional de TV en Colombia, 2008. [En
7] línea]. Available: http://www.cntv.org.co/cntv_bop/tdt/documentos/tdt_colombia.pdf.
[Último acceso: 16 Diciembre 2012].

E. S. Hung, Transformaciones comunicativas en la era digital., Barranquilla,8] Colombia: Ed. UNINORTE, 2009.

J. R. Torres, Las Exigencias Del Eees en Las Líneas de Investigación de 9] Vanguardia, Madrid, España: Visión Libros, 2011.

H. Sakashita, *ISDB-T Receiver*, Manila, Filipinas: Digital Broadcasting Expert 10] Group, 2008.

C. Perez, Sistemas de Telecomunicación, Cantabria: Universidad de Cantabria, 11] 2007.

E. O. T. K. K. F. Y. Okumura, «Field strength and its variability in the VHF and

12] UHF land mobile radio service,» Rev. Elec. Commun. Lab., Tokio, Japón, 1968.

M. Hata, «"Empirical formula for propagation loss in land mobile radio 13] services", IEEE Transactions on Vehicular Technology,» IEEE, USA, 1980.

C. &. R. Cardama, Antenas, Barcelona España: Ediciones UPC, 2002.

14]

C. Pozo, *WIMAX: Banda Ancha móvil y comparación con HSDPA,* Chile: 15] Universidad Mayor de Chile, 2007.

R. L. Feeman, «Radio System Design for Telecommunications (1-100 GHz),» 16] John Wiley & Sons. Inc, 1987.

L. Mardones, «Simulación y medición de la propagación de la señal de 17] televisión digital terrestre ISDB-Tb,» Concepción, Chile, 2011.

D. Status, «DTV Status,» 29 Mayo 2012. [En línea]. Available: 18] http://es.dtvstatus.net/.

M. T. Leiva, Políticas Públicas y Televisión Digital: El Caso de la TDT en España y19] el Reno Unido, Madrid, España: Consejo Superior de Investigaciones Científicas, 2008.

H. FUSEDA, *Digital Broadcasting in Japan*, Japòn: Ministry of Internal Affairs 20] and Communications Japan, 2007.

C. Pantsios, La Plataforma de Broadcasting de TVEstándar NTSC RS-170-A,, 21] Caracas: UCAB-USB, 2012.

C. Pantsios, «La Plataforma de Broadcasting de TVEstándar NTSC RS-170-A,» 22] UCAB-USB, Caracas, 2012.

D. d. T. d. Venevisión, «Ditribución de Frecuencias de Canales de Televisión de 23] Venezuela,» Venevisión, Caracas, 2012.

J. Cartagena, «Redes HFC y sus vulnerabilidades,» Universidad Técnica 24] Federico Santa MAria, Santiago de Chile, 2010.

G. T. Diana Camacho, «Modelo de Predicción de Lee,» Instituto Politécnico 25] Nacional, México, 2007. D. d. T. Venevisión, Distribución de frecuencias de Canales de Televisión en 26] Venezuela, Caracas: Venevisión, 2012.

ANEXOS

ANEXO A

Manual para uso de Path Calc

- Debe descargar PathCalc Radio Planning Software de la página <u>http://www.radio-soft.co.uk/pathcalc1.html</u>
- 2. Una vez descargado debe ingresar a la aplicación por medio del Shorcut que instala

3. Al ingresar deberá seleccionar el modelo de propagación con el cual va a trabajar haciendo click en "Model" ubicado en la barra superior

<u>File Model View H</u> elp	
Point-to-Point	
Our Ibrahim	11-1-1 C-18 1 N-1 1
Hata (150-1500 MHz)	Hata Settings Notes
Tr Hata COST-231	Receiver
Vokomura/Hata	Location
Eali	NGR:
Egii	, , , , , , , , , , , , , , , , , , , ,
Friss	
Height ASL 0 mtr	Height ASL 0 🕂 mtr
Bearing 0 deg	Bearing 0 deg
Frequency 458 • MHz C G	GHz Signal Volts 0 mV
	Signal dB 0 dBm
Reliability Results	
Multipath Prob of Outage 0.000000000	
Multipath Outage 0 SES	/yr Path
	Distance 0 km 0.000 Miles
Path Reliability (%)	FSL D dB
Bearing	
● Grid C Magnetic	
Model: Yok	comura/Hata 14-02-2013

