DEDICATORIA

A mis padres, hermanos y abuelos, quienes de cerca o no tan cerca me dieron la fuerza y el apoyo necesario para llevar a cabo todas mis metas; y a pesar de algunos no poderlos verlos más, sé que estuvieron a mi lado durante todo este recorrido. GRACIAS a ellos, a mis amigos y a todas las personas que caminaron junto a mí, que no solamente me ayudaron a levantarme sino que además me enseñaron como. Espero nunca defraudarlos y que cada día se sientan más orgullosos de mí, así como también, de la persona en la que me he convertido y del profesional que en pocos meses seré.

Farah Da Costa.

A mis padres y hermanos, quienes han sido un gran ejemplo a seguir, mi fuente de estímulo para emprender nuevas metas día a día y quienes siempre me han brindado todo el apoyo necesario para la obtención de las mismas. Gracias a ellos, soy y seré mejor persona y profesional cada día.

Mariam Finol.

AGRADECIMIENTOS

Quizás una página no sea suficiente para nombrar a todas aquellas personas que estuvieron ahí bridándonos su apoyo, llenándonos de su conocimiento y herramientas para el desarrollo del presente Trabajo de Grado. Es muy probable que quizás alguien se sienta excluido pero, a esa persona queremos recordarle que formó parte de este rompecabezas, en el que ustedes colocaron las piezas y nosotras lo armamos, en el que ustedes nos corrigieron y verificaron que no nos equivocáramos, en el que todos fuimos un equipo, es por ello que aprovechamos esta oportunidad para darles las GRACIAS.

En primer lugar, le damos gracias a Dios por iluminar nuestros pasos y darnos la oportunidad de alcanzar nuestras metas.

A nuestras familias, quienes han sido nuestra fuente de emprendimiento y nos han dado todo el apoyo necesario para la obtención de nuestras metas.

A los profesionales que nos han ayudado con el desarrollo del presente Trabajo Especial de Grado: Ing. María Barreiro, Ing. Ciro Vivas, Ing. Guillermo Bonilla, Ing. José Manuel Velásquez, Ing. Mónica Zambrano, Ing. Arnaldo Gutiérrez, Ing. Mario Paparoni, Econ. Bianca Finol, Lic. Naghieri Vivas; y junto a ellos todas las personas que nos extendieron su mano, sus conocimientos y sus palabras de apoyo.

A nuestros AMIGOS, quienes nos han brindado su apoyo, compresión y tolerancia en la realización del presente trabajo, así como por haber estado con nosotras, tanto en los momentos de felicidad como de tristeza a lo largo de la carrera.

Al Ing. Eduardo López quien nos guió en la realización del presente Trabajo Especial de Grado y por la confianza que nos brindó en su ejecución.

GRACIAS A TODOS.

Farah Da Costa

Mariam Finol

ÍNDICE GENERAL

DEDICATORIA	I
AGRADECIMIENTOS	III
ÍNDICE GENERAL	
RESUMEN	
INTRODUCCIÓN	
CONCLUSIONES	
RECOMENDACIONES	
REFERENCIAS BIBLIOGRÁFICAS	81
CONTENIDO	
CAPÍTULO I TEMA DE INVESTIGACIÓN	3
I.1 PLANTEAMIENTO DEL PROBLEMA	5
I.2 OBJETIVOS	
I.2.1 OBJETIVO GENERAL	
I.2.2 OBJETIVOS ESPECÍFICOS	
I.3 ALCANCE Y LIMITACIONES	
I.3.1 ALCANCE	
I.3.2 LIMITACIONES	
CAPÍTULO II MARCO TEÓRICO	
II.1 ESTRUCTURAS SISMORRESISTENTES	
II.1.1 CARACTERÍSTICA DEL SISTEMA SISMORRESISTENT	
II.1.1.1 DUCTILIDADII.1.1.2 SOBRE RESISTENCIA:	
II.1.2 CRITERIOS ESTRUCTURALES SISMO RESISTENTES	
II.1.2.1 REQUISITOS DE CONFIGURACIÓN	
II.1.2.1.1 GEOMETRÍA DE LA ESTRUCTURA:	
II.1.2.1.1.1 ESTRUCTURA REGULAR:	
II.1.2.1.1.2 ESTRUCTURA IRREGULAR:	
II.1.2.1.2 ALTURA:	
II.1.2.1.3 DIMENSIONES DE LA PLANTA:	
II.1.2.1.4 COLUMNA FUERTE, VIGA DÉBIL:	13
II.1.2.2 ASPECTOS A CONSIDERAR PARA EL DISEÑO DE	1.2
EDIFICACIONES SISMORRESISTENTESII.1.2.3 PARÁMETROS DINÁMICOS PROPIOS DE LA	13
ESTRUCTURA	14
1 // 1 1 // 1 // 1 // 1 // 1 // 1	

II.1.2.4 PARÁMETROS DEL SISTEMA ESTRUCTURAL QUE	
CUANTIFICAN LAS RESPUESTAS A LAS SOLICITACIONES	
SÍSMICAS ⁵	
II.2 ACCIONES ACTUANTES	14
II.2.1 ACCIONES GRAVITACIONALES:	
II.2.1.1 ACCIONES PERMANENTES:	
II.2.1.2 ACCIONES VARIABLES DE USO:	14
II.2.2 ACCIONES SÍSMICAS:	15
II.2.3 OTRAS ACCIONES:	
II.2.4 COMBINACIONES DE SOLICITACIONES:	15
II.3 ANÁLISIS ESTRUCTURAL	15
II.3.1 ANÁLISIS SÍSMICO	15
II.3.2 ANÁLISIS ESTÁTICO	16
II.3.3 ANÁLISIS DINÁMICO	16
II.3.4 ANÁLISIS MODAL	
II.3.4.1 ANÁLISIS MODAL ESPECTRAL	17
II.3.5 ESPECTRO DE RESPUESTA	17
II.3.6 TIPOS DE ESPECTROS	
II.3.6.1 ESPECTRO DE RESPUESTA ELÁSTICA	20
II.3.6.2 ESPECTRO DE RESPUESTA INELÁSTICA	
II.3.6.3 ESPECTROS DE DISEÑO	
II.3.6.4 ANÁLISIS DINÁMICO POR ACELEROGRAMAS	22
II.3.6.5 MÉTODO APROXIMADO DE RAYLEIGH-RITZ	23
II.4 PROGRAMA ESTRUCTURAL PARA EL ANÁLISIS DE LOS	
MODELOS: ETABS	23
II.5 DESCRIPCIÓN DEL MÉTODO EN ESTUDIO: ANÁLISIS	
DINÁMICO CON DIAFRAGMA FLEXIBLE	24
II.6 VARIABLES DE ESTUDIO	
II.6.1 ACERO DE REFUERZO LONGITUDINAL	25
II.6.2 DERIVA	26
II.6.3 FUERZA CORTANTE BASAL	27
CAPÍTULO III MARCO METODOLÓGICO	29
III.1 DISEÑO DE LAS ESTRUCTURAS EN PLANTA:	
III.2 DISEÑO DE VIGAS Y COLUMNAS:	
III.2.1 CÁLCULO DEL PORCENTAJE DE ÁREA PORTANTE (W)	
III.2.2 ÁREA PORTANTE MÍNIMA POR CARGA VERTICAL	
III.2.3 ÁREA DE CADA COLUMNA	32
III.2.4 DIMENSIÓN ESTIMADA DE CADA COLUMNA	
III.3 ALTURA DE LAS ESTRUCTURAS:	
III.4 LOSAS DE PISO:	33
III.5 ESPECTRO DE DISEÑO:	
III.6 MANEJO DEL PROGRAMA ETABS:	
CAPÍTULO IV DESCRIPCIÓN DE MODELOS	47
IV.1 ESTRUCTURAS ALARGADAS	49
IV 1 1 DIMENSIONES 8 X 60 M	

IV.1.2 DIMENSIONES 10 X 60 M	50
IV.1.3 DIMENSIONES 12 X 60 M.	51
IV.2 ESTRUCTURAS CON HUECO CENTRAL	52
IV.2.1 PORCENTAJE DE ABERTURA FR = 0,36	52
IV.2.2 PORCENTAJE DE ABERTURA FR = 0,64	53
IV.3 ESTRUCTURAS CON HUECOS DISTRIBUIDOS	
IV.3.1 PORCENTAJE DE ABERTURA FR = 0,24	
IV.3.2 PORCENTAJE DE ABERTURA FR = 0,36	
IV.3.3 PORCENTAJE DE ABERTURA FR = 0,48	
IV.4 ESTRUCTURAS EN FORMA DE "U"	57
IV.4.1 PORCENTAJE DE ABERTURA FR = 0,32	
IV.4.2 PORCENTAJE DE ABERTURA FR = 0,48	
IV.4.3 PORCENTAJE DE ABERTURA FR = 0,64	
CAPÍTULO V RESULTADOS Y ANÁLISIS	61
V.1 RESULTADOS ESTRUCTURAS ALARGADAS	63
V.2 RESULTADOS ESTRUCTURAS CON HUECO CENTRAL	
V.3 RESULTADOS ESTRUCTURAS CON HUECOS DISTRIBUIDOS	
V.4 RESULTADOS ESTRUCTURAS EN FORMA DE "U"	
V.5 COMPARACIÓN DE PARÁMETROS POR ESTRUCTURA	
V.5.1 DERIVA	
V.5.2 CORTE BASAL	73
V.5.3 ACERO LONGITUDINAL EN COLUMNAS	
ANEXOS	83
ÍNDICE DE ANEXOS	85
FIGURAS	
FIG. N° 1: DIFERENCIA ENTRE UN MATERIAL FRÁGIL Y DÚCTIL	10
FIG. N° 2: REGULARIDAD VERTICAL SEGÚN LAS VARIACIONES E GEOMETRÍA DE LA ESTRUCTURA.	
FIG. N° 3: REGULARIDAD EN PLANTA SEGÚN FLEXIBILIDAD DIAFRAGMA	
FIG. N° 4: GRÁFICO INDICATIVO DE LA DETERMINACIÓN ESPECTRO DE RESPUESTA.	
FIG. N° 5: FORMA ESPECTRAL PARA LOS PERFILES GEOTÉCNICOS	20
FIG. N° 6: ESTRUCTURA MODELADA EN ETABS	24
FIG. N° 7: ESTRUCTURA ANALIZADA POR ELEMENTOS FINITOS	24
FIG. N° 8: MODELOS DE PLANTA DE ESTRUCTURAS	
FIG. N° 8: MODELOS DE PLANTA DE ESTRUCTURAS	31

FIG. N° 11: SISTEMA DE GRILLAS
FIG. N° 12: DEFINICIÓN DE LAS SECCIONES DE LOS SISTEMAS ESTRUCTURALES
FIG. Nº 13: COMANDOS PARA LA ASIGNACIÓN DE ELEMENTOS36
FIG. N° 14: DISEÑO DE LOSA
FIG. N° 15: DEFINICIÓN DE CARGAS
FIG. Nº 16: ASIGNACIÓN DEL TIPO DE CARGA
FIG. N° 17: EJEMPLO DE LA ASIGNACIÓN DE LA CARGA VARIABLE MOVIDA
FIG. N° 18: COMBINACIONES DE CARGA
FIG. N° 19: ESPECTRO DE RESPUESTA
FIG. N° 20: ESPECIFICACIONES PARA EL ANÁLISIS MODAL Y COMBINACIÓN DIRECCIONAL
FIG. N° 21: ASIGNACIÓN DEL TIPO DE PARÁMETROS PARA EL ANÁLISIS DINÁMICO
FIG. N° 22: IMAGEN DE LA DEFORMADA DE LA ESTRUCTURA42
FIG. N° 23: VERIFICACIÓN DE RESULTADOS DEL ANÁLISIS DE LA ESTRUCTURA
FIG. N° 24: RESULTADOS GRÁFICOS
FIG. N° 25: RESULTADOS EN TABLAS
FIG. N° 26: ASIGNACIÓN DE LA FUENTE DE LAS MASAS44
FIG. N° 27: ASIGNACIÓN DE DIAFRAGMA
FIG. N° 28: PLANTA DE LA ESTRUCTURA ALARGADA 8 X 60 M49
FIG. N° 29: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA ALARGADA 8 X 60 M
FIG. N° 30: PLANTA DE LA ESTRUCTURA ALARGADA 10 X 60 M50
FIG. N° 31: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA ALARGADA 10 X 60 M
FIG. N° 32: PLANTA DE LA ESTRUCTURA ALARGADA 12 X 60 M51
FIG. N° 33: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA ALARGADA 12 X 60 M
FIG. N° 34: PLANTA DE LA ESTRUCTURA CON HUECO CENTRAL FR = 0,36
FIG. N° 35: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA CON HUECO CENTRAL FR = 0,36

FIG. N° 36: PLANTA DE LA ESTRUCTURA CON HUECO CENTRAL FR = 0,64
FIG. N° 37: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA CON HUECO CENTRAL FR = 0,6453
FIG. N° 38: PLANTA DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24
FIG. N° 39: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24
FIG. N° 40: PLANTA DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
FIG. N° 41: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
FIG. N° 42: PLANTA DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
FIG. N° 43: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
FIG. N° 44: PLANTA DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,32
FIG. N° 45: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,32
PLANTA DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,4858
FIG. N° 46: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,48
FIG. N° 47: PLANTA DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,64
FIG. N° 48: VISTA TRIDIMENSIONAL DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,64
FIG. N° 49: RESULTADOS ACERO LONGITUDINAL ESTRUCTURA EN FORMA DE "U" FR =0,32.
FIG. N° 50: GRÁFICO DE VARIACIÓN DE LA DERIVA EN ESTRUCTURAS ALARGADAS
FIG. N° 51: GRÁFICO DE DERIVA ESTRUCTURA ALARGADA 10 X 60 M
FIG. N° 52: GRÁFICO DE VARIACIÓN DE LA DERIVA EN ESTRUCTURAS CON HUECO CENTRAL
FIG. N° 53: GRÁFICO DE DERIVA ESTRUCTURA CON HUECO CENTRAL FR = 0.36

CON HUECOS I							71
FIG. N° 55: DISTRIBUIDOS							
FIG. N° 56: GRA EN FORMA DE							
FIG. N° 57: GI FR= 0,64							
FIG. N° 58: GRA	ÁFICO DE V	VARI/	ACIÓN DE	EL CORT	E BASA	L	73
FIG. N° 59: G EN ESTRUCTU							_
FIG. N° 60: G EN ESTRUCTU							
FIG. N° 61: G EN ESTRUCTU							
FIG. N° 62: G EN ESTRUCTU							
ABLAS							
ABLAS							
TABLA N° 1							
TABLA N° 1 TABLA N° 2 MATERIALES.	ESPECIFIC	CACIC	NES DE I	LAS PRO	PIEDAD	ES DE	LOS 35
TABLA N° 1 TABLA N° 2 MATERIALES. TABLA N° 3	ESPECIFIC DIMENSIĆ	CACIC ON DE	NES DE I	LAS PRO	PIEDAD S QUE C	ES DE	LOS 35 RMAN LA
TABLA N° 1 TABLA N° 2 MATERIALES.	ESPECIFIC DIMENSIĆ ALARGAD DIMENSIĆ	CACIC ON DE A 8 X ON DE	LOS ELE	LAS PRO MENTOS MENTOS	PIEDAD S QUE C	ONFOR	LOS 35 RMAN LA 49 RMAN LA
TABLA N° 1 TABLA N° 2 MATERIALES. TABLA N° 3 ESTRUCTURA TABLA N° 4	ESPECIFIC DIMENSIĆ ALARGAD DIMENSIĆ ALARGAD DIMENSIĆ ALARGAD	CACIC DN DE A 8 X DN DE A 10 X	LOS ELE 60 M LOS ELE K 60 M	MENTO: MENTO: MENTO: MENTO:	PIEDAD S QUE C S QUE C	ONFOR	LOS 35 RMAN LA 49 RMAN LA 50 RMAN LA
TABLA N° 1 TABLA N° 2 MATERIALES. TABLA N° 3 ESTRUCTURA TABLA N° 4 ESTRUCTURA TABLA N° 5	ESPECIFIC DIMENSIĆ ALARGAD DIMENSIĆ ALARGAD DIMENSIĆ ALARGAD DIMENSIĆ ALARGAD	CACIC DN DE A 8 X DN DE A 10 X DN DE A 12 X DN DE	LOS ELE COS ELE	MENTO: MENTO: MENTO: MENTO: MENTO:	PIEDAD S QUE C S QUE C S QUE C	ONFOR	LOS 35 RMAN LA 50 RMAN LA 51 RMAN LA
TABLA N° 1 TABLA N° 2 MATERIALES. TABLA N° 3 ESTRUCTURA TABLA N° 4 ESTRUCTURA TABLA N° 5 ESTRUCTURA TABLA N° 5	ESPECIFIC DIMENSIÓ ALARGAD DIMENSIÓ ALARGAD DIMENSIÓ ALARGAD DIMENSIÓ CON HUEC DIMENSIÓ	EACIC ON DE A 8 X ON DE A 10 X ON DE ON DE CO CE	LOS ELE COS ELE	MENTOS MENTOS MENTOS MENTOS MENTOS MENTOS	PIEDAD S QUE C S QUE C S QUE C	ONFOR	LOS35 RMAN LA50 RMAN LA51 RMAN LA51 RMAN LA
TABLA N° 1 TABLA N° 2 MATERIALES. TABLA N° 3 ESTRUCTURA TABLA N° 4 ESTRUCTURA TABLA N° 5 ESTRUCTURA TABLA N° 6 ESTRUCTURA TABLA N° 6 TABLA N° 6	ESPECIFIC DIMENSIÓ ALARGAD DIMENSIÓ ALARGAD DIMENSIÓ ALARGAD DIMENSIÓ CON HUEC CON HUEC DIMENSIÓ CON HUEC DIMENSIÓ	CACIC ON DE A 8 X ON DE A 10 X ON DE CO CE ON DE CO CE	LOS ELE COS ELE	MENTO: MENTO: MENTO: MENTO: MENTO: R = 0,36. MENTO: MENTO: MENTO: MENTO:	PIEDAD S QUE C S QUE C S QUE C S QUE C	ONFOR	LOS35 RMAN LA50 RMAN LA51 RMAN LA52 RMAN LA53 RMAN LA

TABLA Nº 10 DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,4856
TABLA Nº 11 DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA Nº 12 DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA EN FORMA DE "U" FR = 0,48
TABLA Nº 13 DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA EN FORMA DE "U" FR = 0,64
TABLA Nº 14RESULTADOS DE DERIVA ESTRUCTURASALARGADAS.63
TABLA N° 15 RESULTADOS DE CORTE BASAL ESTRUCTURAS ALARGADAS
TABLA Nº 16 RESULTADOS DE ACERO LONGITUDINAL ESTRUCTURAS ALARGADAS
TABLA N° 17 CENTRAL.RESULTADOS DE DERIVA ESTRUCTURAS CON HUECO 64
TABLA Nº 18 RESULTADOS DE CORTE BASAL ESTRUCTURAS CON HUECO CENTRAL
TABLA Nº 19 RESULTADOS DE ACERO LONGITUDINAL ESTRUCTURAS CON HUECO CENTRAL. 64
TABLA N° 20 RESULTADOS DE DERIVA ESTRUCTURAS CON HUECOS DISTRIBUIDOS
TABLA N° 21 RESULTADOS DE CORTE BASAL ESTRUCTURAS CON HUECOS DISTRIBUIDOS65
TABLA N° 22 RESULTADOS DE ACERO LONGITUDINAL ESTRUCTURAS CON HUECOS DISTRIBUIDOS
TABLA N° 23 RESULTADOS DE DERIVA ESTRUCTURAS EN FORMA DE "U". 66
TABLA N° 24 RESULTADOS DE CORTE BASAL ESTRUCTURAS EN FORMA DE "U"
TABLA N° 25 RESULTADOS DE ACERO LONGITUDINAL ESTRUCTURAS CON FORMA DE "U"67

RESUMEN

"ESTUDIO DE LA TORSIÓN ADICIONAL EN LA APLICACIÓN DEL MÉTODO DE ANÁLISIS DINÁMICO ESPACIAL CON DIAFRAGMA FLEXIBLE"

Autores: Farah Da Costa T.

Mariam Finol H.

Tutor: Ing. Eduardo López.

Caracas, Febrero de 2010.

El presente Trabajo Especial de Grado, consiste en el estudio de la influencia de la aplicación de la torsión adicional expuesta por la norma COVENIN 1756:2001, en la aplicación del método dinámico espacial con diafragma flexible, con la ayuda del programa de cálculo estructural ETABS. El estudio se basa en cuatro (4) modelos de plantas irregulares: alargadas, con hueco central, con huecos distribuidos y en forma de "U"; cada uno integrado por estructuras con características similares pero con dimensiones distintas para un total de once (11) edificaciones. Se realizaron cinco (5) análisis dinámicos para cada estructura, en donde se consideró la posición teórica del centro de masas y cuatro posiciones extremas, que vendrían definidas por el movimiento del centro de masas de cada piso en un 3% del lado mayor de cada dirección como lo sugiere el método en estudio. Luego de ser analizadas y una vez obtenidos los resultados se prosiguió a su comparación, obteniendo variaciones de parámetros como: deriva, corte basal y acero longitudinal. En el trabajo se muestran los resultados de forma gráfica y con la ayuda de las tablas se buscó una comprensión más clara por parte del lector para analizar los resultados obtenidos. Adicionalmente, se plantean recomendaciones y conclusiones que podrían servir de guía para futuros Trabajos de Grado; así como también, para la aplicación del método de análisis dinámico espacial con diafragma flexible.

INTRODUCCIÓN

A medida que transcurre el tiempo, nuevas tendencias en el diseño de edificaciones se imponen. Los arquitectos dejan volar su imaginación para crear estructuras más imponentes desafiando las leyes de la gravedad, sin embargo, los menos atrevidos se valen de las formas geométricas básicas para modificar sus dimensiones sin darse cuenta de lo vulnerable que pueden terminar resultando. Es por ello, que la selección de la forma y configuración apropiada de una edificación es una de las decisiones más importantes para el diseño estructural, pues deben garantizar que la estructura se comporte de manera adecuada ante un sismo.

El ingeniero como su nombre lo indica, es la persona encargada de utilizar su ingenio para dar vida a estas estructuras, sin descuidar las normas vigentes para la construcción y diseño de edificaciones sismorresistentes, a fin de garantizar la seguridad y funcionalidad de la misma. En Venezuela, se cuenta con la norma 1756:2001 para el diseño de edificaciones sismorresistentes, en donde se plantean diversas metodologías, condicionadas por las características de la estructura.

La norma divide a las estructuras de acuerdo a su regularidad. Si bien una estructura regular es la condición ideal y favorable, no siempre es esto lo que se desea construir y, por lo tanto, las estructuras de tipo irregular deben estudiarse con especial cuidado al ser diseñadas ya que no se comportan de igual manera que las regulares en el momento de suscitarse un sismo.

Las irregularidades de una estructura se pueden clasificar en irregularidades verticales y/o irregularidades en planta, y a su vez, estas pueden ser subdivididas de acuerdo a sus características¹.

El estudio del presente trabajo se desarrolla en base a las estructuras irregulares en planta que entren en la clasificación de diafragma flexible; para ello, la norma establece el uso del Método de Análisis Dinámico Espacial con Diafragma Flexible, el cual incorpora los efectos torsionales accidentales ocasionados por la variación aleatoria de los centro de masa y de la excitación rotacional de la base de la edificación, con la ejecución de cinco análisis dinámicos para cada estructura, en donde se considera la posición teórica del centro de masas y cuatro posiciones extremas, que vendrán definidas por el 3% del lado mayor de cada dirección.

El continuo desarrollo y la inclusión de la tecnología en la ingeniería, han permitido simplificar los cálculos matemáticos usando programas de computación como el ETABS para el diseño de estructuras, que en épocas pasadas resultaban casi imposibles de realizar. Estos programas están basados en las normas internacionales que

¹ Artículo 6.5.2 de la norma Venezolana. *Edificaciones Sismorresistentes* (1°Revisión). Parte 1: Artículado. Covenin 1756-1:2001. Funvisis.

contemplan varios de los métodos especificados en la norma Venezolana, pero no permiten el desarrollo del Método de Análisis Dinámico Espacial con Diafragma Flexible de manera automatizada, ocasionando que los ingenieros responsables del cálculo de edificaciones no desarrollen el método como lo establece la norma, y en lugar de realizar el movimiento del centro de masa a cada piso, se valgan del artificio de adicionar una carga variable basada en su experiencia y estadísticas, lo cual si bien le proporciona una seguridad adicional a la estructura, no es lo que exige la norma para este tipo de edificaciones. Por ello, es objeto del presente trabajo hacer uso de las herramientas que ofrece este programa en la evaluación de la influencia de la aplicación de la torsión adicional propuesta por el método en el diseño de estructuras.

El presente trabajo de investigación tiene como objetivo evaluar la influencia de la aplicación del método en el diseño de estructuras. Para ello, se fijaron como parámetros de estudio la deriva, corte basal y acero longitudinal a fin de obtener la variación de ser aplicado dicho método con respecto a su no aplicación.

El tema de investigación se encuentra desarrollado en los siguientes capítulos:

• CAPÍTULO I. TEMA DE INVESTIGACIÓN.

Se presentan las causas que conllevaron a la realización del presente trabajo, objetivos que se pretenden alcanzar, así como también las delimitaciones del mismo.

• CAPÍTULO II. MARCO TEÓRICO.

Presenta los conceptos básicos necesarios que sustentan la aplicación del método.

• CAPÍTULO III. MARCO METODOLÓGICO.

Da un enfoque de los pasos que se siguieron para la evaluación del método, además de brindar una idea al lector de cómo utilizar herramientas básicas del programa ETABS en la aplicación del método.

• CAPÍTULO IV. DESCRIPCIÓN DE LOS MODELOS.

Describe los modelos que sirvieron de muestra para la aplicación del método de análisis dinámico espacial con diafragma flexible.

• CAPÍTULO V. RESULTADOS Y ANÁLISIS.

Presenta la variación obtenida en deriva, corte basal y acero longitudinal de ser o no aplicada la torsión adicional, es decir, moviendo o no el centro de masas el 3% del lado mayor en cada dirección.

CAPÍTULO I TEMA DE INVESTIGACIÓN

I.1 PLANTEAMIENTO DEL PROBLEMA

El desarrollo urbano ha influenciado el diseño y construcción de edificaciones innovadoras, modernas e imponentes. Para ello, los arquitectos han puesto a prueba su imaginación y audacia, dando origen a estructuras cada vez menos regulares tanto en planta como en elevación. A pesar de lo emblemáticas y artísticas que resultan, es necesario analizarlas con especial cuidado, ya que a lo largo del tiempo se ha demostrado que son altamente vulnerables en el caso de suscitarse un sismo, acarreando con esto fuertes daños y un posible colapso.

En este sentido, es tarea de los ingenieros garantizar que estas estructuras sean lo más seguras posible, por lo que se cuenta con una serie de códigos que sirven de guía para el diseño de edificaciones sismorresistentes. En Venezuela, la norma empleada con este fin, es la COVENIN 1756-2001, la cual establece una serie de métodos que permiten garantizar la estabilidad y correcto diseño estructural de dichas edificaciones.

Por su parte, para el diseño de estructuras irregulares en planta que se encuentren dentro de la descripción de diafragma flexible, la norma hace énfasis en la utilización del Método de Análisis Dinámico Espacial con Diafragma Flexible², el cual, según entrevistas realizadas a ingenieros estructurales, es poco utilizado en el cálculo de estructuras debido a la falta de conocimiento que se tiene sobre su aplicación, influencia e importancia en el diseño así como también, una aparente dificultad de ejecución a través de programas estructurales de computación. Es por ello, que este Trabajo Especial de Grado tiene como propósito, el diseño de edificaciones sismorresistentes con irregularidades en planta con la aplicación de dicho método y así analizar su influencia mediante comparación con el diseño de la misma estructura sin la aplicación del método, tomando en cuenta variables como cantidad de acero en columnas, deriva y corte basal.

I.2 OBJETIVOS

I.2.1 OBJETIVO GENERAL

Analizar la influencia de la torsión adicional descrita por el Método de Análisis Dinámico Espacial con Diafragma Flexible en el diseño de estructuras irregulares sismorresistentes.

I.2.2 OBJETIVOS ESPECÍFICOS

 Describir los requisitos de diseño para estructuras con diafragma flexible indicados en la norma COVENIN 1756 – 2001.

² Artículo 9.7.2. de la norma Venezolana. *Edificaciones Sismorresistentes* (1°Revisión). Parte 1: Artículado. Covenin 1756-1:2001. Funvisis.

- Determinar la variación e importancia en el diseño de estructuras irregulares, aplicando el Método de Análisis Dinámico Espacial con Diafragma Flexible, mediante la comparación de los resultados obtenidos de acero en columnas, deriva y corte basal, con el diseño de estructuras sin la aplicación de la torsión adicional establecida en el mismo.
- Demostrar y simplificar la aplicación del Método de Análisis Dinámico Espacial con Diafragma Flexible con el programa estructural ETABS (Extended Three Dimensional Analysis of Building Systems o Análisis Tridimensional Extendido de Edificaciones).

L3 ALCANCE Y LIMITACIONES

I.3.1 ALCANCE

El presente trabajo de investigación tiene como fin el estudio de la influencia de la aplicación de la torsión adicional descrita por el Método de Análisis Dinámico Espacial con Diafragma Flexible en el diseño de estructuras de plantas irregulares con pórticos ortogonales.

I.3.2 LIMITACIONES

El estudio es realizado manteniendo constante para todos los modelos estructurales, parámetros como: la altura del edificio, ubicación de la estructura, tipo de suelo, distancia entre pórticos, tipo de losa, y factor de respuesta, con el fin de que los resultados obtenidos dependan de la aplicación del método en estudio y que no sean afectados por la acción de estas variables.

El estudio sólo contempla la influencia de la aplicación y no aplicación de la torsión adicional en estructuras de concreto armado.

I.4 ANTECEDENTES

Se desconoce algún registro anterior que permita tener noción de previas simulaciones virtuales que contemple la utilización del Método de Análisis Dinámico Espacial con Diafragma Flexible.

CAPÍTULO II MARCO TEÓRICO

II.1 ESTRUCTURAS SISMORRESISTENTES.

Las estructuras sismorresistentes, tal como su nombre lo indica, son aquellas que garantizan que la estructura se comporte de manera aceptable, es decir, que permitan la salida de las personas que en ella se encuentra sin que colapse y así evitar pérdidas, primordialmente humanas, ante la ocurrencia de un sismo.

Los sismos son movimientos de las placas tectónicas que originan perturbaciones en la corteza terrestre, pudiendo ser tan violentos que ocasionen la fatiga o debilitamiento de las estructuras y, en algunos casos, hasta la destrucción o colapso de edificios. Esto dependerá de factores como la magnitud e intensidad del sismo, así como de otros factores asociados directamente al diseño de la estructura.

En principio, la estructura de una edificación puede verse afectada por un sismo, en mayor o menor grado, de acuerdo a su forma, tamaño y/o uso. Asimismo, el comportamiento de una estructura se ve influenciado por la distribución de los elementos resistentes, tales como vigas y columnas y, de elementos del tipo no estructural como losas de piso, tabiquería y mampostería determinados en el diseño del edificio.

Además de las posibles fallas en el proceso constructivo y/o de diseño estructural, aspectos como la geometría, geología y clima del lugar donde es desarrollado un proyecto, influyen significativamente en las respuestas sísmicas, debido a que se ha podido observar que dichos parámetros, han sido la causa determinante de daños en edificaciones afectadas por los efectos de movimientos telúricos, por lo que deben ser tomados en cuenta en el diseño de las estructuras.

La sismo resistencia es la relación entre la configuración geométrica y la aplicación de técnicas de diseño, que le permita a las estructuras soportar las fuerzas de un movimiento sísmico, considerando que no se presentarán problemas con la interacción suelo - estructura.

La capacidad sismo resistente de una estructura está definida por:

- Configuración geométrica, en la cual la regularidad y simetría, tanto en elevación como en planta, proporcionan equilibrio en la distribución de los volúmenes que conforman a las estructuras y con estas características disminuye el riesgo de sufrir grandes daños ante la ocurrencia de un sismo.
- Colindancia o adyacencia entre edificios, es un factor importante de consideración debido a que al suscitarse un sismo, cada estructura va a vibrar de acuerdo con sus características dinámicas y pueden ocurrir choques entre las mismas.
- Componentes estructurales, son aquellos capaces de soportar tanto cargas gravitacionales como laterales. La ubicación y tipo de elemento que se utilice son de especial cuidado, ya que puede alterar el comportamiento de la estructura,

debido a la generación de zonas más rígidas que conlleven a producir excentricidades, aumentando así los efectos torsionales.

II.1.1 CARACTERÍSTICA DEL SISTEMA SISMORRESISTENTE:

Existen dos características que debe poseer todo sistema estructural, a fin de evitar el colapso repentino de la estructura durante un movimiento telúrico. Estas características son la ductilidad y la sobre resistencia³.

II.1.1.1 DUCTILIDAD

La ductilidad es la capacidad que tiene una estructura para deformarse ante la acción de fuerzas externas, sin padecer excesivos daños una vez rebasado el límite de proporcionalidad, ni presentar pérdidas apreciables en su capacidad resistente. Mientras más dúctil sea un material más podrá deformase antes de llegar a la falla, permitiendo que se generen grietas, que a pesar de no ser estéticas, no afectan la estabilidad de la estructura.

Fig. Nº 1: Diferencia entre un material frágil y dúctil.

Fuente: CADCAMCAE.WORDPRESS.COM/2007/09/19/LA-DUCTILIDAD/

El coeficiente de comportamiento por ductilidad, relaciona el máximo desplazamiento plástico de la estructura con el máximo desplazamiento elástico de un sistema de un grado de libertad. Mientras mayor sea este coeficiente, mayor será la capacidad que tendrán los elementos de la estructura para disipar energía en un régimen plástico.

En el caso de estructuras con dos o más grados de libertad, el buen comportamiento dúctil viene dado por mecanismos de histéresis estables y que estén bien distribuidos, impidiendo así, el colapso de la estructura por la falla apresurada de alguno de los elementos que la conforman.

³ Para mayor información ver la referencia: Díaz de Vita, Anna. Ogaya, David. (2004). *Análisis Sísmico Aplicado En Edificaciones Irregulares Por Sap2000 Non Linear*. Tesis de Grado. Tutor: D'Amico D'Agosto, Francisco. Universidad Metropolitana. Facultad de Ingeniería

La ductilidad de una estructura depende de los materiales que la componen, así como también de su tipología y detalles constructivos.

Por otra parte, la ductilidad de una estructura es una función del desplazamiento, el cual estará limitado a fin de aminorar daños en los elementos estructurales.

II.1.1.2 SOBRE RESISTENCIA:

La sobre resistencia es la capacidad real resistente de un material debido a efectos de confinamiento o de endurecimiento por deformación, siendo esta capacidad mayor a su resistencia nominal de cálculo.

La sobre resistencia es definida como el nivel de seguridad adicional, en donde los sistemas estructurales deben ser más resistentes que sus partes, es decir, que aún fallando muchos de sus componentes, la estructura permanezca de pie.

II.1.2 CRITERIOS ESTRUCTURALES SISMO RESISTENTES.

II.1.2.1 REQUISITOS DE CONFIGURACIÓN

II.1.2.1.1 GEOMETRÍA DE LA ESTRUCTURA:

Una de las principales características que se debe tomar en cuenta al momento de evaluar una estructura es su regularidad, es decir, si es regular o irregular.

La regularidad de un edificio, desde el punto de vista geométrico, vendrá dada por su configuración en elevación y en planta.

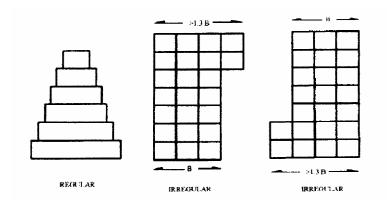


Fig. Nº 2: Regularidad vertical según las variaciones en la geometría de la estructura.

Fuente: Edificaciones Sismorresistentes, comentarios. COVENIN 1756:2001

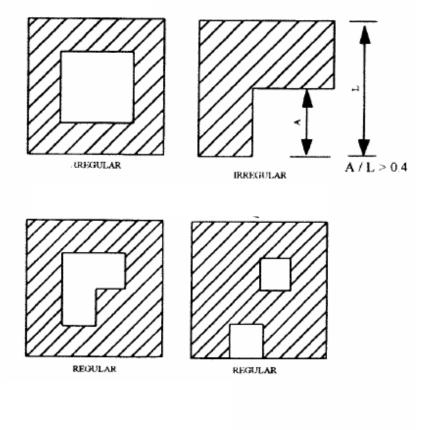


Fig. Nº 3: Regularidad en planta según flexibilidad del Diafragma.

Fuente: Edificaciones Sismorresistentes, comentarios. COVENIN 1756:2001

II.1.2.1.1.1 ESTRUCTURA REGULAR:

La norma COVENIN 1756:2001 define como estructura regular, aquella que no tiene discontinuidades físicas considerables en su configuración tanto en planta como en elevación

Este tipo de configuración es altamente recomendada para la construcción, siempre que se garantice el buen funcionamiento estructural del edificio, es decir, el trabajo en conjunto de los diferentes elementos estructurales a fin de soportar las fuerzas laterales debido al sismo o viento, además de proporcionar la rigidez suficiente a la estructura, evitando el pandeo ocasionado por el conjunto de cargas verticales a la cual es sometida la misma.

II.1.2.1.1.2 ESTRUCTURA IRREGULAR:

Son aquellas que presentan discontinuidades físicas considerables en su configuración o en sus sistemas estructurales.

Edificaciones de este tipo no son recomendables, ya que los elementos estructurales que la conforman sufren deformaciones y reaccionan de manera independiente unos respecto a los otros, lo cual impide que se garantice el comportamiento homogéneo necesario para que las edificaciones respondan de manera adecuada ante la ocurrencia de un sismo.

II.1.2.1.2 ALTURA:

La altura de un edificio está altamente ligada al período de la misma, lo cual significa un cambio en el nivel de respuesta y magnitud de las fuerzas; mientras más alta sea una estructura mayor será su período y, por ende, se incrementará la magnitud de las fuerzas que la afecten a la misma.

Sin embargo, el período de una estructura depende también de otros aspectos que pueden o no favorecer a la misma, algunos de estos aspectos son: la relación altura – ancho, altura entrepiso, distribución de las masas, además de la influencia del tipo de materiales y sistema estructural que se emplee.

II.1.2.1.3 DIMENSIONES DE LA PLANTA:

Además de la altura del edificio otro aspecto importante a tener en cuenta es su tamaño horizontal ya que al ser de gran magnitud, el edificio puede no comportarse como una sola unidad en presencia de las vibraciones sísmicas.

Por ello es recomendable el uso de juntas en la construcción de edificaciones cuyo tamaño horizontal sea extremadamente grande. En el caso de no cumplir con esta recomendación, dichas estructuras tendrán que ser consideradas y estudiadas como irregulares.

II.1.2.1.4 COLUMNA FUERTE, VIGA DÉBIL:

En edificios cuyo sistema estructural está definido por pórticos, se requiere que los miembros horizontales fallen antes que los verticales, conllevando esto a un retraso en el colapso total de la estructura, debido a que las columnas ceden de forma más abrupta en presencia de cargas verticales una vez que ha ocurrido el aplastamiento del concreto, mientras que las vigas y las losas tienden a formar articulaciones plásticas impidiendo así que la estructura falle después de un fuerte daño.

II.1.2.2 ASPECTOS A CONSIDERAR PARA EL DISEÑO DE EDIFICACIONES SISMORRESISTENTES⁴

- Zona geográfica, determina la aceleración basal de partida (Ao)
- Factor de uso.

⁴ Paparoni, Mario. *Ingeniería Sísmica*. Curso de Pregrado. Universidad Católica Andrés Bello. Universidad Metropolitana.

- Tipología constructiva, determina el nivel de diseño y el factor de reducción de respuesta (R).
- Tipo de suelo, determinado por su período fundamental (To) y factor de afinamiento (O), conllevando esto al desarrollo del perfil espectral básico.
- Factor de reducción de respuesta (R), producto entre el factor de ductilidad y el factor de sobre resistencia.
- Variables implícitas o tácitas, amortiguamientos estructurales viscosos e histeréticos.

II.1.2.3 PARÁMETROS DINÁMICOS PROPIOS DE LA ESTRUCTURA⁵.

- Magnitud del corte basal.
- Magnitudes de las fuerzas de piso.
- Perfiles de las fuerzas modales.
- Perfil de cortantes.
- Perfil de momentos de volcamiento.

II.1.2.4 PARÁMETROS DEL SISTEMA ESTRUCTURAL QUE CUANTIFICAN LAS RESPUESTAS A LAS SOLICITACIONES SÍSMICAS⁵

- Períodos modales
- Factor de masa equivalente, permite obtener cortantes basales modales o factores de participación.
- Perfiles modales, distribución de las fuerzas inerciales entre pisos.

II.2 ACCIONES ACTUANTES

II.2.1 ACCIONES GRAVITACIONALES:

II.2.1.1 ACCIONES PERMANENTES:

Se refiere aquellas propias de la edificación, de naturaleza invariable en el tiempo, como las cargas debidas al peso propio de los componentes estructurales y no estructurales.

II.2.1.2 ACCIONES VARIABLES DE USO:

Estas son de magnitud variable en el tiempo y tienen relación con el uso y ocupación de la estructura.

⁵ Paparoni, Mario. *Ingeniería Sísmica*. Curso de Pregrado. Universidad Católica Andrés Bello. Universidad Metropolitana.

II.2.2 ACCIONES SÍSMICAS:

Surgen de eventos excepcionales por lo que dejan de ser cotidianas y pasan a ser generacionales y de corta duración, su influencia sobre la estructura estará afectada por la configuración del sistema que la compone.

II.2.3 OTRAS ACCIONES:

Otras acciones que si bien no son tomadas en cuenta para el desarrollo del presente trabajo son las causadas por el viento, temperatura, entre otras.

II.2.4 COMBINACIONES DE SOLICITACIONES:

Una estructura en un momento dado podrá encontrarse bajo la acción de una o varias cargas. Por ello, es importante diseñar estructuras capaces de soportar las solicitaciones que produzcan el efecto más desfavorable, el cual puede ocurrir cuando una o más solicitaciones están actuando simultáneamente. La norma Venezolana 1753:2006 establece una serie de posibles combinaciones de cargas a las cuales puede estar sujeta una estructura.

II.3 ANÁLISIS ESTRUCTURAL

Método a través del cual se determina el comportamiento del sistema estructural una vez sometido a solicitaciones externas. Dicho comportamiento depende de las características de la estructura y de las propiedades de los materiales que la conforman, como son la resistencia, ductilidad, rigidez, y puede ser expresado en función de su deformación, esfuerzos y reacciones que en este se produzcan.

Es importante generar un modelo teórico y analítico de estudio, en el cual se representen las principales características geométricas de la estructura, así como las condiciones de apoyo y uniones entre los miembros.

La determinación de las acciones de diseño, es decir, las cargas y otras acciones a las cuales estará sometido el sistema, es fundamental para el análisis, para ello se deben emplear las combinaciones de solicitaciones descritas anteriormente en la norma 1753:2006.

II.3.1 ANÁLISIS SÍSMICO

La respuesta de una estructura ante la ocurrencia de un sismo dependerá del modo de vibración de la misma. Para ello se debe efectuar un análisis dinámico de la estructura

 $^{^6}$ La norma oficial es la 1753:1987 sin embargo, se utilizó la norma 1756:2006 debido a que aun cuando no está aprobada es consistente con la ACI 318

previo a cualquier cálculo realizando una simulación de los efectos de estas acciones sobre la estructura. La norma simplifica este cálculo mediante Análisis Estático, considerando al sismo como fuerzas estáticas, tanto horizontales como verticales, expresadas en función de las cargas actuantes en la estructura.

II.3.2 ANÁLISIS ESTÁTICO

El Análisis Estático se desarrolla en estructuras sometidas a cargas estáticas, aplicadas en el centro de masas de cada piso. Estas cargas se obtienen mediante la aplicación de fórmulas sencillas en las cuales se contemplan algunas de las propiedades dinámicas de la estructura.

El Análisis Estático tiene como desventaja que sólo puede ser utilizado en estructuras que cumplan con ciertas condiciones de regularidad, como se establece en la norma 1756:2001.

A su vez, la norma plantea dos sub-métodos para el Método Estático convencional.

- Método Estático Equivalente, permite determinar las fuerzas cortantes de piso.
- Método de la Torsión Estática Equivalente, por medio del cual se calculan los momentos torsores de piso.

II.3.3 ANÁLISIS DINÁMICO

El Análisis Dinámico tiene como finalidad la determinación del comportamiento de una estructura en cuanto a fuerzas y deformaciones como respuestas ante la presencia de un sismo y con ello realizar un diseño óptimo y eficaz, según criterios establecidos en las normas, para así reducir la vulnerabilidad de las estructuras en zonas con alto riesgo sísmico

Existen diferentes Métodos de Análisis Dinámicos, cuyo objetivo común es la solución de ecuaciones de movimiento y las relaciones estáticas de equilibrio y rigidez.

Las aplicaciones de los Métodos de Análisis Dinámico varían de acuerdo al criterio del ingeniero proyectista y no presentan un resultado único, con lo cual se puede observar los distintos comportamientos estructurales medidos a través de modelos matemáticos simplificados con pocos grados de libertad, o bien, llevar a cabo el análisis con cientos de grados de libertad, en el cual la limitante sería la necesidad de computadores con gran capacidad y rapidez operativa.

El Análisis Dinámico de estructuras se caracteriza de acuerdo a si es análisis lineal, espectral, estático no-lineal, sísmico por desempeño y mediante el Método Estático Equivalente

En estructuras irregulares se emplean Métodos de Integración Directa por el procedimiento de paso a paso y mediante análisis modal. Posteriormente, se podrá ampliar el Análisis Modal con el Análisis Modal Espectral o con el Análisis Dinámico por acelerogramas, tomando en cuenta la respuesta de la estructura al sismo.

La acción sísmica a la que está sometida la estructura puede ser definida mediante espectros de respuestas o acelerogramas.

II.3.4 ANÁLISIS MODAL

Es una herramienta para determinar las características vibratorias de estructuras su intervalo de comportamiento lineal. El Análisis Modal estudia el modo de vibración de una estructura ante una aceleración determinada, sin contemplar efectos sísmicos como las fuerzas horizontales.

Este análisis es utilizado para obtener las respuestas de estructuras complejas con varios grados de libertad ante la ocurrencia de un sismo. Cada modo de vibración puede ser calculado individualmente para luego combinarse y proporcionar los resultados de fuerzas, deformaciones y desplazamientos que se presentan. Generalmente, las respuestas a movimientos sísmicos se deben principalmente a los primeros modos de vibración.

Cada estructura posee modos naturales de vibración en los cuales no se considera el amortiguamiento y la existencia de fuerzas dinámicas, es decir, el movimiento de la estructura vendrá definido únicamente por su masa y rigidez.

Para la obtención de un Análisis Modal es necesario seleccionar un espectro de respuesta sísmica, lo cual no es más que la representación de un conjunto aceleraciones expresadas en función del tiempo.

II.3.4.1 ANÁLISIS MODAL ESPECTRAL

Utiliza el espectro de respuesta y es uno de los métodos más utilizados puesto que describe todos los movimientos sísmicos que pueden presentarse en la zona donde se desarrolla el proyecto; cada zona está asociada a un espectro de respuesta específico.