Ilustración 115. Elección de Modelo de Propagación en PathCalc (Fuente: elaboración Propia)

4. Una Vez Seleccionado el modelo se dirige a "Settings" haciendo click sobre la pantalla que lleva el mismo nombre. Aquí podrá seleccionar el sistema de coordenadas a utilizar así como el factor K de la tierra, que es un factor de ajuste entre los relevadores de la relación entre la impedancia de la línea y la de la tierra, el margen de confianza y el parámetro de cálculo

<u>F</u> ile <u>M</u> odel <u>V</u> iew <u>H</u> elp		
Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate System Co-Ordinate State Co-Ordinate State Co-O	Yokomura/Hata Settings Notes Earth Parameters Earth K Factor 1.33 Magnetic Offset 6 Deg Confidence Margin Margin 90.00% 0 dB	⊂alculation ເ⊂ dBm ⊂ dBW
₩GS 60 -		
	Model: Yokomura/Hata 14-02-2013	

Ilustración 116. Elección del Sistema de Coordenadas en PathCalc (Fuente: Elaboración Propia)

5. Dependiendo del Modelo Escogido debe dirigirse a la pestaña del modelo y completar las especificaciones faltantes, en el caso del modelo Okumura-Hata debe especificar la dimensión de la ciudad. Aquí podrá observar las fórmulas que utiliza el programa para realizar los cálculos con una explicación detallada de cada variable

<u>F</u> ile <u>M</u> odel <u>V</u> iew <u>H</u> elp		
🗅 🚔 🔚 🛛 Σ 📁 🎒 🤶		
Overview Transmitter Receiver Yokomura/Hata Settings Note:	s	
Prediction model: Yokomura/Hata		
This algorithm is based on Yokomura' graphical method and Hata's empirical formula, based on field trials conducted in Tokyo at frequencies in the range between 150 and 1500 MHz. The following equation was produced as the best fit for Tokyo Data. Lp = 69.55 + 25.16logf - 13.82log fit - A(tr) + (44.96.55log ht)logd dB where f lies in the range 150 - 1500 MHz ht lies in the range 30 - 300 metres d lies in the range 30 - 300 metres d lies in the range 1 - 20 km A(hr) is the correction factor for the mobile antenna height and is computed as follows. For a small or medium city A(hr) = (1.16gf - 0.7) hr - (1.56logf - 0.8) dB		
For a large city A(hr) = 8.29[log(1.54 hr)] 2 · 1.1 dB (f<= 200MHz) A(hr) = 3.2[log(11.75 hr)] 2 · 4.97 dB (f>= 400mhz)		
Signal: 952.68µV -77.4dBm Model: Yokomura/Hata 14-0	12-2013	

Ilustración 117. Configuración de la ciudad en PathCalc (Fuente: Elaboración Propia)

6. Posteriormente debe dirigirse a la pantalla "Transmitter" para colocar los datos del transmisor: posición geográfica, potencia, Altura de la antena y el tipo de antena, Feeder (Alimentador de la antena) aquí debe colocar la altura y la cantidad de conectores que tiene.

<u>File M</u> odel <u>V</u> iew <u>H</u> elp	
Σ 🚍 😭 Σ	
Overview Transmitter Receiver Vokomura/Hata S	ettings Notes
Co-Ordinates	Antenna 1 • X 1/2 Wave Dipole •
Deg Min Secs Lat 10 ÷ 30 ÷ 58.59 North ▼	Gain 0.00 dBd Height AGL 60 📩 mtr
Long 66 ÷ 48 ÷ 52.70 West •	Feeder
UTM Coordintes Easting Northing	60 • mtr UR-67 •
Zone 19P //39174 1163334	Feeder Losses 9.140 dB
Power Output	Diplexer/Circulator Losses 0 🕂 dB
Power 333 🗧 😾 💌	No. of Connectors 2
ERP 40.4 W	Connector Losses 0.023 dB
Signal: 951.63µV -77.4dBm Model: Yokomura/H	Hata 14-02-2013

Ilustración 118. Configuración del Transmisor en PathCalc (Fuente: Elaboración Propia)

Hay que tener en cuenta que dependiendo del sistema de coordenadas seleccionado anteriormente, se ingresarán los datos de la latitud y longitud,. Adicionalmente en la potencia uno puede seleccionar mW o W según sea el caso.