El Análisis Espectral permite obtener valores máximos de desplazamiento, tensiones y solicitaciones utilizando un espectro de respuesta que resulta del estudio de varios sismos. Dicho resultado se obtiene al combinar las respuestas máximas calculadas para cada modo.

II.3.5 ESPECTRO DE RESPUESTA

El espectro de respuesta es una importante herramienta de la dinámica estructural que a su vez brinda gran utilidad en el diseño sismorresistente. Los espectros de respuesta sirven para representar de forma gráfica la influencia combinada de la

amplitud de las aceleraciones del terreno. Su contenido de frecuencias y la duración de las sacudidas durante la acción de terremotos.

A su vez, es la representación de los valores máximos que se obtengan en términos de desplazamiento, velocidad y aceleración de sistemas de un grado de libertad con distintos períodos fundamentales y con razón de amortiguamiento crítico constante, los cuales pueden ser evaluados en función del tiempo.

Su concepto comienza a gestarse con la ayuda de un instrumento de medición formado por 6 péndulos con diferentes periodos de vibración, Kyoji Suyehiro (1920), con el objeto de registrar la respuesta generada por dichos periodos durante la ocurrencia de un sismo. Tiempo después, Hugo Benioff propone un instrumento similar para medir el desplazamiento registrado por diferentes péndulos y así determinar el valor máximo de respuesta y construir una curva, Maurice Biot es quien propone finalmente la idea de espectros de respuesta elástica.

⁷ Amortiguamiento, se refiere a la propiedad que tiene una estructura para disipar la energía por los materiales constitutivos de la estructura, entre las ligaduras de sus diferentes elementos, entre ellos y el medio circunvecino.(Ref. 22)

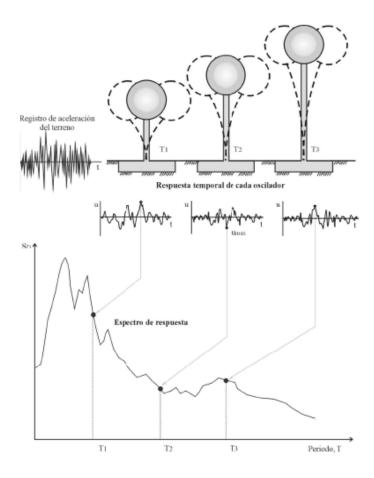


Fig. Nº 4: Gráfico indicativo de la determinación del espectro de respuesta.

Fuente: Crisafulli, Francisco, Villafañe, Elbio.(2002). Guia de estudio Espectros de Respuesra y de Diseño.

Un espectro de respuesta resulta una herramienta muy eficiente para la evaluación de las fuerzas laterales máximas de una estructura sometida a la vibración producida por un sismo. Sin embargo su realización requiere de numerosos cálculos, que resultan de resolver la ecuación de equilibrio dinámico para así obtener la variación en el tiempo, actualmente con la ayuda de herramientas como las computadoras este proceso de cálculo puede ser simplificado permitiendo de esta manera realizar un espectro de respuesta elástica en décimas de segundo.

II.3.6 TIPOS DE ESPECTROS

Debido a su importancia en la dinámica estructural, se han desarrollado diferentes espectros los cuales tienen características diferentes, además de ser utilizado para diferentes objetivos, es por ello que a continuación se presentan los más comunes.

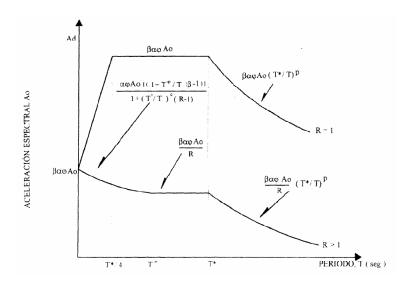


Fig. N° 5: Forma espectral para los perfiles geotécnicos.

Fuente: Edificaciones Sismorresistentes, comentarios. COVENIN 1756:2001

II.3.6.1 ESPECTRO DE RESPUESTA ELÁSTICA

Es una representación gráfica de los parámetros de respuesta máxima para un sismo determinado con la aplicación de diferentes coeficientes de amortiguamiento. Se utilizan para determinar las características del movimiento sísmico y su influencia sobre la estructura.

La curvas de los espectros de respuesta presentan variaciones bruscas, con numerosos picos y valles, que resultan de la complejidad del registro de aceleraciones del terremoto y para su construcción es necesario determinar la respuesta de numerosos osciladores simples, con distintos periodos de vibración, considerando la aceleración del

terreno originada por un sismo determinado⁸; la forma más sencilla y eficaz para realizar estos cálculos es a través de la integral de Duhamel⁹

II.3.6.2 ESPECTRO DE RESPUESTA INELÁSTICA

En este espectro se contempla la deformación de la estructura por su incursión en el rango plástico bajo la acción de fuerzas sísmicas con la suposición de osciladores de un grado de libertad de comportamiento no lineal.

Este tipo de espectro es muy importante y frecuentemente empleado en el diseño de las edificaciones sismorresistentes, ya que por medidas tanto de cálculo como económicamente constructivas, se asume que las mismas entran en el rango plástico ante las acciones sísmicas.

El diagrama espectral para sistemas elastoplásticos, tienen la misma apariencia que el diagrama espectral para sistemas elásticos, pero las curvas se encuentran desplazada hacia abajo en una cantidad relacionada con la ductilidad, la cual será la requerida por el terremoto para distintos niveles de resistencia.

II.3.6.3 ESPECTROS DE DISEÑO

Es uno de los principales recursos de análisis sísmico, el cual define los riesgos y comportamientos similares ante las fuerzas sísmicas que presentan estructuras con las mismas características partiendo de la suposición que presentan al menos un período igual al del suelo en el cual se fundamentan. El espectro de diseño representa el comportamiento del suelo a través de un promedio de sismos actuantes en la zona con anterioridad y es necesario su desarrollo para obtener las fuerzas de cortante basal de diseño y representar las condiciones del suelo. Este espectro se realiza con osciladores de un grado de libertad y pueden realizarse las combinaciones de las respuestas modales mediante diferentes métodos, como son CQC Y SRSS.

⁸ Crisafulli, Francisco. Villafañe, Elbio (2002). *Espectros De Respuesta Y De Diseño*. Ingeniería Sismorresistente. Universidad Nacional de Cuyo. Facultad de Ingeniería. Argentina.

⁹ Su cálculo se encuentra explicado ampliamente en la lectura de Crisafulli, Francisco. Villafañe, Elbio (2002). *Espectros De Respuesta Y De Diseño*. Ingeniería Sismorresistente. Universidad Nacional de Cuyo. Facultad de Ingeniería. Argentina.

 Combinación cuadrática completa (CQC): se consideran los efectos de amortiguamiento en combinación con los modos de respuesta, las tensiones se calculan mediante la fórmula.

$$(u)_{max} = \sqrt{\sum_{i=1}^{nf} \sum_{j=1}^{nf} (u)_{max}^{i} (u)_{max}^{j} \rho_{ij}}$$
 (Ec. No 1)

Coeficiente de correlación intermodal.

Donde nf es el número total de frecuencias y ρ_{ij} es el coeficiente de correlación intermodal dado por:

$$\rho_{ij} = \frac{8\sqrt{\xi_i \xi_j} (\xi_i + r\xi_j) r^{3/2}}{(1 - r^2)^2 + 4\xi_i \xi_j r (1 + r^2) + 4(\xi_i^2 + \xi_j^2) r^2}$$
(Ec. No 2)

Coeficiente de correlación intermodal.

 ξ_i , ξ_j y r son coeficientes de amortiguamientos modales para los modos i,j, dependientes del nivel de deformación de una estructura.

$$\xi = \frac{c}{c_{cr}}$$
 donde: $C = 2\sqrt{KM}$ (Ec. No 3)

Coeficiente de amortiguamiento modal.

Donde, K es la rigidez y M es la masa

 Raíz cuadrada de la suma de los cuadrados (SRSS): consiste en la suma de las respuestas modales utilizando la raíz cuadrada de las suma de sus cuadrados, sin tomar en cuenta los efectos del amortiguamiento.

$$(u)_{max} = \sqrt{\sum_{i=1}^{nf} [(u)_{max}^{i}]^{2}}$$
 (Ec. No 4)

Raíz cuadrada de la suma de los cuadrados.

II.3.6.4 ANÁLISIS DINÁMICO POR ACELEROGRAMAS

Es un análisis post-dinámico cuya definición de carga sísmica viene dada por un conjunto de acelerogramas (conjunto de registros sísmicos generados en una zona) sin embargo, se pueden generar acelerogramas sintéticos que representen al espectro de respuesta deseado, para ello se debe efectuar un proceso interactivo de las aceleraciones.

El Análisis por Acelerogramas puede ser utilizado en el rango lineal y/o en el rango no-lineal siendo el método de integración directa el utilizado para el desarrollo de dicho análisis dinámico.

II.3.6.5 MÉTODO APROXIMADO DE RAYLEIGH-RITZ.

El Método de Rayleight-Ritz, también conocido como los Vectores de Ritz, es utilizado para obtener frecuencias modales y algunas formas modales de estructuras. Este método es utilizado para estructuras con gran cantidad de grados de libertad y reduciéndolas artificialmente.

Es importante que se satisfagan las condiciones de apoyo de la estructura para la obtención de resultados confiables.

El método depende de cómo una buena combinación lineal de vectores puede aproximarse a los modos naturales de vibración de la estructura, para ello se deben seleccionar de manera cautelosa los vectores de Ritz. En el caso de estructuras complejas, la selección de dichos vectores se basará en el uso de procesos iterativos

II.4 PROGRAMA ESTRUCTURAL PARA EL ANÁLISIS DE LOS MODELOS: ETABS

Es un programa de análisis y diseño estructural de gran versatilidad, sofisticado y de fácil manejo. Está especializado en el modelaje de edificaciones, el cual cuenta con múltiples ventajas y funciones, basado en el método de los elementos finitos.

ETABS cuenta con una poderosa interfaz gráfica que posee una gran variedad de opciones para el Análisis Estático y Dinámico e incluye prácticos procedimientos de modelos, análisis y diseños. En sus módulos se encuentran códigos internacionales, métodos numéricos y procedimientos de diseño que facilitan su manejo y permiten una definición estructural completa, simple y significativa; pudiendo representar exactamente la geometría de la estructura deseada así como la asignación de propiedades, elementos y cargas de diseño.

El análisis de los modelos consiste en nodos, elementos barras, elementos Shell y elementos conexión de acuerdo a los objetos punto, línea y área generados en el modelo realizándose de forma automática la transmisión de las cargas verticales de pisos a vigas y muros, además cuenta con los más avanzados métodos numéricos, incluyendo opciones para amortiguamientos no lineales y análisis *pushover*¹⁰ entre otros.

Es importante destacar que el programa hace la distinción entre masa y peso, empleando la primera para el cálculo de la inercia dinámica y para las cargas originadas por la aceleración del suelo y el peso es asimilado como las fuerzas de carga o reactivas.

El programa trabaja con cuatro unidades básicas: fuerza, longitud, temperatura y tiempo, pudiendo elegir el sistema de unidades de preferencia para trabajar, sistema

¹⁰ Pushover: Análisis Estático No-Lineal Modal

internacional de unidades o sistema inglés. Para las unidades angulares se trabaja con radianes, grados y hertz.

El sistema de coordenadas utilizado por el programa es el cartesiano definido por la convención X, Y, y Z, ortogonales entre sí y cumplen con la regla de la mano derecha.

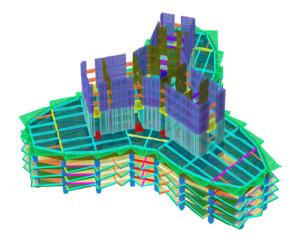


Fig. N° 6: Estructura modelada en ETABS

Fuente: Manual de Aplicación del programa ETABS v9. Ing. Eliud Hernández.

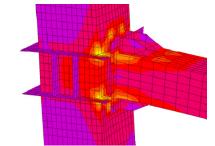


Fig. Nº 7: Estructura analizada por elementos finitos

Fuente: Ingenieros estructurales asociados. Inesa

II.5 DESCRIPCIÓN DEL MÉTODO EN ESTUDIO: ANÁLISIS DINÁMICO CON DIAFRAGMA FLEXIBLE

Existen diversos métodos para el análisis de estructuras, sin embargo es de nuestro especial interés explicar con mayor detalle el Método de Análisis Dinámico con Diafragma Flexible, por ser este el objetivo de estudio del presente Trabajo de Grado.

El método hace énfasis en la utilización de un diafragma flexible, el cual es un componente estructural cuya función es transmitir las fuerzas tanto horizontales como verticales hacia vigas y columnas, además de permitir deformaciones axiales así como flexiones debido a las cargas asignadas a los mismos.

Podrán clasificarse como diafragma flexible aquellas estructuras que cumplan con alguna de las siguientes características.

- Cuando la rigidez en su plano sea menor a la de una losa equivalente de concreto armado de 4cm de espesor y la relación largo/ancho no sea mayor de 4.5.
- Cuando un número significativo de plantas tenga entrantes cuya menor longitud exceda el cuarenta por ciento de la dimensión del menor rectángulo que inscribe a la planta, medida paralelamente a la dirección del entrante; o cuando el área de dichos entrantes supere el treinta por ciento del área del citado rectángulo circunscrito.
- Cuando las plantas presenten un área total de aberturas internas que rebasen el veinte por ciento del área bruta de las plantas.
- Cuando existan aberturas prominentes adyacentes a planos sismorresistentes importantes o, en general, cuando se carezca de conexiones adecuadas con ellos.
- Cuando en alguna planta el cociente largo/ancho del menor rectángulo que inscriba a dicha planta sea mayor que 5.

El Método de Análisis Dinámico Espacial con Diafragma Flexible es una alternativa para el análisis de estructuras irregulares que cumplan con la descripción de diafragma flexible.

Se empleará la técnica de elementos finitos¹¹ para modelar las estructuras, a fin de representar de manera adecuada su flexibilidad. La flexibilidad del sistema de piso puede influir en la distribución y magnitud de las fuerzas.

El método plantea la aplicación de una torsión adicional la cual contempla los efectos de excentricidades accidentales y de la componente rotacional del terreno a través del desplazamiento del centro de masas en un 3% de la mayor dimensión del edificio en cada dirección.

II.6 VARIABLES DE ESTUDIO

II.6.1 ACERO DE REFUERZO LONGITUDINAL.

Las columnas deben ser diseñadas para resistir a flexión las cargas axiales mayorada, dichas cargas determinaran el acero de refuerzo longitudinal de la misma.

٠

¹¹ El método de los elementos finitos es una "herramienta de análisis aproximado" que permite la resolución de ecuaciones diferenciales y contempla el dividir un cuerpo continuo en un número finito de elementos unidos entre sí por una serie de puntos denominados nodos; para el conocimiento del comportamiento de dicho cuerpo se procede a la interpolación de los valores obtenidos en los nodos.

La norma 1753:2006 establece que la cuantía geométrica ρ no será menor que 0,01 ni mayor que 0,06

II.6.2 DERIVA.

Es definida por el Ing. Mario Paparoni como una limitante que suele atribuirse a la estructura, a fin de aminorar los daños en las tabiquerías frágiles e indirectamente obliga al proyectista a utilizar dimensiones de miembros que sean adecuadas tanto para la estabilidad general del edificio como para la limitación del movimiento excesivo de los pisos. Por otra parte, se aumenta indirectamente el coeficiente de seguridad a carga vertical pura del edificio, condición necesaria para el debido desempeño sismorresistente.

La norma 1756:2001 define la deriva δ_i como la diferencia de los deslazamientos laterales totales entre dos niveles o pisos consecutivos.

$$\delta_i = \Delta_i - \Delta_{i-1}$$
Deriva. (Ec. No 5)

$$\Delta_i$$
=0.8 R Δ_{ei} (Ec. No 6)
Desplazamiento lateral total del nivel_i.

Donde:

R= factor de reducción.

 Δ_{ei} = Desplazamiento lateral del nivel.

El valor de la deriva vendrá limitado por:

Tabla N° 1 Valores limites de $:\frac{\delta_i}{(h_i - h_{i-1})}$

TIPO Y DISPOSICION DE LOS	EDIFICACIONES			
ELEMENTOS NO ESTRUCTURALES	GRUPO A	GRUPO B1	GRUPO B2	
Susceptibles de sufrir daños por deformaciones de la estructura.	0.012	0.015	0.018	
No susceptibles de sufrir daños por deformaciones de la estructura.	0.016	0.020	0.024	

Fuente: Edificaciones Sismorresistentes; Tabla 10.1. norma COVENIN 1756:2001.

II.6.3 FUERZA CORTANTE BASAL.

Se refiere a la fuerza cortante horizontal originada por las acciones sísmicas en el nivel de base.

$$V_0 = \mu A_d W \qquad (Ec. No 7)$$

Fuerza cortante basal.

Donde:

 A_d = Ordenada del espectro.

W = Peso total de la edificación por encima del nivel de base.

 μ = Mayor de los valores dados por:

$$\mu = 1.4 \left[\frac{N+9}{2N+12} \right]$$

$$\mu = 0.80 + \frac{1}{20} \left[\left[\frac{T}{T^*} - 1 \right] \right]$$

Donde:

N= Numero de niveles.

T = Periodo fundamental.

 $T^* = m$ áximo periodo en el intervalo donde los espectros normalizados tienen un valor constante.

CAPÍTULO IIIMARCO METODOLÓGICO

El presente trabajo de grado se desarrolló de manera práctica a través del uso del programa de computación ETABS, para ello y con el fin de comprobar la influencia del Método de Análisis Dinámico Espacial con Diafragma Flexible en el diseño de estructuras de planta irregular se procedió a:

III.1 DISEÑO DE LAS ESTRUCTURAS EN PLANTA:

En cumplimiento de los parámetros descritos en la Norma de Edificaciones Sismorresistentes 1756:2001 para Diafragma Flexible y señalados en el punto cinco (5) del Capítulo II, Marco Teórico, se seleccionaron cuatro (4) tipos de estructuras:

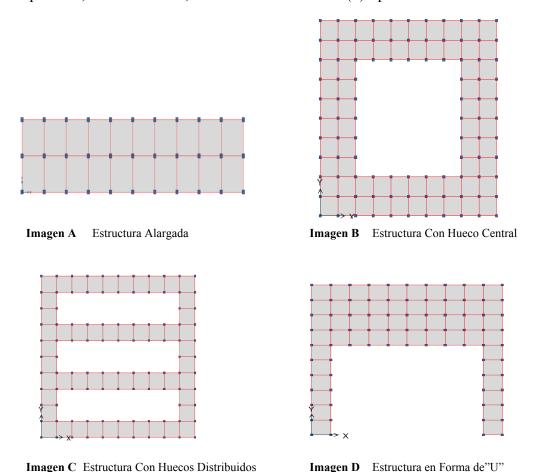


Fig. Nº 8: Modelos de planta de estructuras

A su vez, dichas estructuras están sub-divididas de acuerdo a su relación largo—ancho para las alargadas y porcentaje de abertura para aquellas con hueco central, distribuidos y en forma de "U".

III.2 DISEÑO DE VIGAS Y COLUMNAS:

Las columnas se diseñan a través del método del continuo¹²:

III.2.1 CÁLCULO DEL PORCENTAJE DE ÁREA PORTANTE (W)

$$w = \frac{G * H}{N_y * F_c}$$

Donde:

G = Peso unitario del edificio (350 kg/cm²)

H = Altura del edificio en metros desde el nivel de la calle hasta el techo

 N_v = Carga especifica o coeficiente de pre-dimensionamiento (0,20)

F_c = Resistencia característica del concreto a compresión 250 kg/cm²

III.2.2 ÁREA PORTANTE MÍNIMA POR CARGA VERTICAL

$$a = w * A$$

Donde,

$$A = b * h$$

Siendo,

A = Área de la planta

III.2.3 ÁREA DE CADA COLUMNA

$$a_i = \frac{a}{n}$$

Siendo n, el número total de columnas en la planta.

III.2.4 DIMENSIÓN ESTIMADA DE CADA COLUMNA

$$L_i = \left(a_j\right)^{1/2}$$

Por su parte, la altura de las vigas sin el recubrimiento vendrá dada por:

¹² Gutiérrez, Arnaldo. (2009). Apuntes Manuscritos de Clase de Proyectos de Estructuras de Concreto. Universidad Católica Andrés Bello. Facultad de Ingeniería.

$$H_{min} = \frac{L_n}{14}$$

Y la base será 1,5 veces la altura total de la viga.

III.3 ALTURA DE LAS ESTRUCTURAS:

Con el fin de evaluar estructuras con gran vulnerabilidad ante la ocurrencia de un sismo, se diseñaron todas las edificaciones con una altura de 30 metros (10 pisos de 3 metros cada uno).

III.4 LOSAS DE PISO:

Se fijaron para todas las estructuras losas macizas cuyo espesor fue calculado acorde a la ecuación 9-18 para espesores de placas con vigas entre apoyos de la norma venezolana 1753:2006 Proyecto y Construcción de Obras en Concreto Estructural.

$$h = \frac{\ln\left(0.8 + \frac{fy}{14000}\right)}{36 + 9\beta}$$
 (Ec. No 8)

Espesor de losa maciza.

Fuente: norma venezolana 1753:2006 Proyecto y construcción de obras en concreto estructural.

III.5 ESPECTRO DE DISEÑO:

Fig. Nº 9: Espectro de Diseño

Para la creación del espectro de diseño se hizo uso de las especificaciones de la Norma Sismorresistente 1756:2001.

- Ubicación: Distrito Federal. Zona sísmica 5
- Tipo de suelo: Suelos blandos/sueltos, forma espectral S3, factor de corrección 0.80
- Clasificación según el uso: Grupo B2, edificaciones de uso público o privado, de baja ocupación.

- Nivel de Diseño: 3
- Sistema estructural Tipo I: Estructuras capaces de resistir la totalidad de las acciones sísmicas mediante vigas y columnas, constituidos por pórticos.
- Factor de reducción de respuesta: seis (6)

Si bien es verdad que estamos trabajando con estructuras de tipo irregular, se emplea para el espectro de diseño la característica regular, a fin de mantener un factor de reducción de respuesta constante y evitar diferentes minoraciones del mismo en función de la estructura.

III.6 MANEJO DEL PROGRAMA ETABS:

Se generó el modelo de cada estructura con el uso del programa estructural ETABS, el cual es de sencillo y práctico manejo, donde vienen definidos los ejes coordenados para las principales direcciones, X, Y, Z, así como también, un sistema de grillas que delimita a los pórticos de la estructura, números de pisos y altura de entre piso, permitiendo una visibilidad óptima en el desarrollo de los modelos.

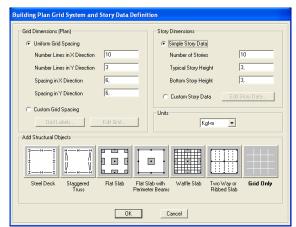


Fig. Nº 10: Especificaciones de distancia entre grillas, número de pisos y altura.

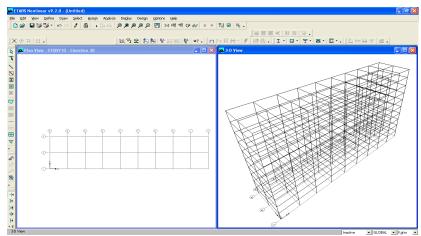


Fig. Nº 11: Sistema de Grillas

Tabla N 2 Espe	cificaciones de	ias propicuau	is uc ios materi
Masa por unidad de volumen	254,	842	kgf/m ²
Peso por unidad de volumen	2.500	,000	kgf/m ³
Módulo de elasticidad	253.10	00,00	kgf/cm ²
Tensión cedente para el acero de refuerzo, fy	4.200	0,00	kgf/cm ²
Resistencia del concreto en compresión, f'c	250	,00,	Kgf/cm ²
Relación de poiss	on	0,	20

Tabla Nº 2 Especificaciones de las propiedades de los materiales.

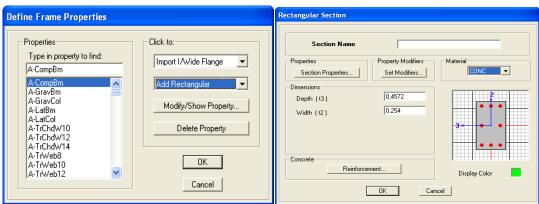


Fig. Nº 12: Definición de las secciones de los sistemas estructurales

Las vigas, columnas y losa se definen con las dimensiones obtenidas en el pre-diseño realizado manualmente. Posteriormente, son asignadas mediante los comandos de diseño respectivos para cada tipo de elemento (Ver Fig. 13).

Las vigas y columnas son verificadas por el programa y este se encarga de calcular la cantidad de acero de refuerzo longitudinal. En el caso de las columnas, el número de barras de acero longitudinal se calcula manualmente de manera tal que el concreto quede confinado, respetando el recubrimiento y la separación mínima entre las cabillas para así ser asignado a la sección. La losa, como se explicó anteriormente, es maciza con espesor calculado según la norma, asignándose la característica de *shell*, a fin de tomar en cuenta las deformaciones dentro y fuera de su plano semejando lo que sucede en la realidad.

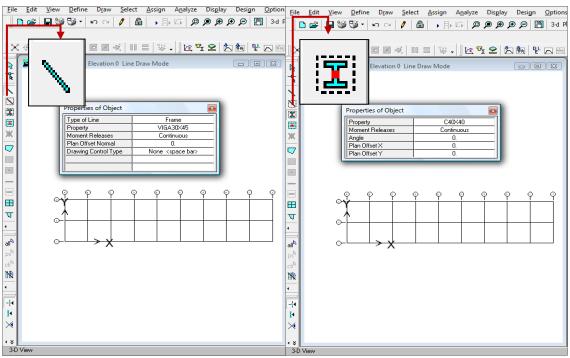


Imagen A Vigas Imagen B Columnas

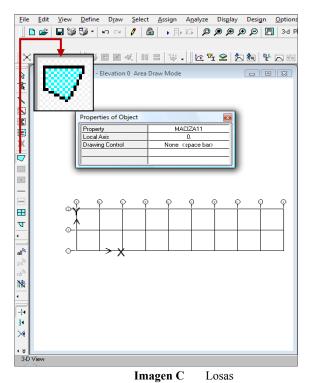


Fig. Nº 13: Comandos para la asignación de elementos

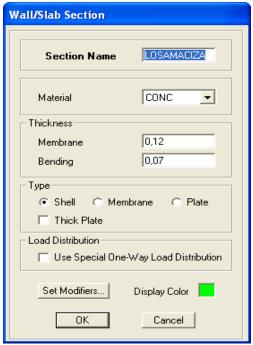


Fig. Nº 14: Diseño de Losa

Se definen tres tipos de cargas: carga permanente, carga variable y carga movida, siendo esta última la que será utilizada a fin de generar el movimiento del centro de masa en un 3% de las dimensiones de la planta.

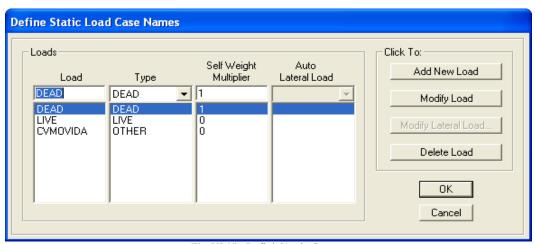


Fig. N° 15: Definición de Cargas

A cada piso se le asigna una carga variable de 300 Kg/m², correspondiente a lo establecido por la norma Venezolana Criterios y Acciones Mínimas para el Proyecto de Edificaciones 2002-88 y una carga permanente de 270 Kgf/m², correspondiente a:

- Tabiquería: 150 Kgf/m²
- Acabado y friso:120 Kgf/m²

Se debe resaltar que para carga permanente el programa añade a los 270 Kgf/m² el peso de la estructura completa, incluyendo el peso de la losa maciza, vigas y columnas.

La carga movida, asociada a la carga variable total del piso, es distribuida en paños específicos de la estructura, en todos los niveles por igual, originando así el movimiento del centro de masa tal que se desplace simultáneamente tanto en el eje X como en Y.

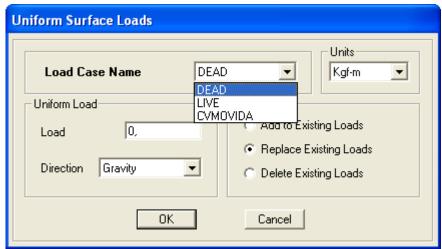


Fig. Nº 16: Asignación del tipo de carga

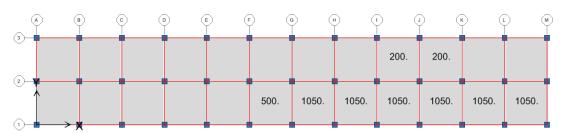


Fig. Nº 17: Ejemplo de la asignación de la carga variable movida.

Las combinaciones de cargas son definidas de acuerdo a la norma 1753:2006 con los siguientes casos de carga:

1,4 CP

1,2 CP + 1,6 CV

1.2 CP + CV + Sismo

0.9 CP + Sismo

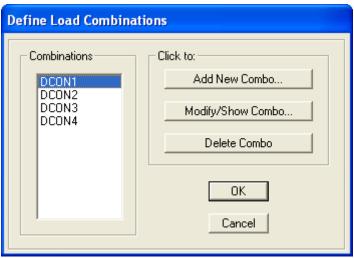


Fig. Nº 18: Combinaciones de Carga

El sismo se introduce a través del espectro de respuesta, el cual se utiliza para el Análisis Modal mediante la Combinación Cuadrática Completa CQC; mientras que la combinación direccional se efectúa mediante el Método de la Raíz Cuadrada de la Suma de los Cuadrados SRSS.

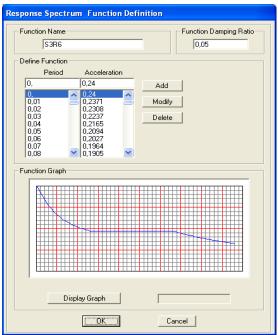


Fig. N° 19: Espectro de Respuesta

Response Spectrum Case Data
Spectrum Case Name SPEC1
Structural and Function Damping
Damping 0,05
Modal Combination
© CQC ◯ SRSS ◯ ABS ◯ GMC
rı r2
Directional Combination
● SRSS
C ABS Orthogonal SF
○ Modified SRSS (Chinese)
Input Response Spectra
Direction Function Scale Factor
U1 S3R6 <u>▼</u> 9,81
U2 S3R6 ▼ 9,81
UZ S3R6 ▼ 6,87
Excitation angle 0,
Eccentricity
Ecc. Ratio (All Diaph.)
Override Diaph. Eccen. Override
OK Cancel

Fig. Nº 20: Especificaciones para el análisis modal y combinación direccional

Una vez generado el modelo y definidas las cargas, espectro de diseño y otros parámetros que son presentados en el desarrollo del presente capítulo, se procede al análisis de la estructura, realizando el Análisis Dinámico Mediante los Vectores de Ritz, el cual se refiere al estudio de estructuras a través de un conjunto de vectores, que toman en cuenta la distribución espacial de la carga dinámica, generando excelentes resultados en el Análisis Estructural.

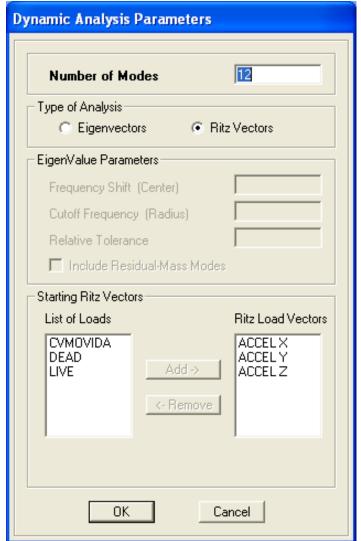


Fig. Nº 21: Asignación del tipo de Parámetros para el análisis dinámico

Posterior al análisis de la estructura, se procede al diseño de la misma a fin de verificar las dimensiones previamente fijadas para las vigas y columnas, así como también, los valores de deriva, corte basal, acero longitudinal en columnas, el cumplimiento del principio de columna fuerte - viga débil y las condiciones de corte en las juntas entre otros parámetros.

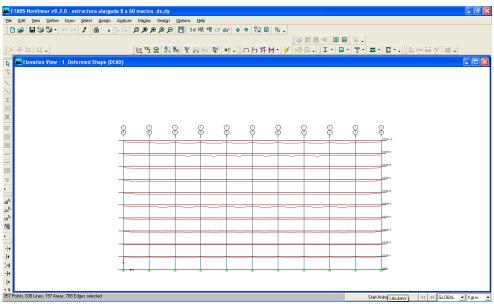


Fig. N° 22: Imagen de la deformada de la estructura

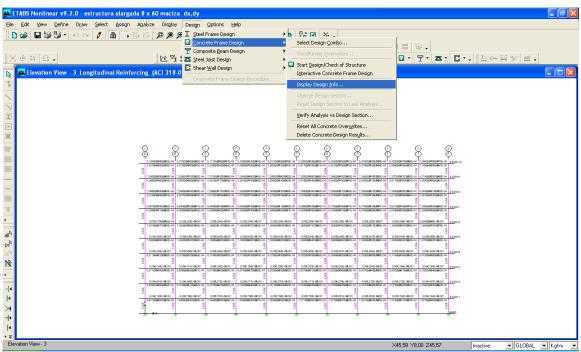


Fig. Nº 23: Verificación de resultados del análisis de la estructura

Estos resultados pueden ser obtenidos mediante tablas y/o gráficos de la siguiente manera:

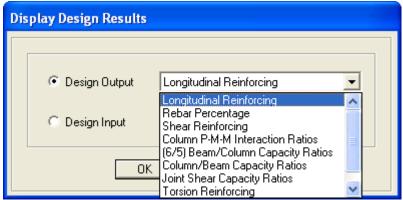


Fig. N° 24: Resultados gráficos

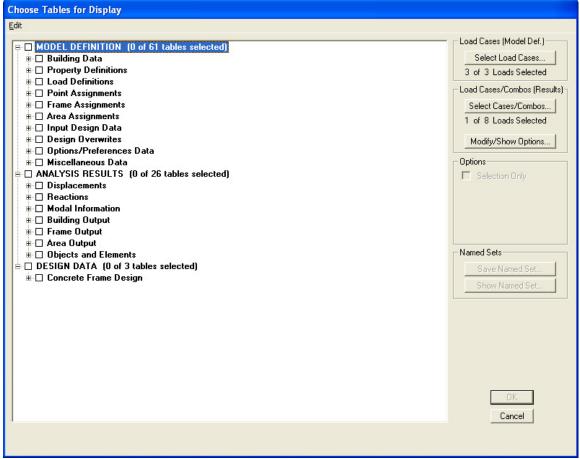


Fig. N° 25: Resultados en tablas

El método de análisis en estudio establece que el centro de masa de cada piso se traslade un 3% del mayor lado de cada dirección principal de la estructura en las cuatro combinaciones de desplazamientos, por ello es fundamental el cálculo del centro de masas de la estructura antes y después colocar la carga variable movida.

Para las estructuras originales sin desplazamiento del centro de masa, se define en fuente de las masas, carga variable y carga permanente y, para las estructuras con desplazamientos del centro de masa se define carga permanente y carga variable movida.

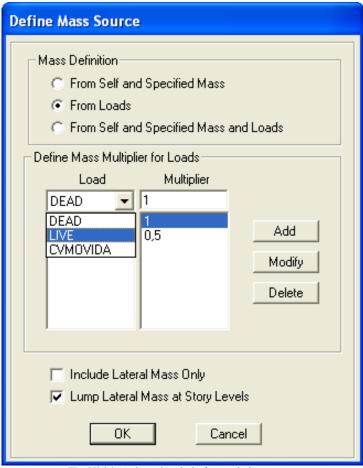


Fig. Nº 26: Asignación de la fuente de las masas.

Por otra parte se asigna diafragma y junta rígida a todos los pisos para el cálculo del centro de masas, mientras que para la obtención de deriva, corte basal y acero longitudinal, así como en la verificación del diseño se trabaja con diafragma flexible.

Fig. Nº 27: Asignación de diafragma

En resumen, una vez que han sido calculados de forma manual las dimensiones de las vigas y columnas y realizado el diseño en planta de la estructura se procede a su generación en el programa, para ello deben ser definidos los materiales, incluyendo la resistencia del concreto que para fines de este trabajo se empleó 250 Kg/cm², cargas, secciones, métodos de análisis a utilizar para luego ser analizadas y verificar que cumplan con los lineamientos descritos por las diversas normas que rigen la construcción en Venezuela.

Seguidamente, se obtiene el centro de masas de la estructura original, luego de ello, se comienza a asignar la carga variable movida en ciertas zonas de la planta de modo que se pueda garantizar el movimiento del centro de masas de acuerdo a lo establecido en la norma y se vuelve a calcular el centro de masas de cada piso.

Se analiza y diseña la estructura con diafragma flexible con el centro de masas sin mover y luego de ser movidos obteniendo en ambos casos valores de deriva, corte basal y acero longitudinal, los cuales son comparados a fin de evaluar la influencia de la aplicación del Método de Análisis Espacial con Diafragma Flexible.

CAPÍTULO IVDESCRIPCIÓN DE MODELOS

El presente Trabajo de Grado se desarrolla y fundamenta en el estudio de la influencia de la aplicación del Método de Análisis Dinámico Espacial con Diafragma Flexible en un número finito de estructuras, con características similares más no iguales, es por ello que a continuación se presenta los detalles de cada estructura en estudio.

IV.1 ESTRUCTURAS ALARGADAS

IV.1.1 DIMENSIONES 8 X 60 M

Tabla N° 3 Dimensión de los elementos que conforman la estructura alargada 8 x 60 m

Elemento	Dimensión	Unidad
Planta	8 x 60	m
Pórticos	4 x 6	m
Vigas	40 x 60	cm
Columnas	60 x 60	cm
Espesor de losa	12	cm

Fig. Nº 28: Planta de la estructura alargada 8 x 60 m

Fig. N° 29: Vista tridimensional de la estructura alargada 8 x 60 m

IV.1.2 DIMENSIONES 10 X 60 M

Tabla Nº 4	Dimensión de los elementos a	ua conforman la actructura	alargada 10 v 60 m
Tabia N° 4	Dimension de los elementos d	ue conforman la estructura	alargada 10 x ou m

Elemento	Dimensión	Unidad
Planta	10 x 60	m
Pórticos	5 x 5	m
Vigas	40 x 60	cm
Columnas	60 x 60	cm
Espesor de losa	11	cm

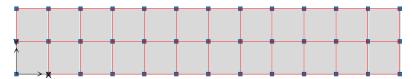


Fig. N° 30: Planta de la estructura alargada 10 x 60 m

Fig. N° 31: Vista tridimensional de la estructura alargada $10 \times 60 \text{ m}$

IV.1.3 DIMENSIONES 12 X 60 M.

Tabla N° 5	Dimensión de los elementos que	e conforman la estructura alargada	12 x 60 m

Elemento	Dimensión	Unidad
Planta	12 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

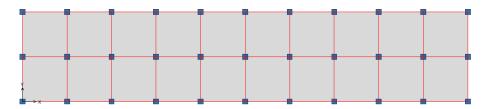


Fig. N° 32: Planta de la estructura alargada 12 x 60 m

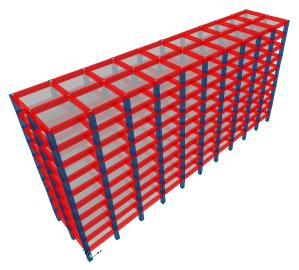


Fig. Nº 33: Vista tridimensional de la estructura alargada 12 x 60 m

IV.2 ESTRUCTURAS CON HUECO CENTRAL

IV.2.1 PORCENTAJE DE ABERTURA FR = 0,36

$$FR = rac{ ext{\'A}rea\ hueco}{ ext{\'A}rea\ total}$$

Tabla N° 6 Dimensión de los elementos que conforman la estructura con hueco central FR = 0,36

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

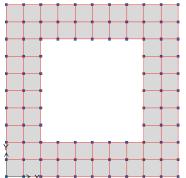


Fig. N° 34: Planta de la estructura con hueco central FR = 0,36

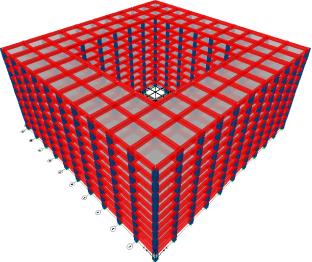


Fig. N° 35: Vista tridimensional de la estructura con hueco central FR = 0,36

IV.2.2 PORCENTAJE DE ABERTURA FR = 0,64

Tabla N° 7	Dimensión de los elementos	que conforman la estructura	con hueco central $FR = 0.64$

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	65 x 65	cm
Espesor de losa	13	cm

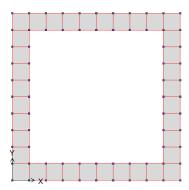


Fig. N° 36: Planta de la estructura con hueco central FR = 0,64

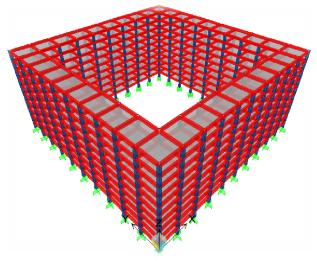


Fig. N° 37: Vista tridimensional de la estructura con hueco central FR = 0,64

IV.3 ESTRUCTURAS CON HUECOS DISTRIBUIDOS

IV.3.1 PORCENTAJE DE ABERTURA FR = 0,24

 Tabla Nº 8
 Dimensión de los elementos que conforman la estructura con huecos distribuidos FR = 0,24

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

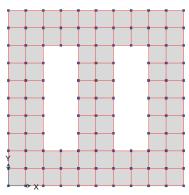


Fig. N° 38: Planta de la estructura con huecos distribuidos FR = 0,24

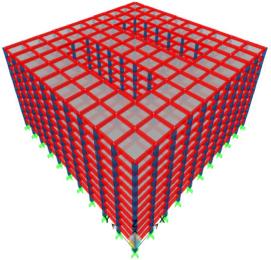


Fig. N° 39: Vista tridimensional de la estructura con huecos distribuidos FR = 0,24

IV.3.2 PORCENTAJE DE ABERTURA FR = 0,36

Tabla Nº 9 Dimensión de los elementos que conforman la estructura con huecos distribuidos FR = 0,36

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

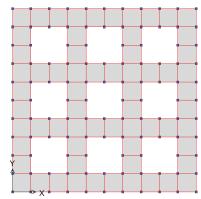


Fig. N° 40: Planta de la estructura con huecos distribuidos FR = 0,36

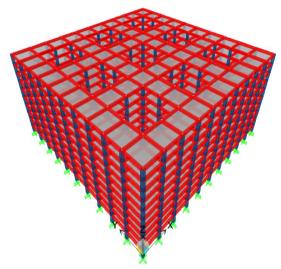


Fig. N° 41: Vista tridimensional de la estructura con huecos distribuidos FR = 0,36

IV.3.3 PORCENTAJE DE ABERTURA FR = 0,48

Tabla N° 10	Dimensión de los elementos o	que conforman la estructura con h	uecos distribuidos FR = 0.48
-------------	------------------------------	-----------------------------------	------------------------------

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

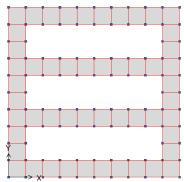


Fig. N° 42: Planta de la estructura con huecos distribuidos FR = 0,48

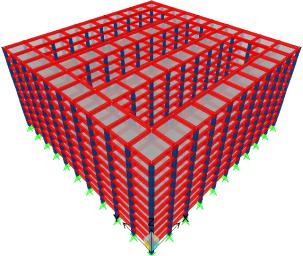


Fig. N° 43: Vista tridimensional de la estructura con huecos distribuidos FR = 0,48

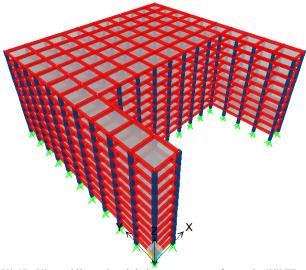
IV.4 ESTRUCTURAS EN FORMA DE "U"

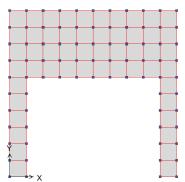
IV.4.1 PORCENTAJE DE ABERTURA FR = 0.32

Tabla Nº 11 Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0,32

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

Fig. N° 44: Planta de la estructura en forma de "U" FR = 0,32




Fig. N° 45: Vista tridimensional de la estructura en forma de "U" FR = 0,32

IV.4.2 PORCENTAJE DE ABERTURA FR = 0,48

Tabla N° 12 Dimension de los elementos que comorman la estructura en forma de 0 FR = 0	Tabla Nº 12	Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0.48
---	-------------	--

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	40 x 60	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

Planta de la estructura en forma de "U" FR = 0.48

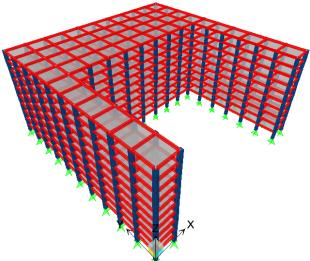


Fig. N° 46: Vista tridimensional de la estructura en forma de "U" FR = 0,48

IV.4.3 PORCENTAJE DE ABERTURA FR = 0,64

Tabla N° 13 Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0,64

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	65 x 65	cm
Espesor de losa	13	cm

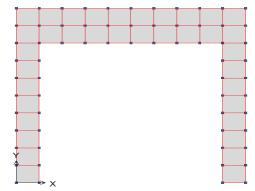


Fig. N° 47: Planta de la estructura en forma de "U" FR = 0,64

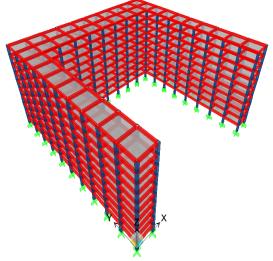


Fig. N° 48: Vista tridimensional de la estructura en forma de "U" FR = 0,64

CAPÍTULO V RESULTADOS Y ANÁLISIS

A continuación se presentan los resultados obtenidos más relevantes para cada estructura y para cada parámetro de estudio, tras ser evaluadas las estructuras con y sin los movimientos de masas planteados por la norma 1756:2001 para la aplicación del Método de Análisis Dinámico Espacial con Diafragma Flexible demostrando de qué forma y en qué rango oscilaron las variaciones de los parámetros evaluados; siendo estos deriva, corte basal y acero longitudinal.

Los resultados obtenidos para cada estructura se encuentran con mayor detalle en la sección referente a Anexos.

V.1 RESULTADOS ESTRUCTURAS ALARGADAS

Tabla N° 14 Resultados de Deriva Estructuras Alargadas.

Estructuras Alargadas	Deriva	
Estructuras Arargadas	X	y
8 x 60 m	Aumenta entre un 0,47% y 1,91%	Aumenta entre un 29,76% a 33,81 %
10 x 60 m	Aumenta entre un 0,73% a 1,49 %	Aumenta entre un 30,47% a 35,98%
12 x 60 m	Disminuye entre un 6,31% y 7,30%	Aumenta entre un 23, 19% y 28,47%

Tabla Nº 15 Resultados de Corte Basal Estructuras Alargadas.

F-4	Corte Basal		
Estructuras Alargadas	X	y	
8 x 60 m	Disminuye entre un 0,26% y 0,30%	Disminuye entre un 8,26% y 9,30%	
10 x 60 m	Aumenta solo en el piso 1 en un 0,22% y disminuye para los pisos restantes entre un 0,27% y 0,41%	Disminuye entre un 7,44% y 9,02%	
12 x 60 m	Disminuye entre un 7,90% y 8,32%	Disminuye entre un 12,42% y 12,69%	

Tabla Nº 16 Resultados de Acero Longitudinal Estructuras Alargadas.