7. Después de haber configurado el Transmisor debe dirigirse a la pestana "Receiver" para configurar el receptor. Para este caso colocamos la ubicación geográfica del receptor, la potencia de entrada y de salida en mW o W según sea el caso, la altura de la antena y el tipo de antena, el feeder, la ganancia y el factor de ruido

Our in Transition Receiver Valuation (Unit	-112
Uverview Transmitter Treceiver Yokomura/Hata 5	ettings Notes
Co-Ordinates	Antenna
	1 ▼ × 1/2 Wave Dipole ▼
Deg Min Secs	Gain 0.00 dBd Height AGL 1.5 📩 mtr
Lat 10 - 30 - 4.04 North -	
Long 66 ÷ 49 ÷ 10.18 West •	Feeder
UTM Coordintes Easting Northing	1.5 mtr UB-67
Zone 19P 738654 1161653	
	Feeder Losses 0.229 dB
Output	Diplexer/Circulator Losses 0 + dB
Power 0 🔹 mW 💌	No. of Connectors
ERP 500.0 mW	Connector Losses 0.000 dB
Input	PreAmp
Threshold -70 dBm	Gain 0 🕂 dB
Impedance 50 v ohms	Noise Factor

Ilustración 119. Configuración del receptor en PathCalc (Fuente: Elaboración Propia)

8. Una Vez establecidos los parámetros debe pulsar el botón de calcular

<u>File M</u> odel <u>V</u> iew <u>H</u> elp						
🗅 🖻 🖬 💽 ≓ 🖨 📍						
Dverview Transmitter Receiver Yokomura/Hata Settings Notes						
Co-Ordinates	Antenna					
	1 ▼ X 1/2 Wave Dipole ▼					
Deg Min Secs Lat 10 ÷ 30 ÷ 58.59 North ▼	Gain 0.00 dBd Height AGL 60 📩 mtr					
Long 66 ÷ 48 ÷ 52.70 West •	Feeder					
UTM Coordintes Easting Northing	60 • mtr UR-67 •					
Zone 19P //391/4 1163334	Feeder Losses 9.140 dB					
Power Output	Diplexer/Circulator Losses 0 + dB					
Power 333 🕂 W 💌	No. of Connectors 2					
ERP 40.4 W	Connector Losses 0.023 dB					
Signal: 951.63µV -77.4dBm Model: Yokomura/H	lata 14-02-2013					

Ilustración 120. Calcular los datos en PathCalc (Fuente: Elaboración Propia)

 Una vez realizado el cálculo, el programa puede ver un resumen de este en Display Path Budget.

Eile Model View Help					
Overview Transmitte Display Path Budget A/Hata Settings Notes					
Deg Min Secs Lat 10	Antenna 1 • × 1/2 Wave Dipole • Gain 0.000 dBd Height AGL 60 ÷ mtr Feeder 60 ÷ mtr UR-67 •				
Zone 19P //39174 1163334	Feeder Losses 9.140 dB				
Power Output	Diplexer/Circulator Losses				
Power 333 • W •	No. of Connectors				
ERP 40.4 W	Connector Losses 0.023 dB				
Signal: 952.68µV -77.4dBm Model: Yokomura/H	lata 14-02-2013				

Ilustración 121. Despliegue del Display Path Budget (Fuente: Elaboración Propia)

Transmitter Output			Path Losses/Gains			[Receiver Input		
Power Output	55.2	dBm	Free Space Loss	123.244	dB		Receiver Threshold	-70	dBm
Antenna Gain	0.00	dB	Clutter Losses	0.0	dB		Antenna Gain	0.00	dB
Feeder Loss	9.140	dB	Ground Losses	0.000	dB		Feeder Loss	0.229	dB
Diplexer Loss	0	dB	Confidence Margin	0	dB		Diplexer Loss	0	dB
Connector Loss	0.023	dB	Rain fade Margin	0	dB		Connector Loss	0.000	dB
	,		User Defined Loss	0	dB		PreAmp Gain	0	dB
			Height Gain	0.000	dB		PreAmp Noise Factor	0	dB
Radiated Power	46.061	dBm	Total Path Loss	123.244	dB		Receiver Gain	-0.229	dBm
Received Signal	Received Signal								
Input Signal = (Ra	diated Pov	wer – Tota	al Path Loss 🕂 Recei	ver Gain)	=	- / /	dBm		
Fade Margin = Ing	Fade Margin = Input Signal – Receiver Threshold) = -7.411 dB								

Ilustración 122. Path Budget de Path Calc.