Acero Longitudinal para estructuras Alargadas			
8 x 60 m 10 x 60 m 1		12 x 60 m	
La mayor variación para el	La mayor variación para el	La mayor variación	
desplazamiento de masas	desplazamiento de masas	para el desplazamiento	
positivo en ambas	positivo en ambas	de masas positivo en	
direcciones es de 52,75% y	direcciones es de 53,38% y	ambas direcciones es de	
se encuentra entre dos	se ubica en una columna de	37,58% y se ubica en	
columnas de esquina.	esquina.	una columna de esquina.	

V.2 RESULTADOS ESTRUCTURAS CON HUECO CENTRAL

 Tabla Nº 17
 Resultados de Deriva Estructuras con Hueco Central.

Estructuras con	Deriva	
Hueco Central	X	y
FR = 0.36	Aumenta entre un 1,03% y 16,67%.	Aumenta entre un 1,03% y 16,67%.
FR = 0,64	Aumenta entre un 0,57% y 14,96%, solo en el piso 10 disminuye en un 0,57%.	Aumenta entre un 0,57% y 14,96%, solo en el piso 10 disminuye en un 0,57%.

 Tabla Nº 18
 Resultados de Corte Basal Estructuras con Hueco Central.

.Estructuras con	Corte Basal		
Hueco Central	X	y	
FR = 0.36	Disminuye entre un 3,41% y 4,70%	Disminuye entre un 3,41% y 4,70%	
FR = 0,64	Disminuye entre un 2,41% y 4,30%	Disminuye entre un 2,41% y 4,30%	

 Tabla Nº 19
 Resultados de Acero Longitudinal Estructuras con Hueco Central.

Tubia 11 15 Itesatia dos de 1	Reero Eongituaniai Estructuras con Tracco Centrai.	
Acero Longitudinal para estructuras con Hueco Central		
FR = 0.36 $FR = 0.64$		
La mayor variación para el	La mayor variación para el	
desplazamiento de masas	desplazamiento de masas	
positivo en ambas direcciones	positivo en ambas direcciones	
es de 42,76% y se sitúa en la	es de 38,00% y se sitúa en la	
columna de esquina.	columna de esquina.	

V.3 RESULTADOS ESTRUCTURAS CON HUECOS DISTRIBUIDOS

Tabla Nº 20 Resultados de Deriva Estructuras con Huecos Distribuidos.

Estructuras con	Deriva	
Huecos Distribuidos	X	y
FR = 0,24	Aumenta entre un 4,88% y 20,02%	Aumenta entre un 14,38% y 19,66%
FR = 0.36	Aumenta entre un 9,97% y 20,74%	Aumenta entre un 9,97% y 20,74%
FR = 0,48	Aumenta entre un 5,39% y 16,36%	Aumenta entre un 2,59% y 18,95%. En el piso 10 no presentan variación.

Tabla Nº 21 Resultados de Corte Basal Estructuras con Huecos Distribuidos.

Tabla 14 21 Resultados de Corte Basar Estructuras con fraccos Distributados.		
Estructuras con	Corte Basal	
Huecos Distribuidos	X	у
FR = 0.24	Disminuye entre un 3,68% y 4,60%	Disminuye entre un 4,52% y 6,09%
FR = 0.36	Disminuye entre un 4,28% y 5,45%	Disminuye entre un 4,32% y 5,51%
FR = 0,48	Disminuye entre un 5,35% y 8,21%	Disminuye entre un 1,45% y 3,62%

Tabla Nº 22 Resultados de Acero Longitudinal Estructuras con Huecos Distribuidos.

Acero Longitudinal para estructuras con Huecos Distribuidos		
FR = 0.24	FR = 0.36	FR = 0.48
La mayor variación para el desplazamiento de masas positivo en ambas direcciones es de 48,99% y se encuentra consecutiva a una columna de esquina.	La mayor variación para el desplazamiento de masas positivo en ambas direcciones es de 48,95% y se encuentra consecutiva a una columna de esquina.	La mayor variación para el desplazamiento de masas positivo en ambas direcciones es de 43,64% y se encuentra consecutiva a una columna de esquina.

V.4 RESULTADOS ESTRUCTURAS EN FORMA DE "U"

Tabla N° 23 Resultados de Deriva Estructuras en Forma de "U".

	N° 23 Resultados de Deriva Estructuras en Forma de "U".	
Estructuras en	Deriva	
Forma de "U"	X	Y
FR = 0,32	Los desplazamientos de masas en la dirección "y" positiva aumenta entre un 1,13% y 8,88% en los pisos 1 y 2; disminuyendo en un 2,83% y 6,49% en los pisos restantes. para el desplazamiento en la dirección "y" negativo aumenta entre 11,34% y 26,06%	Los desplazamientos de masas en la dirección "y" positiva aumenta entre un 15,81% y 17,37%. Para el desplazamiento en la dirección "y" negativo aumenta entre 22,67% y 24,62%
FR = 0,48	EL desplazamiento de masas en la dirección "y" positiva aumenta entre 1,39% y 7,62% en el piso 1 y 2, disminuye en un 5,80% y 9,01% en los pisos restantes. para el desplazamiento en la dirección "y" negativo aumenta entre 12,12% y 17,98%	Los desplazamientos de masas en la dirección "y" positiva aumenta entre un 8,25% y 9,82%. Para el desplazamiento en la dirección "y" negativo aumenta entre 15,72% y 17,77%
FR = 0,64	Los desplazamientos de masas en la dirección "y" positiva disminuyen en un 3,83% y 11,08%. Para el desplazamiento en la dirección "y" negativo aumenta entre 23,07% y 27,05%	Los desplazamientos de masas en la dirección "y" positiva aumenta entre un 3,82% y 7,62% solo disminuye en el piso 10 en un 3,79%. Para el desplazamiento en la dirección "y" negativo aumenta entre 13,28% y 15,90% manteniéndose constante la deriva en el piso 10.

Tabla N° 24 Resultados de Corte Basal Estructuras en Forma de "U".

Estructuras en	Corte Basal		
Forma de "U"	X	y	
FR = 0,32	En la dirección "y" positiva disminuye entre un 0,36% y 1,61%. Para el	En la dirección "y" positiva disminuye entre un 6,85% y 9,19%. Para el	
	desplazamiento en la dirección "y" negativo disminuye entre 6,11% y 7,90%	desplazamiento en la dirección "y" negativo disminuye entre 4,40% y 5,40%	
FR = 0,48	En la dirección "y" positiva aumenta entre un 0,54% y 2,42%. Para el desplazamiento en la dirección "y" negativo disminuye entre 7,25% y 8,09%	En la dirección "y" positiva disminuye entre un 6,14% y 9,35%. Para el desplazamiento en la dirección "y" negativo disminuye entre 3,79% y 7,98%	
FR = 0,64	En la dirección "y" positiva aumenta entre un 6,85% y 8,72%. Para el desplazamiento en la dirección "y" negativo disminuye entre 9,19% y 11,28%	En la dirección "y" positiva disminuye entre un 5,76% y 7,27%. Para el desplazamiento en la dirección "y" negativo disminuye entre 3,38% y 5,56%	

 Tabla Nº 25
 Resultados de Acero Longitudinal Estructuras con Forma de "U".

Acero Longitudinal para estructuras en Forma de "U"		
FR = 0.32	FR = 0.48	FR = 0.64
		La mayor variación para el
La mayor variación para		desplazamiento de masas
el desplazamiento de	La mayor variación para el	positivo la dirección "y" es
masas positivo la	desplazamiento de masas	de 35,69%, mientras que
dirección "y" es de	positivo la dirección "y" es	para desplazamiento
43,07%, mientras que para	de 28,62%, mientras que	negativo en la dirección "y"
el desplazamiento	para el desplazamiento	la mayor variación es de
negativo en la dirección	negativo en la dirección "y"	47,95%, ambas se
"y" la mayor variación es	la mayor variación es de	encuentran en una columna
de 59,94%, ambas se	41,54%, ambas se	de esquina. A su vez en
encuentran en una	encuentran en una columna	para este desplazamiento se
columna consecutiva a	consecutiva a una esquina.	encontró que a mitad de
una de esquina.		columna presentaba una
		variación de 54,32%.

En el caso del acero longitudinal, se presenta la ubicación visual de las columnas con mayor porcentaje de variación para la estructura que se vio más afectada; para el resto de las estructuras ver Anexos.

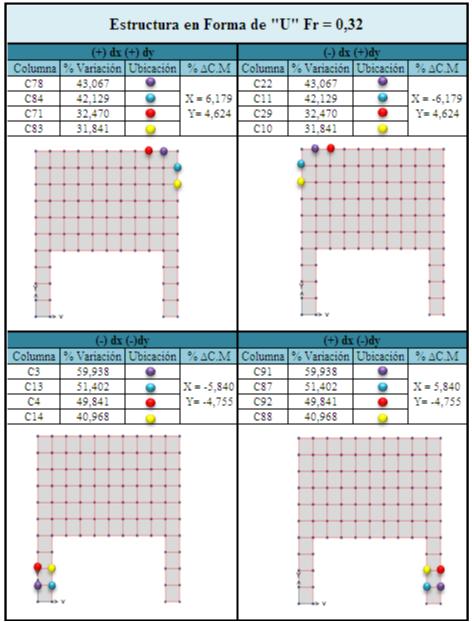


Fig. N° 49: Resultados Acero Longitudinal Estructura en Forma de "U" FR =0,32.

Al realizar los movimientos del centro de masas se observó que en las estructuras simétricas con respecto a ambos ejes, resultan valores exactamente iguales en deriva, corte basal y acero longitudinal, para los cuatro movimientos del centro de masas, sin embargo, para el caso específico de las estructuras en forma de "U" las cuales sólo tienen simetría respecto al eje "y", los resultados obtenidos difieren para los desplazamientos del centro de masa en el eje "y" positivo y negativo.

V.5 COMPARACIÓN DE PARÁMETROS POR ESTRUCTURA

V.5.1 DERIVA

Estructuras Alargadas

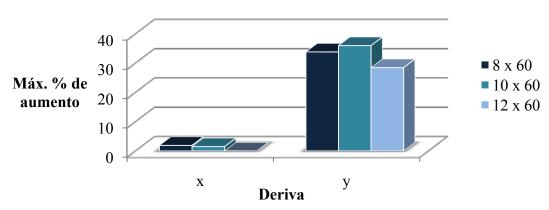


Fig. Nº 50: Gráfico de variación de la deriva en estructuras alargadas.

Las estructuras alargadas presentan mayor variación de la deriva en la dirección "y" (35,98%), debido a que en el eje "x" existe mayor resistencia al movimiento a causa del gran número de pórticos presentes en esta dirección.

A continuación se muestra como varía la deriva en cada nivel para la Estructura 10x60 m para todos los casos de movimiento de masas y sin movimiento, siendo esta la estructura alargada con mayor variación.

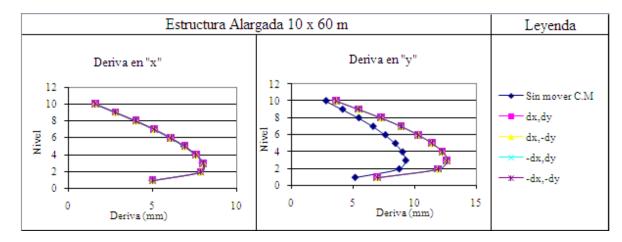
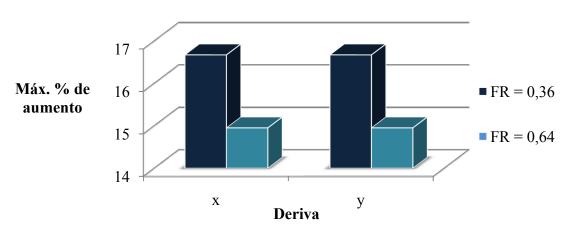



Fig. Nº 51: Gráfico de deriva estructura alargada 10 x 60 m

Estructuras con Hueco Central

 $\textbf{Fig. N}^{\text{o}} \ \textbf{52:} \ \ \textbf{Gráfico de variación de la deriva en estructuras con hueco central.}$

Las estructuras con hueco central presentan igual variación en la deriva en ambas direcciones, debido a que cuentan con el mismo número de pórticos en "x" y "y". La mayor variación es de 16,67% y se encuentra en la estructura con FR = 0,36.

A continuación se muestra como varía la deriva en cada nivel para la Estructura FR = 0,36 para todos los casos de movimiento de masas y sin movimiento, siendo esta la estructura con hueco central con mayor variación.

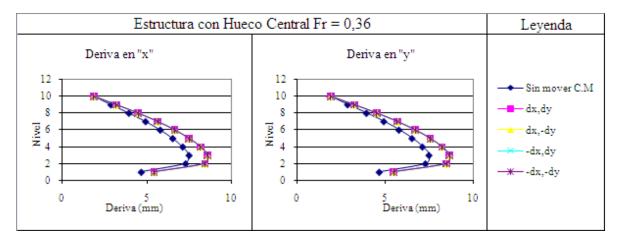


Fig. N° 53: Gráfico de deriva estructura con hueco central FR = 0,36

Estructuras con Huecos Distribuidos

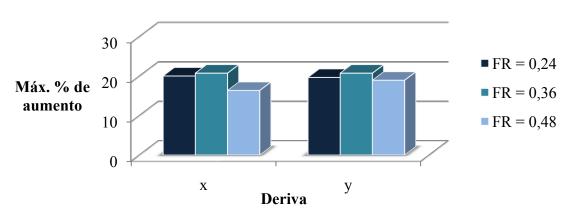


Fig. Nº 54: Gráfico de variación de la deriva en estructuras con huecos distribuidos.

En las estructuras con huecos distribuidos se observa que para aquellas con FR = 0,24 y FR = 0,36, el porcentaje de variación de la deriva es mayor en el eje "x" (20,02% y 20,74% respectivamente), mientras que en el caso de FR= 0,48 la mayor deriva se presenta en el eje "y" (18,95%); debido al número de pórticos presentes en cada dirección.

A continuación se muestra como varía la deriva en cada nivel para la Estructura FR = 0,36 para todos los casos de movimiento de masas y sin movimiento, siendo esta la estructura con huecos distribuidos con mayor variación.

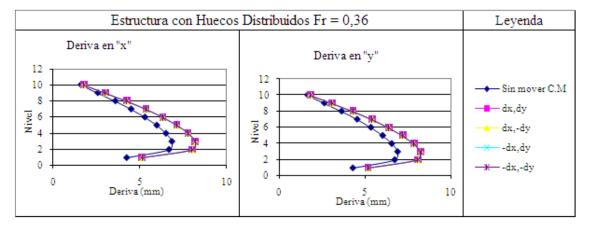


Fig. Nº 55: Gráfico de deriva estructura con huecos distribuidos FR = 0,36

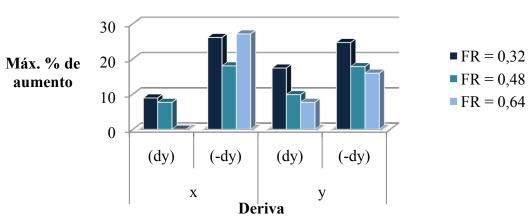


Fig. Nº 56: Gráfico de variación de la deriva en estructuras en forma de "U".

Las estructuras en forma de "U" por no ser simétricas en ambas direcciones, presentan una mayor variación en la deriva, tanto para el eje "x" como para el eje "y" cuando el centro de masas es desplazado en la dirección "y" negativa. Para la deriva en "x", la mayor variación es de 27,05% en la estructura con FR = 0,64, mientras que para la deriva en "y" es de 24,62% para la estructura con FR= 0,32.

A continuación se muestra como varía la deriva en cada nivel para la Estructura FR = 0,64 para todos los casos de movimiento de masas y sin movimiento, siendo esta la estructura en forma de "U" con mayor variación.

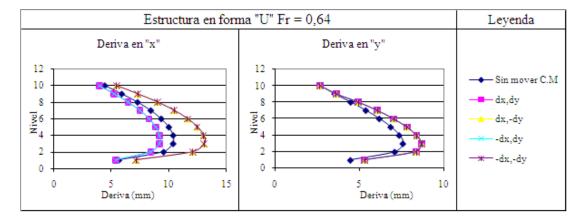


Fig. N° 57: Gráfico de deriva estructura en forma de "U" FR= 0,64

V.5.2 CORTE BASAL

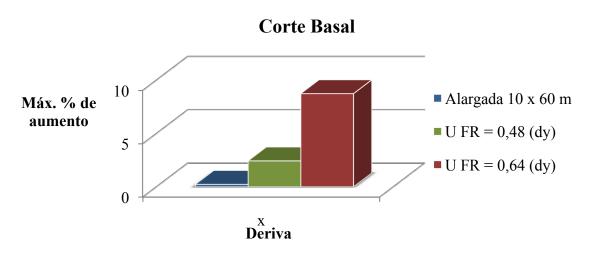


Fig. Nº 58: Gráfico de variación del corte basal.

El corte basal sólo aumenta en la dirección "x" para la estructura alargada de 10 x 60 m (0,22%). Para las estructuras en forma de "U" también aumenta sólo en la dirección "x" en aquellas con FR= 0,48 (2,42%) y FR =0,64 (8,72%), cuando el centro de masas es desplazado en el eje "y" positivo.

El corte basal depende del período de vibración de cada estructura, el cual a su vez depende del desplazamiento que ocurre en cada piso que será menor en la dirección donde la rigidez sea mayor, es decir, en la dirección donde se encuentre el mayor número de pórticos, ocasionando que la aceleración obtenida del espectro de diseño sea mayor y por ende se obtenga un mayor corte basal.

V.5.3 ACERO LONGITUDINAL EN COLUMNAS

Estructuras Alargadas

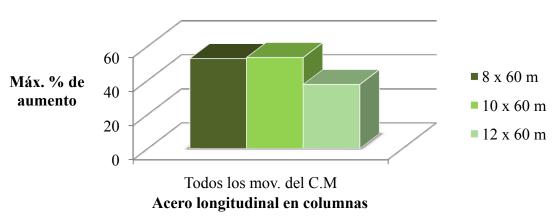


Fig. Nº 59: Gráfico de variación del acero longitudinal en estructuras alargadas.

Nuevamente podemos observar que la estructura con mayor variación es la alargada de 10 x 60 m con un 53,38% y corresponde a una columna de esquina.

Estructuras con Hueco Central

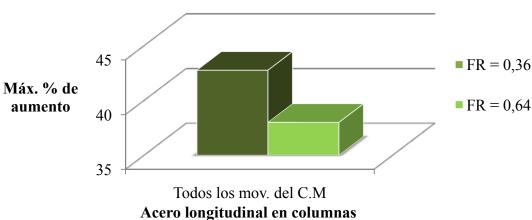


Fig. Nº 60: Gráfico de variación del acero longitudinal en estructuras con hueco central.

Al igual que en el caso de la deriva se observa que la estructura con hueco central FR = 0,36 presenta la mayor variación (42,76%), y esta ocurre en una columna de esquina.

Estructuras con Huecos Distribuidos

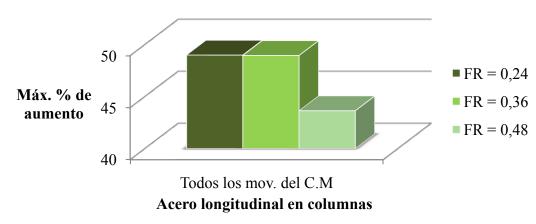


Fig. Nº 61: Gráfico de variación del acero longitudinal en estructuras con huecos distribuidos.

La estructura con huecos distribuidos FR = 0,24 es la que presenta mayor variación (48,99%) y corresponde a una columna consecutiva a una de esquina. Se observa en esta estructura que las columnas de esquina no se encuentran entren las más afectadas por el movimiento de masas, sino las próximas a ellas.

Estructuras en Forma de "U"

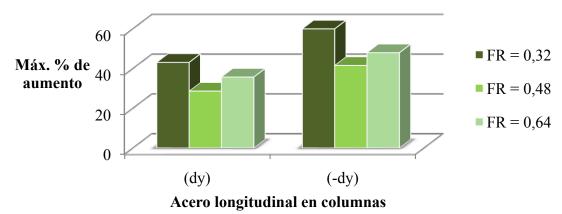


Fig. Nº 62: Gráfico de variación del acero longitudinal en estructuras en forma de "U".

La estructura que presenta la mayor variación es la estructura en forma de "U" con FR = 0,32 dicha variación corresponde a una columna consecutiva a una de esquina, en donde se obtiene para el desplazamiento positivo de la coordenada "y" un 43,07% mientras que para el negativo un 59,94%.

CONCLUSIONES

En Venezuela, se crean y modifican las normas para el diseño de estructuras sismorresistentes en base a registros y daños causados por los movimientos telúricos suscitados en el país y en otros países de alta sismicidad. De igual modo, se fundamentan en la documentación referente a la ingeniería sísmica existente, la cual se establece en los principios de la dinámica estructural, así como en las normas internacionales. Dichas normas se instauran y reforman con el propósito de construir edificaciones más seguras, entre estas se encuentra la COVENIN 1756:2001.

La norma para edificaciones sismorresistentes sugiere el cálculo de estructuras mediante diversas metodologías, cuya selección estará determinada por las características que rijan a la edificación, en especial aquellas referentes a la regularidad de la misma.

Es importante señalar, que el cálculo de un edificio puede resultar muy complejo y tedioso si se realiza mediante métodos convencionales, sin embargo, hoy en día gracias a los avances tecnológicos, las estructuras muy complejas que requieren de especial cuidado pueden ser diseñadas más fácilmente con la ayuda de programas estructurales como el ETABS.

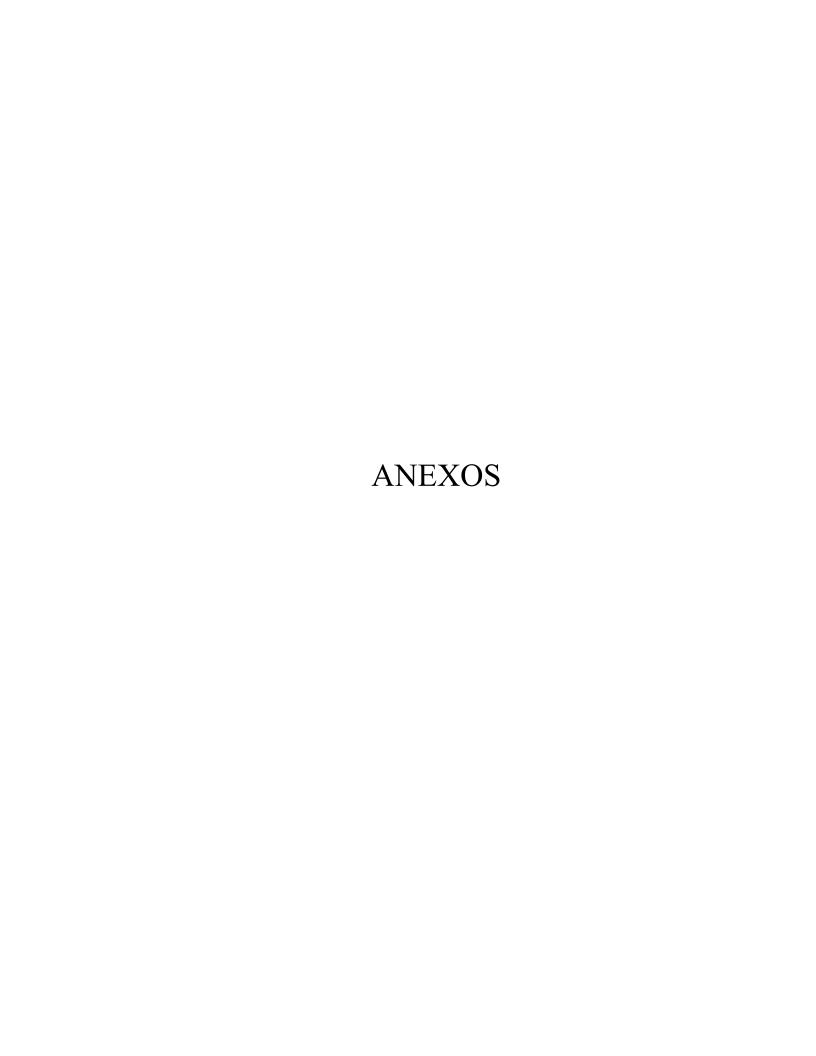
A pesar de que ETABS es una herramienta poderosa que abarca la resolución de los métodos presentes en la norma, para el caso del Método de Análisis Dinámico Espacial con Diafragma Flexible, este permite asignar a la losa diafragma flexible de manera sencilla y práctica, mas no ejecuta directamente el movimiento de masas contemplado por el método para el cálculo de la torsión adicional, por lo que se debe realizar un tanteo gradual en la distribución de las cargas hasta lograr el desplazamiento del centro de masas un 3% de la mayor dimensión en cada eje coordenado tal como lo establece el método.

Al ser evaluada la influencia de la aplicación del Método de Análisis Dinámico Espacial con Diafragma Flexible con respecto a su no aplicación, se observaron variaciones importantes en el acero longitudinal de las columnas, aumentando gradualmente a lo largo de la planta, siendo las más afectadas, las columnas próximas a las de esquinas, ubicadas en los tramos donde se distribuyen las cargas para el movimiento de masas.

Los mayores porcentajes de variación se presentaron para los parámetros de estudio: deriva y acero longitudinal en columnas, con variaciones máximas de 35,98% y 59,94% respectivamente. En el caso del corte basal se obtuvo un 8,72%, sin embargo, la mayoría de las veces disminuyó al ser desplazado el centro de masas de cada piso debido a los cambios en los períodos.

Si es verdad que se encontró una variación considerable en los parámetros estudiados, también se observó que su variación era constante para todos los movimientos para aquellas estructuras simétricas alrededor de sus dos ejes, es por ello que el método en estudio puede ser reducido al cálculo de un sólo caso de los planteados en la norma para el movimiento del centro de masas: mientras que en el caso de estructuras con simetría alrededor de un sólo eje deberá ser desplazado el centro de masas en sentido positivo y negativo en la dirección del eje al cual es simétrico.

Una vez expuesto lo anterior y presentado los resultados obtenidos se encontraron variaciones importantes para los tres parámetros siendo el más afectado el parámetro de Acero longitudinal en columnas por la aplicación de la torsión adicional, es por ello que es importante hacer uso del Método de Análisis Dinámico Espacial con Diafragma Flexible.


RECOMENDACIONES

- Realizar el método de análisis dinámico con diafragma flexible sugerido por la norma COVENIN 1756:2001, para aquellas estructuras irregulares de planta que cumplan con las características de diafragma flexible.
- Para estructuras con simetría en planta alrededor de sus dos ejes coordenadas aplicar solo un caso de los propuestos en la norma para el movimiento del centro de masas de cada piso.
- Para estructuras con simetría en planta alrededor de un solo eje de coordenadas aplicar los casos sugeridos por la norma donde se contemple el desplazamiento positivo y negativo para en el eje alrededor del cual la planta es simétrica.
- Extender éste estudio a estructuras con otro tipo de irregularidades a fin de justificar el uso de los cuatro tipos de desplazamientos del centro de masa de cada piso propuestos por la norma.

REFERENCIAS BIBLIOGRÁFICAS

- Acosta, Emma. Carmona, Alí. (2009). Estrategias para la optimización de estructuras irregulares en plantas. Tesis de Grado, Ingeniería Civil, Universidad Católica Andrés Bello, Caracas.
- 2. Arq. Guevara, Teresa. Ing. Fortul, Edgar.(1993) Descripción de los Modelos Matemáticos Utilizados para Estudiar la Influencia de la Forma de la Planta en la Respuesta de las Edificaciones de Altura Media ante los Terremotos. Memorias del VIII Seminario Latinoamericano de Ingeniería Sismorresistente y Primeras Jornadas Andinas De Ingeniería Estructural. Mérida, Venezuela.
- 3. Crisafulli, Francisco. Villafañe, Elbio (2002). *Espectros De Respuesta Y De Diseño*. Ingeniería Sismorresistente. Universidad Nacional de Cuyo. Facultad de Ingeniería. Argentina.
- 4. Díaz de Vita, Anna. Ogaya, David. (2004). *Análisis Sísmico Aplicado En Edificaciones Irregulares Por Sap2000 Non Linear*. Tesis de Grado, Ingeniería Civil, Universidad Metropolitana, Caracas.
- 5. Frías V, Eduardo. (2004). Aportaciones al Estudio de las Máquinas Eléctricas de Flujo Axial Mediante la Aplicación del Método de los Elementos Finitos. Tesis Doctoral. Departamento de Ingeniería Eléctrica. UPC.
- 6. García Reyes, Luis Enrique (1998). *Dinámica Estructural Aplicada al Diseño Sísmico*. Universidad de los Andes. Facultad de Ingeniería. Bogotá. Colombia.
- 7. Grases, José. (1997). *Diseño Sismorresistente: Especificaciones y Criterios Empleados en Venezuela*. Caracas, Venezuela: Academia de Ciencias Físicas Matemáticas y Naturales. Edición conmemorativa del terremoto del 29 de julio de 1967.
- 8. Grases, José. López, Oscar. Hernández, Julio J. (1984, Caracas). *Edificaciones Sismorresistentes. Manual de Aplicación de la Norma Sísmica*. Fondur.
- Gutiérrez, Arnaldo. (2009). Apuntes Manuscritos de Clase de Proyectos de Estructuras de Concreto. Universidad Católica Andrés Bello. Facultad de Ingeniería.
- 10. Hernández, Julio J. (1995). Consideraciones sobre el tratamiento de las irregularidades en planta, asociadas a la flexibilidad del diafragma. Material para discusión en la Subcomisión de Estructuras.

- 11. Ing. Salinas, Rafael. *Fundamentos del Análisis Dinámico de Estructuras*. Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil
- 12. Nanes G., Mauricio. Análisis de estructuras con sistemas de piso contraventados considerados como diafragmas flexibles.
- 13. Norma Venezolana. *Proyecto y Construcción de Obras en Concreto Estructural*. Covenin 1753:2006. Funvisis.
- 14. Norma Venezolana. *Criterios y Acciones Mínimas para el Proyecto de Edificaciones*. Covenin Mindur (Provisional) 2002:88
- 15. Norma Venezolana. *Edificaciones Sismorresistentes* (1°Revisión). Parte 1: Articulado. Covenin 1756-1:2001. Funvisis.
- 16. Norma Venezolana. *Edificaciones Sismorresistentes* (1°Revisión). Parte 2: Comentarios. Covenin 1756-2:2001. Funvisis.
- 17. Paparoni, Mario (2002). Conceptos Elementales sobre Ingeniería Sísmica.
- 18. Paparoni, Mario. (1995). Conceptos Fundamentales Aplicables al Conocimiento Elemental de la Ingeniería Sísmica. Universidad Metropolitana. Facultad de Ingeniería, Caracas.
- 19. Paparoni, Mario. (2003) ¿Qué es en Análisis Dinámico Modal de una Estructura? Caracas. Venezuela.
- 20. Paparoni, Mario. *Ingeniería Sísmica*. Curso de Pregrado. Universidad Católica Andrés Bello. Universidad Metropolitana, Caracas.
- 21. Paz, Mario. (1992). *Dinámica Estructural. Teoría y Cálculo*. 3era Edición. Editorial Reverté, S.A.
- 22. Rodríguez Flores, Víctor M. Miramontes, Diego. *Identificación del Amortiguamiento Histerético Efectivo de Algunos Modelos Cíclicos en Variables Generalizadas*. Ingeniería Civil. Zacatecas. México.
- 23. Rosenblueth, Emilio. (1991). *Diseño de Estructuras Resistentes a sismos*. Editorial Limusa, S.A. de C.V.
- 24. Wilson, Edward L. (2002). *Three Dimensional Static and Dinamic Analysis of structures*. California, USA. Computers and Structures, Inc. Tercera Edición.

ÍNDICE DE ANEXOS

Contenido

A.1 APLICACIÓN DE LA NORMA SISMORRESISTENTE 1756:200110
A.1.2 FORMAS ESPECTRALES TIFICADAS DE LOS TERRENOS DE
FUNDACIÓN10
A.1.3 CLASIFICACIÓN DE EDIFICACIONES SEGÚN SU USO, NIVEL DE
DISEÑO, TIPO Y REGULARIDAD ESTRUCTURAL10
A.1.3.1 CLASIFICACIÓN SEGÚN EL USO
A.1.3.2 FACTOR DE IMPORTANCIA
A.1.3.3 CLASIFICACIÓN SEGÚN EL NIVEL DE DISEÑO10
A.1.3.4 CLASIFICACIÓN SEGÚN EL TIPO DE ESTRUCTURA10
A.1.3.5 FACTOR DE REDUCCIÓN DE RESPUESTA
A.1.3.6 CLASIFICACIÓN SEGÚN LA REGULARIDAD DE L. ESTRUCTURA
A.1.3.6.1 EDIFICACIÓN DE ESTRUCTURA REGULAR10
A.1.3.6.2 EDIFICACIÓN DE ESTRUCTURA IRREGULAR10
A.1.3.6.2.1 IRREGULARIDADES VERTICALES
A.1.3.6.2.1.1 ENTREPISO BLANDO 10
A.1.3.6.2.1.2 ENTREPISO DÉBIL 10
A.1.3.6.2.1.3 DISTRIBUCIÓN IRREGULAR DE MASAS DE UNO DE LOS PISOS CONTIGUOS
A.1.3.6.2.1.4 AUMENTO DE LAS MASAS CON LA ELEVACIÓN10
A.1.3.6.2.1.5 VARIACIONES EN LA GEOMETRÍA DEL SISTEM. ESTRUCTURAL
A.1.3.6.2.1.6 ESBELTEZ EXCESIVA10
A.1.3.6.2.1.7 DISCONTINUIDAD EN EL PLANO DEL SISTEMA

						MIEMBROS 108
A.	1.3.6.2.1.9	EFECTO	DE CO	DLUMNA CC	ORTA	108
A.1.3	3.6.2.2 IRF	REGULAR	IDAD	EN PLANTA		108
A.	1.3.6.2.2.1	GRAN EX	XCENT	ΓRICIDAD:		108
A.	1.3.6.2.2.2	RIESGO	TORSI	ONAL ELEV	'ADO	108
A.	1.3.6.2.2.3	SISTEMA	A NO C	ORTOGONAI		108
A.	1.3.6.2.2.4	DIAFRA	GMA F	LEXIBLE		108
A.1.3.7	ESPECTRO	OS DE DIS	EÑO			109
A.1.4 MÉT	ODOS DE	ANÁLISIS	S			111
A.1.4.1	CLASIFICA	ACIÓN DE	LOS	MÉTODOS D	E ANÁLISI	S111
A.1.4.2	SELECCIÓ	N DE LOS	S MÉTO	ODOS DE AN	NÁLISIS	111
A.1.4.3	ANÁLISIS	DINÁMIC	O CO	N DIAFRAGI	MA FLEXIB	LE112
A.2 DESC	RIPCIÓN I	DE LOS M	ODEL	OS	•••••	113
A.2.1 EST	RUCTURAS	S ALARGA	ADAS.			113
A.2.1.1	DIMENSIC	NES 8 X 6	60 M			113
A.2.1.2	DIMENSIC	NES 10 X	60 M .			116
A.2.1.3	DIMENSIC	NES 12X6	50 M			119
A.2.2 EST	RUCTURAS	S CON HU	ECO C	CENTRAL		122
A.2.2.1	PORCENTA	AJE DE AI	3ERTU	JRA FR = 0.3	6	122
A.2.2.2	PORCENTA	AJE DE AI	BERTU	JRA FR = 0.6	4	125
A.2.3 EST	RUCTURAS	S CON HU	ECOS	DISTRIBUII	OOS	128
A.2.3.1	PORCENTA	AJE DE AI	3ERTU	JRA FR = 0.2	4	128
A.2.3.2	PORCENTA	AJE DE AI	BERTU	JRA FR = 0.3	6	131
A.2.3.3	PORCENTA	AJE DE AI	BERTU	JRA FR = 0,4	8	134
A.2.4 EST	RUCTURAS	S EN FORI	MA DI	E U		137
A 2.4.1	PORCENT	A IE DE A I	BERTI	IRAFR = 0.3	2.	137

A.2.4.2 PORCENTAJE DE ABERTURA FR = 0,48	140
A.2.4.3 PORCENTAJE DE ABERTURA FR = 0,64	143
A.3 RESULTADOS OBTENIDOS	146
A.3.1 ESTRUCTURAS ALARGADAS	146
A.3.1.1 DIMENSIONES 8 X 60 M	146
A.3.1.1.1 ACERO LONGITUDINAL EN COLUMNAS	146
A.3.1.1.2 DERIVA	146
A.3.1.1.3 CORTE BASAL	148
A.3.1.2 DIMENSIONES 10 X 60 M	149
A.3.1.2.1 ACERO LONGITUDINAL EN COLUMNAS	149
A.3.1.2.2 DERIVA	149
A.3.1.2.3 CORTE BASAL	151
A.3.1.3 DIMENSIONES 12X60 M	152
A.3.1.3.1 ACERO LONGITUDINAL EN COLUMNAS	152
A.3.1.3.2 DERIVA	152
A.3.1.3.3 CORTE BASAL	154
A.3.2 ESTRUCTURAS CON HUECO CENTRAL	155
A.3.2.1 PORCENTAJE DE ABERTURA FR = 0,36	155
A.3.2.1.1 ACERO LONGITUDINAL EN COLUMNAS	155
A.3.2.1.2 DERIVA	155
A.3.2.2 CORTE BASAL	157
A.3.2.3 PORCENTAJE DE ABERTURA FR = 0,64	158
A.3.2.3.1 ACERO LONGITUDINAL EN COLUMNAS	158
A.3.2.3.2 DERIVA	158
A.3.2.3.3 CORTE BASAL	160
A.3.3 ESTRUCTURAS CON HUECOS DISTRIBUIDOS	161

A.3.3.1 PO	PRCENTAJE DE ABERTURA FR = 0,24	161
A.3.3.1.1	ACERO LONGITUDINAL EN COLUMNAS	161
A.3.3.1.2	DERIVA	161
A.3.3.1.3	CORTE BASAL	163
A.3.3.2 PO	PRCENTAJE DE ABERTURA FR = 0,36	164
A.3.3.2.1	ACERO LONGITUDINAL EN COLUMNAS	164
A.3.3.2.2	DERIVA	164
A.3.3.2.3	CORTE BASAL	166
A.3.3.3 PO	PRCENTAJE DE ABERTURA FR = 0,48	167
A.3.3.3.1	ACERO LONGITUDINAL EN COLUMNAS	167
A.3.3.3.2	DERIVA	167
A.3.3.3.3	CORTE BASAL	169
A.3.4 ESTRU	CTURAS EN FORMA DE "U"	170
A.3.4.1 PO	PRCENTAJE DE ABERTURA FR = 0,32	170
A.3.4.1.1	ACERO LONGITUDINAL EN COLUMNAS	170
A.3.4.1.2	DERIVA	170
A.3.4.1.3	CORTE BASAL	172
A.3.4.2 PO	PRCENTAJE DE ABERTURA FR = 0,48	173
A.3.4.2.1	ACERO LONGITUDINAL EN COLUMNAS	173
A.3.4.2.2	DERIVA	173
A.3.4.2.3	CORTE BASAL	175
A.3.4.3 PO	PRCENTAJE DE ABERTURA FR = 0,64	176
A.3.4.3.1	ACERO LONGITUDINAL EN COLUMNAS	176
A.3.4.3.2	DERIVA	176
A.3.4.3.3	CORTE BASAL	178

Figuras

FIG.A.1.	MAPA DE ZONIFICACIÓN	101
FIG.A.2.	ESPECTRO DE RESPUESTA ELÁSTICO (R=1)	110
FIG.A.3.	PLANTA DE LA ESTRUCTURA ALARGADA 8 X 60 M.	113
FIG.A.4. 8 X 60 M	VISTA TRIDIMENSIONAL DE LA ESTRUCTURA AL	
DISTRIBUCIÓN	PLANTA DE ESTRUCTURA ALARGADA 8 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
DISTRIBUCIÓN	PLANTA DE ESTRUCTURA ALARGADA 8 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
DISTRIBUCIÓN	PLANTA DE ESTRUCTURA ALARGADA 8 X 60 DE CARGAS PARA EL MOVIMIENTO DE	E MASA
DISTRIBUCIÓN	PLANTA DE ESTRUCTURA ALARGADA 8 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
FIG.A.9.	PLANTA DE LA ESTRUCTURA ALARGADA 10 X 60 M	116
FIG.A.10. 10 X 60 M	VISTA TRIDIMENSIONAL DE LA ESTRUCTURA AL	
,	PLANTA DE ESTRUCTURA ALARGADA 10 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
,	PLANTA DE ESTRUCTURA ALARGADA 10 X 60 DE CARGAS PARA EL MOVIMIENTO DE	M CON MASAS
	PLANTA DE ESTRUCTURA ALARGADA 10 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
DISTRIBUCIÓN	PLANTA DE ESTRUCTURA ALARGADA 10 X 60 DE CARGAS PARA EL MOVIMIENTO DE	MASAS
FIG.A.15.	PLANTA DE LA ESTRUCTURA ALARGADA 12 X 60 M	119
	VISTA TRIDIMENSIONAL DE LA ESTRUCTURA AL	

DISTRIBUCIÓN	DE	CA	RGAS	PA	RA	EL I	MOVI	MIENT	O .	DE	M CON MASAS
FIG.A.18. DISTRIBUCIÓN + DX, - DY	DE	CA	RGAS	PA	RA	EL I	MOVI	MIENT	O .	DE	M CON MASAS 120
FIG.A.19. DISTRIBUCIÓN - DX, - DY	PLAN DE	TA I CA	DE ES RGAS	TRU(PA	CTUR RA	A AL EL I	ARGA MOVI	DA 1 Mient	2 X	60 DE	M CON
FIG.A.20. DISTRIBUCIÓN - DX, - DY	DE	CA	RGAS	PA	RA	EL I	MOVI	MIENT	O.	DE	M CON MASAS 121
FIG.A.21. FR = 0,36	PLAN	TA :									ENTRAL 122
FIG.A.22. CENTRAL FR =											HUECC 122
CON DISTRIBU	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIEN	OTV	DE	R = 0,36 MASAS 123
FIG.A.25. CON DISTRIBU - DX, + DY	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIE	OTV	DE	
CON DISTRIBU	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIEN	OTV	DE	R = 0,36 MASAS 124
FIG.A.27. CON DISTRIBU - DX, - DY	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIE	OTV	DE	R = 0,36 MASAS 124
FIG.A.28. FR = 0,64											ENTRAL 125
FIG.A.29. CENTRAL FR =											
FIG.A.30. CON DISTRIBU + DX, + DY	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIEN	OTV	DE	MASAS
FIG.A.31. CON DISTRIBU + DX, - DY	JCIÓN	DE	CAR	GAS	PAR	A EL	MOV	/IMIEN	OTV	DE	
FIG.A.32. CON DISTRIBU - DX DY	JCIÓN	DE		GAS	PAR	A EL	MOV	/IMIEN	OTI	DE	MASAS

FIG.A.33. CON DISTRIB - DX, + DY	UCIÓN	DE C	ARGAS	PARA	EL M	OVIMIEN	NTO DE	FR = 0,64 MASAS 127
FIG.A.34. $FR = 0.24$								AIBUIDOS
FIG.A.35. DISTRIBUIDOS								
FIG.A.36. FR = 0,24 COMMASAS + DX, +	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.37. FR = 0,24 COMMASAS + DX, -	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.38. FR = 0,24 COMMASAS - DX, - 1	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.39. FR = 0,24 CO! MASAS - DX, +	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.40. FR = 0,36								RIBUIDOS 131
FIG.A.41. DISTRIBUIDOS								
FIG.A.42. FR = 0,36 COM MASAS + DX, +	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.43. FR = 0,36 COM MASAS + DX, -	N DIST	RIBUC	IÓN DE	CARG	AS PAR	A EL M	IOVIMI	ENTO DE
FIG.A.44. FR = 0,36 COMMASAS - DX, - 1	N DIST	RIBUC	IÓN DE	CARG	AS PAR	RA EL M	IOVIMI	ENTO DE
FIG.A.45. FR = 0,36 COMMASAS - DX, +	N DIST	RIBUC	IÓN DE	CARG	AS PAR	RA EL M	IOVIMI	ENTO DE
FIG.A.46. FR = 0,48								
FIG.A.47. DISTRIBUIDOS								

FIG.A.48. FR = 0,48 CON MASAS + DX, +	N D	ISTI	RIB	UCIO	ŃĊ	DE	CA	RGAS	S PA	ARA	EL	MC	VIM	IEN	OTV	DE
FIG.A.49. FR = 0,48 CON MASAS - DX, +	N D	ISTI	RIB	UCIO	ŃĊ	DE	CA	RGAS	S PA	ARA	EL	MC	VIM	IEN	OTV	DE
FIG.A.50. FR = 0,48 CON MASAS + DX, -	N D	ISTI	RIB	UCIO	ŃČ	DE	CA	RGAS	S PA	ARA	EL	MC	VIM	IEN	VTO	DE
FIG.A.51. FR = 0,48 CON MASAS - DX, - I	N D	ISTI	RIB	UCIO	ŃĊ	DE	CA	RGAS	S PA	ARA	EL	MC	VIM	IEN	OTV	DE
FIG.A.52. FR = 0,32								RUCT								"U" .137
FIG.A.53. DE "U" FR = 0,3								DE								
FIG.A.54. DISTRIBUCIÓN + DX, + DY	Г	ÞΕ	CA	RGA	AS	PA	ARA	A EN EL	Mo	OVI	MIE	OTN	DE	Ē	MA	SAS
FIG.A.55. DISTRIBUCIÓN + DX, - DY	D	ÞΕ	CA	RGA	AS	PA	ARA	A EN EL	M	IVC	MIE	OTN	DE	Ē	MA	SAS
FIG.A.56. DISTRIBUCIÓN - DX, + DY	PLA D	NT. DE	A D CA	E ES	STR AS	UC PA	TUR ARA	A EN EL	FOI MO	RMA OVI	DE MIE	"U" NTO	FR =	= 0,	32 (MA	CON SAS
FIG.A.57. DISTRIBUCIÓN - DX, - DY		ÞΕ	CA	RGA	AS	PA	ARA	A EN EL	Mo	OVI	MIEI	OTN	DE	Ē	MA	SAS
FIG.A.58. FR = 0,48	PLA	NT.	Α	DE	L	4 	EST	RUCT	UR/	A E	EN	FOF	RMA		ÞΕ 	"U" .140
FIG.A.59. DE "U" FR = 0,4																
FIG.A.60. DISTRIBUCIÓN + DX, + DY	D	ÞΕ	CA	RGA	AS	PA	ARA	EL	M	OVI	MIE	OTN	DE	Ē	MA	SAS
FIG.A.61. DISTRIBUCIÓN + DX, - DY	Г	ÞΕ	CA	RG/	AS	PA	ARA	EL	Mo	IVC	MIE	OTN	DE	E	MA	SAS
FIG.A.62. DISTRIBUCIÓN - DX. + DY	Г	ÞΕ	CA	RG/	AS	PA	ARA	EL	Mo				DE	Ξ	MA	