Este Budget muestra un resumen de la señal recibida junto con la potencia radiada por el transmisor y la ganancia recibida en el receptor

10. En la pestaña Overview tendrá un resumen de todos los datos calculados según los parámetros estipulados

⁽Fuente: Elaboración Propia)

Eile Model View Help				
Overview Transmitter Receiver Yokomura/Hata Se	ettings Notes			
Transmitter	Receiver			
Location	Location			
Latitude 10* 30' 58.59" North	Latitude 10° 30' 4.04" North			
Longitude 66° 48' 52.70'' West	Longitude 66° 49' 10.18'' West			
Height ASL 0 🕂 mtr	Height ASL 0 📩 mtr			
Bearing 197.768 deg	Bearing 17.768 deg			
Frequency 458 • MHz C GHz	Signal Volts 952.68 µV			
	Signal dB			
Reliability Results	CFM 7.411 dB			
Multipath Prob of Dutage 0.00000000				
Multipath Outage 0 SES/yr	Path Distance 1 767 km 1 098 Miles			
Path Reliability (%) 100.00000	FSL -123.244 dB			
Bearing				
Signal: 952.68µV -77.4dBm Model: Yokomura/H	lata 14-02-2013			

Ilustración 123. Overview de Path Calc (Fuente: Elaboración Propia)

ANEXO B

Frecuencia Canal 24

Se realizaron pruebas con el Decodificado DTV VT 7200E, las mediciones para verificar el rango de frecuencia de los canales que se utilizaron para la presente investigación se realizaron con el equipo Rohde and Schwarz FSH3-TV analizarer. Siguiendo las siguientes especificaciones:

Tabla 48. Especificaciones colocadas en el analizador de espectro para realizar las mediciones (Fuente: Elaboración Propia)

Span	20MHz
REF	79dBm
Resolución de Ancho	
de Banda	300KHz
Ancho de Banda	
Visual	100Hz

Ilustración 124. Decodificador de TV Digital utilizado para el análisis de Frecuencias (Fuente: Departamento de Transmisión de Venevisión)

Front-End (Tuner+Demodulator)				
Fracuancia da Entrada	UHF: 470MHz (CH14) a 806MHz(CH69)			
	VHF: 174MHz(CH7) a 216MHz(CH13)			
Ancho de Banda	5.6 MHz			
Nivel de Señal	-85dBm a -20dBm			
Señal	Compatible con el sistema de TV Brasilero ISDB-T			
Impedancia de Entrada y Salida	75 Ohms			
Conexión de entrada y salida	Conector F			
Unidad de Procesamiento				
Procesador	Sti 7105 (CPU 450MHz)			
Memoria RAM	256Mbytes			
Memoria Flash	144Mbutes			
De	codificación de Video			
Estándar	Rec. ITU-T H.264 (MPEG4-AVC)			
Perfil	<u>HP@L4.0</u>			
Formatos	480i e 1080i			
Frame Rate	25, 30, 50 y 60MHz			
Formato de Pantalla	4:3 o 16:9			
Frecuencia de Video	50 y 60HZ			

Tabla 49. Tabla d	e especificaciones té	cnicas del V	Г7200Е
(Fuente: Manual del	COnvertor Digital	Ferreste del	VT7200E)

En la Ilustración 114 podemos observar los canales 22 y 23 y sus portadoras de ISDB-T, se aprecia que la potencia se encuentra entre -70 dBm y -100dBm y que la distancia entre ambos canales es 5.6MHz, tal como corresponde a un canal ISDB-T

Ilustración 125. Muestra de la señal de los canales 22 y 23 con sus respectivas portadoras (Fuente: Departamento de Transmisión de Venevisión)

En la Ilustración 115, se puede observar la portadora del canal 24 ubicado entre 644 a 650MHz. En la guía de programación se identifican los canales activos como 22, 23 y 24 (y sus respectivos servicios como X.1, X.2, etc.), pero en la realidad las frecuencias no están juntas. Eso muestra que hay una falta de regulación y queda por parte del ente regulador CONATEL evaluar y definir como será la distribución de canales.

Ilustración 126. Muestra de Frecuencia del canal 24 (Fuente: Departamento de Transmisión de Venevisión)