DISTRIBUCIÓN	I	DΕ	\mathbf{C}	ARG	AS	\mathbf{P}_{A}	ARA]	EL	Mo	OVI	MII	ENT	Ю	DI	Ξ	MA	CON SAS 142
FIG.A.64. FR = 0,64																		"U" 143
FIG.A.65. DE "U" FR = 0,6																		
FIG.A.66. DISTRIBUCIÓN + DX, + DY	I	DΕ	\mathbf{C}	ARG	AS	\mathbf{P}_{A}	ARA]	EL	Mo	OVI	MII	ENT	Ю	DI	Ξ.	MA	SAS
FIG.A.67. DISTRIBUCIÓN + DX, - DY	I	DΕ	\mathbf{C}	ARG	AS	\mathbf{P}_{A}	ARA]	EL	Mo	OVI	MII	ENT	Ю	DI	Ξ	MA	SAS
FIG.A.68. DISTRIBUCIÓN - DX, + DY	I	DΕ	\mathbf{C}	ARG	AS	\mathbf{P}_{A}	ARA]	EL	Mo	OVI	MII	ENT	Ю	DI	Ξ	MA	
FIG.A.69. DISTRIBUCIÓN - DX, - DY	I	DΕ	\mathbf{C}	ARG	AS	\mathbf{P}_{A}	ARA]	EL	M	OVI	MII	ENT	Ю	DI	Ξ	MA	
FIG.A.70. 8 X 60 M																		ADA 146
FIG.A.71. 8 X 60 M	GR	ÁFIC	CO]	DE	Ι	DERI	VA		ES	ΓRU	JCT	UR	A	A	LA	RG	ADA 146
FIG.A.72. 10 X 60 M	AC	ERO		LC	NG	ITU	DIN	ΑL		EST	ΓRU	JCT	UR.	A	A	LA	RG	ADA 149
FIG.A.73. 10 X 60 M																		ADA 149
FIG.A.74. 12 X 60 M	AC	ERO		LC	NG	ITU	DIN	ΑL		EST	ΓRU	JCT	UR.	A	A	LA	RG	ADA 152
FIG.A.75. 12 X 60 M																		
FIG.A.76. CENTRAL FR =																		
FIG.A.77. FR = 0,36																		
FIG.A.78. CENTRAL FR =																		
FIG.A.79. FR = 0,64																		

FIG.A.80. DISTRIBUIDOS	ACERO FR = 0,24								
FIG.A.81. DISTRIBUIDOS									
FIG.A.82. DISTRIBUIDOS	ACERO $FR = 0.36$								
FIG.A.83. DISTRIBUIDOS									
FIG.A.84. DISTRIBUIDOS									
FIG.A.85. DISTRIBUIDOS									
FIG.A.86. FR = 0,32	ACERO I								
FIG.A.87. FR= 0,32	GRÁFICO			-			_		_
FIG.A.88. FR = 0,48	ACERO I								
FIG.A.89. FR = 0,48	GRÁFICC								
FIG.A.90. FR = 0,64	ACERO I								
FIG.A.91. FR= 0,64	GRÁFICC	DE D	ERIVA	ESTRU	CTURA	EN	FORMA	DE	"U"
Tablas									
TABLA A.1.	MOVIMIE	ENTOS I	DE DISE	ÑO					.102
TABLA A.2.	FORMA E	ESPECTI	RAL Y F	ACTOR	DE COR	REC	CIÓN Φ		.102
TABLA A.3.	FACTOR	DE IMP	ORTANO	CIA					.104
TABLA A.4. SÍSMICA.	NIVELES								
TABLA A.5. EXTENDERSE ND3.		LIMIEN	TO DE	LOS RE	EQUERI	MIEN	TOS DE	DISI	ΕÑΟ
TABLA A.6.	FACTORI	ES DE R	EDUCCI	ÓN R					.106
TABLA A 7	VALORES	S DE T*	ВР						110

TABLA A.8.	VALORES DE T ⁺	.110
	SELECCIÓN DEL MÉTODO DE ANÁLISIS PARA EDIFICIOS REGULAR	
	SELECCIÓN DE ANÁLISIS PARA EDIFICIOS IRREGULAR.	
	DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN ALARGADA 8 X 60 M	
	CENTROS DE MASAS INICIAL DE LA ESTRUCTU X 60 M	
	CENTROS DE MASAS DESPLAZADOS + DX, + DY ALARGADA 8 X 60 M	
	CENTROS DE MASAS DESPLAZADOS - DX, + DY ALARGADA 8 X 60 M	
	CENTROS DE MASAS DESPLAZADOS + DX, - DY ALARGADA 8 X 60 M.	
	CENTROS DE MASAS DESPLAZADOS - DX, - DY ALARGADA 8 X 60 M	
	DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN ALARGADA 10 X 60 M	
	CENTROS DE MASAS INICIAL DE LA ESTRUCTU X 60 M	
TABLA A.19. ESTRUCTURA	CENTROS DE MASAS DESPLAZADOS + DX, + DY ALARGADA 10 X 60 M	DE .117
	CENTROS DE MASAS DESPLAZADOS + DX, - DY ALARGADA 10 X 60 M	
	CENTROS DE MASAS DESPLAZADOS - DX, - DY ALARGADA 10 X 60 M	
	CENTROS DE MASAS DESPLAZADOS - DX, + DY ALARGADA 10 X 60 M	
	DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN ALARGADA 12 X 60 M	
	CENTROS DE MASAS INICIAL DE LA ESTRUCTU 2 X 60 M	
	CENTROS DE MASAS DESPLAZADOS + DX, + DY ALARGADA 12 X 60 M	
	CENTROS DE MASAS DESPLAZADOS + DX, - DY ALARGADA 12 X 60 M	DE 120

TABLA A.27. CENTROS DE MASAS DESPLAZADOS - DX, - DY D ESTRUCTURA ALARGADA 12 X 60 M12)E 21
TABLA A.28. CENTROS DE MASAS DESPLAZADOS - DX, + DY D ESTRUCTURA ALARGADA 12 X 60 M	
TABLA A.29. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN L ESTRUCTURA CON HUECO CENTRAL FR = 0,36	
TABLA A.30. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA CO HUECO CENTRAL FR = 0,36	
TABLA A.31. CENTROS DE MASAS DESPLAZADOS + DX, + DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,36	
TABLA A.32. CENTROS DE MASAS DESPLAZADOS - DX, + DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,36	
TABLA A.33. CENTROS DE MASAS DESPLAZADOS + DX, - DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,36	
TABLA A.34. CENTROS DE MASAS DESPLAZADOS - DX, - DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,36	
TABLA A.35. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN L ESTRUCTURA CON HUECO CENTRAL FR = 0,64	
TABLA A.36. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA CO HUECO CENTRAL FR = 0,6412	
TABLA A.37. CENTROS DE MASAS DESPLAZADOS + DX, + DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,64)E
TABLA A.38. CENTROS DE MASAS DESPLAZADOS + DX, - DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,64	
TABLA A.39. CENTROS DE MASAS DESPLAZADOS - DX, - DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,6412	
TABLA A.40. CENTROS DE MASAS DESPLAZADOS - DX, + DY D ESTRUCTURA CON HUECO CENTRAL FR = 0,6412	
TABLA A.41. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN L ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24	
TABLA A.42. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA CO HUECOS DISTRIBUIDOS FR = 0,24	
TABLA A.43. CENTROS DE MASAS DESPLAZADOS + DX, + DY D ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24	Ε
TABLA A.44. CENTROS DE MASAS DESPLAZADOS + DX, - DY DESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24	ÞΕ
TABLA A.45. CENTROS DE MASAS DESPLAZADOS - DX, - DY DESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24	ÞΕ

ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,24
TABLA A.47. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.48. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.49. CENTROS DE MASAS DESPLAZADOS + DX, + DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.50. CENTROS DE MASAS DESPLAZADOS + DX, - DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.51. CENTROS DE MASAS DESPLAZADOS - DX, - DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.52. CENTROS DE MASAS DESPLAZADOS - DX, + DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,36
TABLA A.53. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.54. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.55. CENTROS DE MASAS DESPLAZADOS + DX, + DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.56. CENTROS DE MASAS DESPLAZADOS - DX, + DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.57. CENTROS DE MASAS DESPLAZADOS + DX, - DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.58. CENTROS DE MASAS DESPLAZADOS - DX, - DY DE ESTRUCTURA CON HUECOS DISTRIBUIDOS FR = 0,48
TABLA A.59. DIMENSIÓN DE LOS ELEMENTOS QUE CONFORMAN LA ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA A.60. CENTROS DE MASAS INICIAL DE LA ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA A.61. CENTROS DE MASAS DESPLAZADOS + DX, + DY DE ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA A.62. CENTROS DE MASAS DESPLAZADOS + DX, - DY DE ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA A.63. CENTROS DE MASAS DESPLAZADOS - DX, + DY DE ESTRUCTURA EN FORMA DE "U" FR = 0,32
TABLA A.64. CENTROS DE MASAS DESPLAZADOS - DX, - DY DE ESTRUCTURA EN FORMA DE "U" FR = 0,32

TABLA A.65. ESTRUCTURA							
TABLA A.66. FORMA DE "U'							
TABLA A.67. ESTRUCTURA							
TABLA A.68. ESTRUCTURA							
TABLA A.69. ESTRUCTURA							
TABLA A.70. ESTRUCTURA	CENTROS EN FORMA	DE MASAS DE "U" FR = 0	DESPLA 0,48	ZADOS	- DX,	- DY	DE 142
TABLA A.71. ESTRUCTURA							
TABLA A.72. FORMA DE "U'							
TABLA A.73. ESTRUCTURA							
TABLA A.74. ESTRUCTURA							
TABLA A.75. ESTRUCTURA	CENTROS EN FORMA	DE MASAS DE "U" FR = 0	DESPLA 0,64	ZADOS	- DX,	+ DY	DE 145
TABLA A.76. ESTRUCTURA							
TABLA A.77.	DERIVAS E	STRUCTURA	ALARGA	DA 8 X	60 M		147
TABLA A.78.	CORTE BAS	SAL ESTRUC	ΓURA ALA	ARGADA	A 8 X 60 M	[148
TABLA A.79.	DERIVAS E	STRUCTURA	ALARGA	DA 10 X	60 M		150
TABLA A.80.	CORTE BAS	SAL ESTRUC	ΓURA ALA	ARGADA	A 10 X 60 I	М	151
TABLA A.81.	DERIVAS E	STRUCTURA	ALARGA	DA 12 X	C 60 M		153
TABLA A.82.	CORTE BAS	SAL ESTRUC	ΓURA ALA	ARGADA	A 12 X 60 I	М	154
TABLA A.83. FR = 0,36		ESTRUCTU			HUECO		
TABLA A.84. FR = 0,36		ASAL ESTR					
TABLA A.85. $FR = 0,64$	DERIVAS		JRA CO	N NC	HUECO	CENTR	RAL

TABLA A.86. $FR = 0,64$	CORTE		ESTRUC					
TABLA A.87. $FR = 0.24$			UCTURA					
TABLA A.88. $FR = 0.24$			STRUCTU					
TABLA A.89. $FR = 0.36$			UCTURA					
TABLA A.90. $FR = 0.36$			ESTRUCT					
TABLA A.91. FR = 0,48			UCTURA					
TABLA A.92. $FR = 0,48$			ESTRUCT					
TABLA A.93.	DERIVAS	S ESTRU	CTURA EN	I FORM	A DE "	U" FR= 0,	32	171
TABLA A.94. $FR = 0.32$	CORTE		ESTRU(FORMA		"U" 172
TABLA A.95.	DERIVAS	S ESTRU	CTURA EN	I FORM	A DE "	U" FR =0,	48	174
TABLA A.96. FR =0,48	CORTE		ESTRU("U" 175
TABLA A.97.	DERIVAS	S ESTRU	CTURA EN	I FORM	A DE "	U" FR= 0,	64	177
TABLA A.98. $FR = 0.64$			ESTRU(_		"U" 178

A.1 APLICACIÓN DE LA NORMA SISMORRESISTENTE 1756:2001.

Las norma sismorresistente surge con la finalidad de establecer criterios de análisis y diseño de estructuras ubicadas en zonas propensas a la ocurrencia de movimientos telúricos.

A continuación se presenta un resumen de algunos de los parámetros y métodos de cálculo desarrollados de manera más profunda en la norma COVENIN-MINDUR "Edificaciones sismorresistente" 1756:2001, la cual sustituye a la norma 1756:1998 de mismo nombre.

A.1.1 ZONIFICACIÓN SÍSMICA.

Corresponde al capítulo 4 de la Norma, el cual divide al país en ocho zonas (0-7) de acuerdo a su peligro sísmico. Dicha zonificada es representada por la Norma mediante el mapa de Venezuela (Fig. A.1) y a través de tablas clasificadas por los estados del país. Cada una de las zonas está asociada a una aceleración horizontal (Tabla A.1).

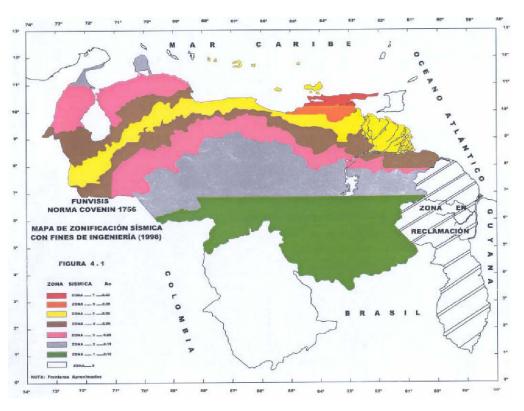


Fig.A.1. Mapa de zonificación.

Fuente: Edificaciones Sismorresistentes. COVENIN 1756:2001.

Tabla A.1. Movimientos de diseño.

ZONAS SÍSMICAS	PELIGRO SÍSMICO	Ao
7		0,40
6	Elevado	0,35
5		0,30
4	Intermedio	0,25
3	intermedio	0,20
2		0,15
1	Bajo	0,10
0		-

Fuente: Edificaciones Sismorresistentes; Tabla 4.1. Norma COVENIN 1756:2001.

A.1.2 FORMAS ESPECTRALES TIFICADAS DE LOS TERRENOS DE FUNDACIÓN.

En el capítulo 5 se definen cuatro formas espectrales tipificadas (S1 a S4) y un factor de corrección para el coeficiente de aceleración horizontal (ϕ) , los cuales serán determinados de acuerdo a las características del material en el cual se requiera fundar la estructura (Tabla A.2)

Tabla A.2. Forma espectral y factor de corrección φ

Forma espectral y factor de corrección φ.						
	Vsp	H Zonas Sísmicas 1 a 4		Zonas Sísmicas 5 a 7		
Material	(m/s)	(m)	Forma Espectral	Φ	Forma Espectral	Φ
Roca sana/fracturada	>500	ı	S1	0,85	S1	1,00
Roca blanda o meteorizada y	>400	<30	S1	0,85	S1	1,00
suelos muy duros o muy	Z400	30-50	S2	0,80	S2	0,90
densos		>50	S2	0,70	S2	0,90
G 1 1	250 - 400	<15	S1	0,80	S1	1,00
Suelos duros o densos		15-50	S2	0,80	S2	0,90
		>50	S2	0,75	S2	0,90
Suelos firmes/medio	170 - 250	?50	S2	0,70	S2	0,95
densos		>50	S3	0,70	S3	0,75
Suelos	<170	?15	S2	0,70	S2	0,90
blandos/sueltos		>15	S3	0,70	S3	0,80
Suelos blandos o sueltos intercalados con suelos más rígidos.	-	Н1	S2	0,65	S2	0,70

Fuente: Edificaciones Sismorresistentes; Tabla 5.1. Norma COVENIN 1756:2001.

Observaciones:

- Si Ao < 0.15 úsese S4
- El espesor de los estratos blandos o sueltos (Vsp < 170 m/s) debe ser mayor que 0.1 H.
- Si $H_1 \ge 0.25 H$ y Ao ≤ 0.20 úsese S3.

En la tabla:

Vsp = Velocidad promedio de las ondas de corte en el perfil geotécnico.

H = Profundidad a la cual se consigue material cuya velocidad de las ondas de corte, Vs, es mayor que 500 m/s.

 Φ = Factor de corrección del coeficiente de aceleración horizontal.

 H_1 = Profundidad desde la superficie hasta el tope del estrato blando.

A.1.3 CLASIFICACIÓN DE EDIFICACIONES SEGÚN SU USO, NIVEL DE DISEÑO, TIPO Y REGULARIDAD ESTRUCTURAL.

La Norma en el capítulo 6 plantea la clasificación de las edificaciones según su uso, nivel de diseño, tipo y regularidad estructural.

A 1 3 1 CLASIFICACIÓN SEGÚN EL USO

Las estructuras podrán ser clasificadas en grupos y aquellas que contengan áreas que pertenezcan a más de un grupo, es decir de usos mixtos, serán clasificadas en el grupo más exigente.

Grupo A

- Hospitales: Tipo IV, Tipo III y Tipo II.
- Edificios gubernamentales o municipales de importancia, monumentos y templos de valor excepcional.
- Edificios que contienen objetos de valor excepcional como ciertos museos y bibliotecas.
- Estaciones de bomberos, de policías o cuarteles.
- Centrales eléctricas, subestaciones de alto voltaje y de telecomunicaciones. Plantas de bombeo.
- Depósitos de materias tóxicas o explosivas y centros que utilicen materiales radioactivos.
- Torres de control; hangares; centros de tráfico aéreo.
- Edificaciones educacionales.
- Edificaciones que puedan poner en peligro alguna de las de este grupo

Grupo B1

- Edificios con capacidad de ocupación de más de 3.000 personas o áreas techadas de más de 20.000 m².
- Centros de salud no incluidos en el Grupo A.
- Edificaciones clasificadas en los Grupos B2 o C que puedan poner en peligro las de este grupo.

Grupo B2

- Viviendas
- Edificios de apartamentos, de oficinas u hoteles.
- Bancos, restaurantes, cines y teatros.
- Almacenes y depósitos.
- Toda edificación clasificada en el Grupo C, cuyo derrumbe pueda poner en peligro las de este Grupo.

• Grupo C

Construcciones no clasificadas en los grupos anteriores, ni destinadas a la habitación o al uso público y cuyo derrumbe no pueda causar daños a edificaciones de los tres primeros Grupos.

En las edificaciones del Grupo C, se podrá obviar la aplicación de esta Norma siempre y cuando se adopten disposiciones constructivas que aseguren su estabilidad ante las acciones sísmicas.

A.1.3.2 FACTOR DE IMPORTANCIA.

El factor de importancia α dependerá exclusivamente del uso al cual esté destinada la edificación.

 GRUPO
 A

 A
 1,30

 B1
 1,15

 B2
 1,00

Fuente: Edificaciones Sismorresistentes; Tabla 6.1. Norma COVENIN 1756:2001.

A.1.3.3 CLASIFICACIÓN SEGÚN EL NIVEL DE DISEÑO.

- Nivel de diseño 1: Zonas sísmicas que no requiere la aplicación de requisitos adicionales a los establecidos para acciones gravitacionales.
- Nivel de diseño 2: Requiere la aplicación de los requisitos adicionales para este Nivel de Diseño, establecidos en las Normas COVENIN-MINDUR.
- Nivel de diseño 3: Requiere la aplicación de los requisitos adicionales para el diseño en zonas sísmicas establecidos en las Normas COVENIN-MINDUR.

Tabla A.4. Niveles de diseño de acuerdo al Grupo y Zona sísmica.

GRUPO	ZONA SÍSMICA			
GRUPO	1 y 2 3 y 4		5, 6 y 7	
A; B1	ND2 ND3	ND3	ND3	
B2	ND1 (*) ND2 ND3	ND2 (*) ND3	ND3 ND2 (**)	

Fuente: Edificaciones Sismorresistentes; Tabla 6.2. Norma COVENIN 1756:2001.

- (*) Válido para edificaciones de hasta 10 pisos ó 30 m de altura.
- (**) Válido para edificaciones de hasta 2 pisos u 8 m de altura.

Para aquellas edificaciones irregulares, sistemas Tipo I de redundancia limitada, tales como: edificios con menos de tres líneas resistentes en una de sus direcciones y edificios con columnas discontinuas se aplicará ND3.

Tabla A.5. Áreas y/o componentes en los cuales deben extenderse el cumplimiento de los requerimientos de diseño ND3.

TIPO DE IRREGULARIDAD SEGÚN LA SECCIÓN 6.5.2		ÁREAS O COMPONENTES		
a.1: Entrepiso blando		Todos los componentes del entrepiso y de los dos		
	a.2: Entrepiso débil	entrepisos adyacentes.		
VERTICAL	a.7: Discontinuidad en el plano del sistema resistente a cargas laterales	Los componentes donde ocurre la discontinuidad y todos los componentes adyacentes.		
	a.9: Columnas cortas			
b.2: Riesgo torsional elevado		Toda la estructura		
EN PLANTA	b.4: Diafragma flexible	Todos los componentes que se vinculan al diafragma en referencia.		

Fuente: Edificaciones Sismorresistentes; Tabla 6.3. Norma COVENIN 1756:2001.

A.1.3.4 CLASIFICACIÓN SEGÚN EL TIPO DE ESTRUCTURA.

- Tipo I: Sistemas estructurales constituidos por pórticos.
- Tipo II: Combinación de los Tipos I y III. Pórticos capaces de resistir el 25% de las fuerzas sísmicas.
- Tipo III: Pórticos reforzados, muros estructurales y aquellas estructuras del Tipo II cuyos marcos no puedan resistir el 25% de las fuerzas sísmicas.
- Tipo IIIa: Sistemas conformados por muros de concreto armado acoplados con dinteles o vigas dúctiles, así como los pórticos de acero con diagonales excéntricas acopladas con eslabones dúctiles.

 Tipo IV: Estructuras que no posean diafragmas con la rigidez y resistencia necesaria para distribuir eficazmente las fuerzas sísmicas entre los diversos miembros verticales.

A.1.3.5 FACTOR DE REDUCCIÓN DE RESPUESTA.

Factor por el cual se divide al espectro de respuesta a fin de obtener el espectro de diseño, dicho valor es el resultado de la capacidad de una edificación para absorber energía y soporta deformaciones inelásticas, sin llegar a la falla.

El factor de reducción de respuesta se irá incrementando a medida que aumente la ductilidad, capacidad de disipación de energía y el grado de hiperestaticidad de la estructura.

La norma define al factor de reducción de respuesta (R) en función del material, tipo de estructura y nivel de diseño, para el fin del presente trabajo sólo se muestra el caso de concreto armado (Tabla A.6).

ESTRUCTURAS DE CONCRETO ARMADO NIVEL TIPO DE ESTRUCTURA (Sección 6.3.1) DE DISEÑO I П Ш IIIa IV 5 ND3 6 4,5 5 2 ND2 4 3,5 3 3,5 1,5 ND1 1,75 1,5 2 1,25

Tabla A.6. Factores de reducción R.

Fuente: Edificaciones Sismorresistentes; Tabla 6.4. Norma COVENIN 1756:2001.

A.1.3.6 CLASIFICACIÓN SEGÚN LA REGULARIDAD DE LA ESTRUCTURA.

Las características geométricas de una edificación tanto en su plano horizontal como vertical permiten ser clasificadas como regular o irregular.

A.1.3.6.1 EDIFICACIÓN DE ESTRUCTURA REGULAR.

Se considera estructura regular aquella que no coincida con ninguna de las condiciones establecidas para estructura irregular.

A.1.3.6.2 EDIFICACIÓN DE ESTRUCTURA IRREGULAR.

Se considera irregular la edificación que en alguna de sus direcciones principales presente alguna de las siguientes características:

A.1.3.6.2.1 IRREGULARIDADES VERTICALES

A.1.3.6.2.1.1 ENTREPISO BLANDO

La rigidez lateral de algún entrepiso, es menor que 0.70 veces la del entrepiso superior, ó 0.80 veces el promedio de las rigideces de los tres entrepisos superiores. En

el cálculo de las rigideces se incluirá la contribución de la tabiquería; en el caso de que su contribución sea mayor para el piso inferior que para los superiores, esta se podrá omitir.

A.1.3.6.2.1.2 ENTREPISO DÉBIL.

La resistencia lateral de algún entrepiso, es menor que 0.70 veces la correspondiente resistencia del entrepiso superior, ó 0.80 veces el promedio de las resistencias de los tres entrepisos superiores. En la evaluación de la resistencia de los entrepisos se incluirá la contribución de la tabiquería; en el caso de que su contribución sea mayor para el piso inferior que para los superiores se podrá omitir.

A.1.3.6.2.1.3 DISTRIBUCIÓN IRREGULAR DE MASAS DE UNO DE LOS PISOS CONTIGUOS

Cuando la masa de algún piso exceda 1.3 veces la masa de uno de los pisos continuos se exceptúa la comparación con el último nivel de techo de la edificación. Para esta verificación, la masa de los apéndices se añadirá el peso del nivel que los soporte.

A.1.3.6.2.1.4 AUMENTO DE LAS MASAS CON LA ELEVACIÓN.

La distribución de masas de la edificación crece sistemáticamente con la altura. Para esta verificación la masa de los apéndices se añadirá al peso del nivel que los soporte.

A.1.3.6.2.1.5 VARIACIONES EN LA GEOMETRÍA DEL SISTEMA ESTRUCTURAL.

La dimensión horizontal del sistema estructural en algún piso excede 1.30 la del piso adyacente. Se excluye el caso del último nivel.

A.1.3.6.2.1.6 ESBELTEZ EXCESIVA

El cociente entre la altura de la edificación y la menor dimensión en planta de la estructura a nivel de base exceda a 4. Igualmente cuando esta situación presente en alguna porción significativa de la estructura.

A.1.3.6.2.1.7 DISCONTINUIDAD EN EL PLANO DEL SISTEMA RESISTENTE A CARGAS LATERALES.

De acuerdo con alguno de los siguientes casos:

- Columnas o muros que no continúan al llegar a un nivel inferior distinto al nivel de base.
- El ancho de la columna o muro en un entrepiso presenta una reducción que excede el veinte por ciento (20%) del ancho de la columna o muro en el entrepiso inmediatamente superior en la misma dirección horizontal.

• El desalineamiento horizontal del eje de un miembro vertical, muro o columna, entre dos pisos consecutivos, supera 1/3 de la dimensión horizontal del miembro inferior en la dirección del desalineamiento.

A.1.3.6.2.1.8 FALTA DE CONEXIÓN ENTRE MIEMBROS VERTICALES.

Alguno de los miembros verticales, columnas o muros, no está conectado al diafragma de algún nivel.

A.1.3.6.2.1.9 EFECTO DE COLUMNA CORTA

Marcada reducción en la longitud libre de columnas, por efecto de restricciones laterales tales como paredes, u otros elementos no estructurales.

A.1.3.6.2.2 IRREGULARIDAD EN PLANTA.

A.1.3.6.2.2.1 GRAN EXCENTRICIDAD:

En algún nivel la excentricidad entre la línea de acción del cortante en alguna dirección, y el centro de rigidez supera el veinte por ciento (20%) del radio de giro inercial de la planta.

A.1.3.6.2.2.2 RIESGO TORSIONAL ELEVADO

Si en algún piso se presenta cualquiera de las siguientes situaciones:

- El radio de giro torsional rt en alguna dirección es inferior al cincuenta por ciento (50%) del radio de giro inercial r.
- La excentricidad entre la línea de acción del cortante y el centro de rigidez de la planta supera el treinta por ciento (30%) del valor del radio de giro torsional rt en alguna dirección.

A.1.3.6.2.2.3 SISTEMA NO ORTOGONAL

Cuando una porción importante de los planos del sistema sismorresistente no sean paralelos a los ejes principales de dicho sistema

A.1.3.6.2.2.4 DIAFRAGMA FLEXIBLE.

Un diafragma es un componente estructural cuyo objetivo es transmitir las fuerzas tanto horizontales como verticales hacia las vigas y columnas. Los diafragmas flexibles permiten deformaciones axiales así como flexiones debidas a las cargas asignadas a los mismos.

Podrán clasificarse como diafragma flexible aquellas estructuras que cumplan con alguna de las siguientes características.

• Cuando la rigidez en su plano sea menor a la de una losa equivalente de concreto armado de 4cm de espesor y la relación largo/ancho no sea mayor de 4.5.

- Cuando un número significativo de plantas tenga entrantes cuya menor longitud exceda el cuarenta por ciento de la dimensión del menor rectángulo que inscribe a la planta, medida paralelamente a la dirección del entrante; o cuando el área de dichos entrantes supere el treinta por ciento del área del citado rectángulo circunscrito.
- Cuando las plantas presenten un área total de aberturas internas que rebasen el veinte por ciento del área bruta de las plantas.
- Cuando existan aberturas prominentes adyacentes a planos sismorresistentes importantes o, en general, cuando se carezca de conexiones adecuadas con ellos.
- Cuando en alguna planta el cociente largo/ancho del menor rectángulo que inscriba a dicha planta sea mayor que 5.

A.1.3.7 ESPECTROS DE DISEÑO.

Los parámetros del espectro de diseño quedan definidos por las siguientes ecuaciones para las ordenadas Ad en función del período:

$$T < T^{+}$$

$$A_{d} = \frac{\alpha \varphi A_{o} \left[1 + \frac{T}{T^{+}} (\beta - 1) \right]}{1 + \left(\frac{T}{T^{+}} \right)^{c} (R - 1)}$$

$$T^{+} \le T \le T^{*}$$

$$A_{d} = \frac{\alpha \varphi \beta A_{o}}{R}$$

$$T > T^{*}$$

$$A_{d} = \frac{\alpha \varphi \beta A_{o}}{R} \left(\frac{T^{*}}{T} \right)^{P}$$

Ec.A.1. Cálculo de la ordenada del espectro en función del período.

A_d = Ordenada del espectro de diseño

A = Factor de importancia

 A_0 = Coeficiente de aceleración horizontal

 Φ = Factor de corrección del coeficiente de aceleración horizontal

 β = Factor de magnificación promedio

 $T_o = 0.25T^*$ Período a partir del cual los espectros normalizados tienen un valor constante expresado en segundos.

T* = Máximo período en el intervalo donde los espectros normalizados tienen un valor constante

 $T^+ \ge T_O$ Período característico de variación de respuesta dúctil expresado en segundos

$$c = \sqrt[4]{R/\beta}$$

R = Factor de reducción de respuesta

p = Exponente que define la rama descendente del espectro

Tabla A.7. Valores de T*,β,,ρ. T^* Forma β P (seg.) espectral S1 0.4 2.4 S2 0.7 2.6 1 S3 1 2.8 1 **S**4 3 1.3 0.8

Fuente: Edificaciones Sismorresistentes; Tabla 7.1. Norma COVENIN 1756:2001.

Tabla A.8.	Valores de T ⁺ .
CASO	T+ (seg.)
R < 5	0.1 (R - 1)
$R \ge 5$	0.4

Fuente: Edificaciones Sismorresistentes; Tabla 7.2. Norma COVENIN 1756:2001.

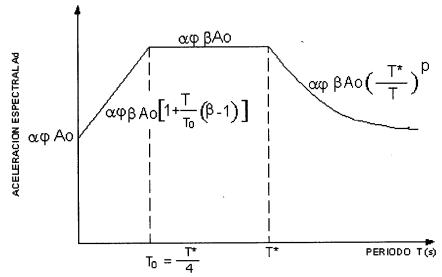


Fig.A.2. Espectro de respuesta elástico (R=1)

Fuente: Edificaciones Sismorresistentes; Figura 7.1. Norma COVENIN 1756:2001.

A.1.4 MÉTODOS DE ANÁLISIS.

A.1.4.1 CLASIFICACIÓN DE LOS MÉTODOS DE ANÁLISIS

Los efectos de translación y de torsión serán tomados en cuenta en el análisis estructural, mediante uno de los siguientes métodos:

- Análisis Estático: los efectos traslacionales se determinan con el Método Estático
 Equivalente, mientras que los efectos torsionales se determinan con el Método De
 Torsión Estática Equivalente.
- Análisis Dinámico Plano: los efectos traslacionales se determinan según el Método De Superposición Modal Con Un Grado De Libertad por nivel. Los efectos torsionales se determinan con el Método De La Torsión Estática Equivalente.
- Análisis Dinámico Espacial: los efectos traslacionales y los efectos torsionales se determinan según el Método De Superposición Modal Con Tres Grados De Libertad por nivel.
- Análisis Dinámico Espacial Con Diafragma Flexible: los efectos traslacionales y los efectos torsionales se determinan mediante el método de mismo nombre, en el cual se incluye la flexibilidad del diafragma.
- Análisis Dinámico Con Acelerogramas: método alternativo, recomendable en el caso de estructuras no tipificadas en la Norma "Edificaciones Sismorresistentes" 1756:2001.
- Análisis Estático Inelástico: método opcional que puede ser utilizado en conjunto con los métodos de análisis descritos anteriormente.

A.1.4.2 SELECCIÓN DE LOS MÉTODOS DE ANÁLISIS

A continuación se muestran los métodos de análisis que deben ser empleados según la condición de regularidad que presente la estructura.

Tabla A.9. Selección del método de análisis para edificios de estructura regular.

ALTURA DE LA EDIFICACIÓN	REQUERIMIENTO MÍNIMO
No excede 10 pisos ni 30 metros	ANÁLISIS ESTÁTICO (Sección 9.1.1)
Excede 10 pisos ó 30 metros	ANÁLISIS DINÁMICO PLANO (Sección 9.1.2)

Fuente: Edificaciones Sismorresistentes; Tabla 9.1. Norma COVENIN 1756:2001.

Tabla A.10. Selección de análisis para edificios de estructura irregular.

	RREGULARIDAD CCIÓN 6.5.2)	REQUERIMIENTO MÍNIMO
VERTICAL	a.1; a.2; a.4; a.7; a.8	ANÁLISIS DINÁMICO ESPACIAL (Sección 9.1.3)
	a.3; a.5; a.6	ANÁLISIS DINÁMICO PLANO (Sección 9.1.2)
PLANTA	b.1; b.2; b.3	ANÁLISIS DINÁMICO ESPACIAL (Sección 9.1.3)
	b.4	ANÁLISIS DINÁMICO ESPACIAL CON DIAFRAGMA FLEXIBLE (Sección 9.1.4)

Fuente: Edificaciones Sismorresistentes; Tabla 9.2. Norma COVENIN 1756:2001.

A.1.4.3 ANÁLISIS DINÁMICO CON DIAFRAGMA FLEXIBLE.

Si bien existen otros métodos para el análisis de estructuras es de nuestro especial interés explicar con mayor detalle el análisis dinámico con diafragma flexible, por ser este el objetivo de estudio del presente Trabajo De Grado.

El Método De Análisis Dinámico Espacial Con Diafragma Flexible es una alternativa para el análisis de estructuras irregulares que cumplan con la descripción de diafragma flexible.

Se empleará la técnica de elementos finitos para modelar las estructuras, a fin de representar de manera adecuada su flexibilidad; al ser incluida la flexibilidad del sistema de piso, la distribución y magnitud de las fuerzas laterales pueden ser modificadas.

Los efectos de excentricidad accidentales y de la componente rotacional del terreno podrán ser incorporados desplazando el centro de masa 3% de la mayor dimensión del edificio en la dirección perpendicular a la dirección del sismo.

A.2 DESCRIPCIÓN DE LOS MODELOS

Es importante hacer énfasis en que todas las estructuras se encuentran sometidas a las mismas cargas variables y sólo se varió su distribución, en todos los pisos por igual, con objetivo de simular los efectos adicionales causados por la ocurrencia de cargas variables no distribuidas por igual en todos los paños de las plantas, originando en su efecto, el desplazamiento del centro de masa de cada piso y de este modo evaluar los requerimientos estructurales de los elementos encargados de soportar las acciones sísmicas.

A.2.1 ESTRUCTURAS ALARGADAS

A.2.1.1 DIMENSIONES 8 X 60 M.

 Tabla A.11.
 Dimensión de los elementos que conforman la estructura alargada 8 x 60 m

Elemento	Dimensión	Unidad
Planta	8 x 60	m
Pórticos	4 x 6	m
Vigas	40 x 60	cm
Columnas	60 x 60	cm
Espesor de losa	12	cm

Tabla A.12. Centros de masas inicial de la estructura alargada 8 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	4	4	4	4	4	4	4	4	4	4

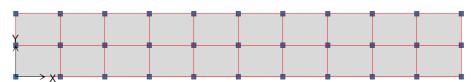


Fig.A.3. Planta de la estructura alargada 8 x 60 m

Fig.A.4. Vista tridimensional de la estructura alargada 8 x 60 m

• +dx,+dy

Tabla A.13. Centros de masas desplazados + dx, + dy de estructura alargada 8 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31,894	31,748	31,748	31,748	31,748	31,748	31,748	31,748	31,748	31,748
YCM	4,253	4,233	4,233	4,233	4,233	4,233	4,233	4,233	4,233	4,233

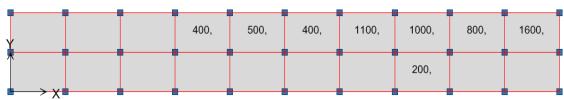


Fig.A.5. Planta de estructura alargada 8 x 60 m con distribución de cargas para el movimiento de masas + dx, + dy

• - dx, +dy

Tabla A.14. Centros de masas desplazados - dx, + dy de estructura alargada 8 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28,106	28,252	28,252	28,252	28,252	28,252	28,252	28,252	28,252	28,252
YCM	4,253	4,233	4,233	4,233	4,233	4,233	4,233	4,233	4,233	4,233

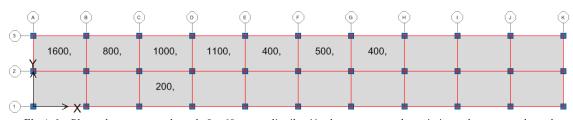


Fig.A.6. Planta de estructura alargada 8 x 60 m con distribución de cargas para el movimiento de masas – dx, + dy

• dx, - dy

Tabla A.15. Centros de masas desplazados + dx, - dy de estructura alargada 8 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31,894	31,748	31,748	31,748	31,748	31,748	31,748	31,748	31,748	31,748
YCM	3,747	3,767	3,767	3,767	3,767	3,767	3,767	3,767	3,767	3,767

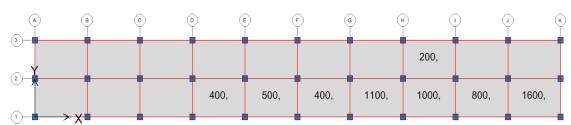


Fig.A.7. Planta de estructura alargada 8 x 60 m con distribución de cargas para el movimiento de masa + dx, - dy

• -dx,-dy

Tabla A.16. Centros de masas desplazados - dx, - dy de estructura alargada 8 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28,106	28,252	28,252	28,252	28,252	28,252	28,252	28,252	28,252	28,252
YCM	3,747	3,767	3,767	3,767	3,767	3,767	3,767	3,767	3,767	3,767

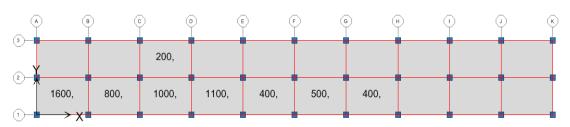


Fig.A.8. Planta de estructura alargada 8 x 60 m con distribución de cargas para el movimiento de masas - dx, - dy

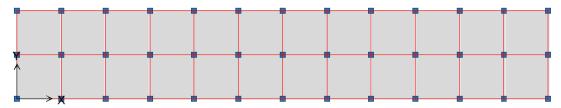

A.2.1.2 DIMENSIONES 10 X 60 M

Tabla A.17. Dimensión de los elementos que conforman la estructura alargada 10 x 60 m

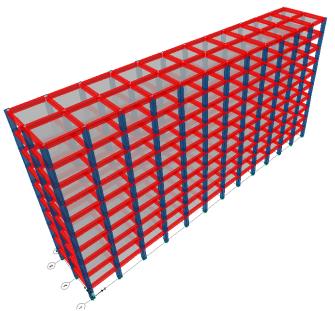

ELEMENTO	DIMENSIÓN	UNIDAD
Planta	10 x 60	m
Pórticos	5 x 5	m
Vigas	40 x 60	cm
Columnas	60 x 60	cm
Espesor de losa	11	cm

Tabla A.18. Centros de masas inicial de la estructura alargada 10 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	5	5	5	5	5	5	5	5	5	5

Fig.A.9. Planta de la estructura alargada 10 x 60 m

Fig.A.10. Vista tridimensional de la estructura alargada 10 x 60 m

• +dx; +dy

Tabla A.19. Centros de masas desplazados + dx, + dy de estructura alargada 10 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.959	31.831	31.831	31.831	31.831	31.831	31.831	31.831	31.831	31.831
YCM	5.316	5.303	5.303	5.303	5.303	5.303	5.303	5.303	5.303	5.303

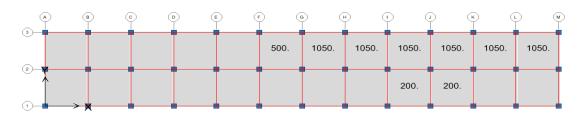


Fig.A.11. Planta de estructura alargada 10 x 60 m con distribución de cargas para el movimiento de masas + dx, + dy

• +dx - dy

Tabla A.20. Centros de masas desplazados + dx, - dy de estructura alargada $10 \times 60 \text{ m}$

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.959	31.831	31.831	31.831	31.831	31.831	31.831	31.831	31.831	31.831
YCM	4.684	4.697	4.697	4.697	4.697	4.697	4.697	4.697	4.697	4.697

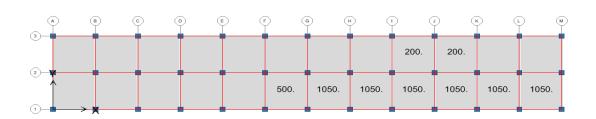


Fig.A.12. Planta de estructura alargada 10 x 60 m con distribución de cargas para el movimiento de masas + dx, - dy

-dx −dy

Tabla A.21. Centros de masas desplazados - dx, - dy de estructura alargada 10 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.041	28.169	28.169	28.169	28.169	28.169	28.169	28.169	28.169	28.169
YCM	4.684	4.697	4.697	4.697	4.697	4.697	4.697	4.697	4.697	4.697

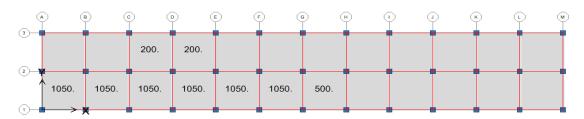


Fig.A.13. Planta de estructura alargada 10 x 60 m con distribución de cargas para el movimiento de masas - dx, - dy

• -dx +dy

Tabla A.22. Centros de masas desplazados - dx, + dy de estructura alargada $10 \times 60 \text{ m}$

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.041	28.169	28.169	28.169	28.169	28.169	28.169	28.169	28.169	28.169
YCM	5.316	5.303	5.303	5.303	5.303	5.303	5.303	5.303	5.303	5.303

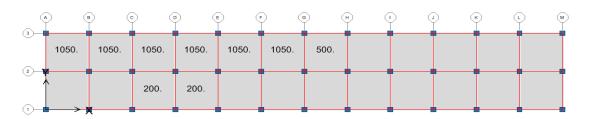


Fig.A.14. Planta de estructura alargada 10 x 60 m con distribución de cargas para el movimiento de masas - dx, + dy.

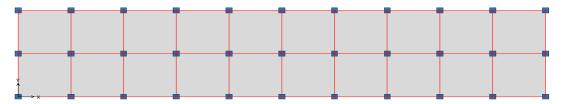

A.2.1.3 DIMENSIONES 12X60 M

Tabla A.23. Dimensión de los elementos que conforman la estructura alargada 12 x 60 m

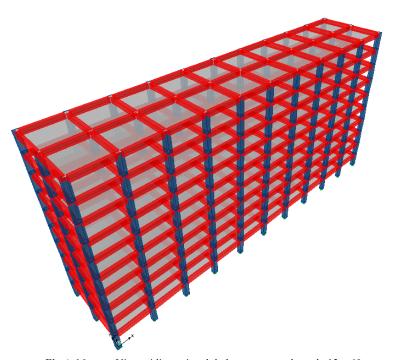

Elemento	Dimensión	Unidad
Planta	12 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

Tabla A.24. Centros de masas inicial de la estructura alargada 12 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	6	6	6	6	6	6	6	6	6	6

Fig.A.15. Planta de la estructura alargada 12 x 60 m

Fig.A.16. Vista tridimensional de la estructura alargada 12 x 60 m

• +dx, +dy

Tabla A.25. Centros de masas desplazados + dx, + dy de estructura alargada 12 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.888	31.763	31.763	31.763	31.763	31.763	31.763	31.763	31.763	31.763
YCM	6.366	6.342	6.342	6.342	6.342	6.342	6.342	6.342	6.342	6.342

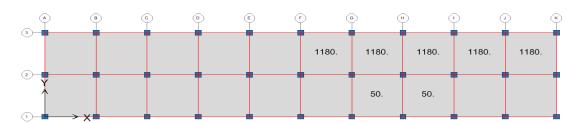


Fig.A.17. Planta de estructura alargada 12 x 60 m con distribución de cargas para el movimiento de masas + dx, - dy

• +dx; -dy

Tabla A.26. Centros de masas desplazados + dx, - dy de estructura alargada 12 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.888	31.763	31.763	31.763	31.763	31.763	31.763	31.763	31.763	31.763
YCM	5.634	5.658	5.658	5.658	5.658	5.658	5.658	5.658	5.658	5.658

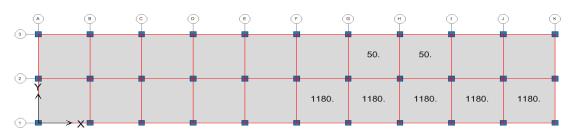


Fig. A.18. Planta de estructura alargada 12 x 60 m con distribución de cargas para el movimiento de masas + dx, - dy

• -dx; -dy

Tabla A.27. Centros de masas desplazados - dx, - dy de estructura alargada 12 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.112	28.237	28.237	28.237	28.237	28.237	28.237	28.237	28.237	28.237
YCM	5.634	5.658	5.658	5.658	5.658	5.658	5.658	5.658	5.658	5.658

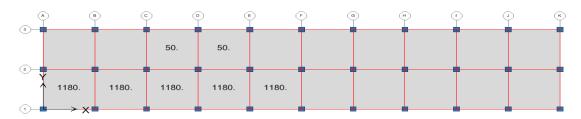


Fig.A.19. Planta de estructura alargada 12 x 60 m con distribución de cargas para el movimiento de masas - dx, - dy

• -dx; +dy

Tabla A.28. Centros de masas desplazados - dx, + dy de estructura alargada 12 x 60 m

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.112	28.237	28.237	28.237	28.237	28.237	28.237	28.237	28.237	28.237
YCM	6.366	6.342	6.342	6.342	6.342	6.342	6.342	6.342	6.342	6.342

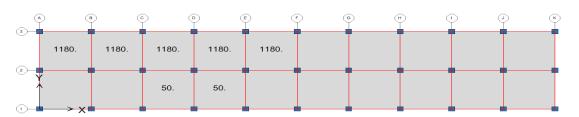
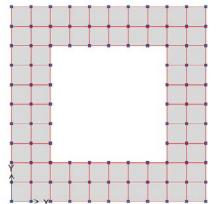


Fig.A.20. Planta de estructura alargada 12 x 60 m con distribución de cargas para el movimiento de masas - dx, - dy

A.2.2 ESTRUCTURAS CON HUECO CENTRAL

A.2.2.1 PORCENTAJE DE ABERTURA FR = 0.36


Tabla A.29. Dimensió

Dimensión de los elementos que conforman la estructura con hueco central FR = 0,36

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

Tabla A.30. Centros de masas inicial de la estructura con hueco central FR = 0,36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	30	30	30	30	30	30	30	30	30	30

Fig.A.21. Planta de la estructura con hueco central FR = 0.36

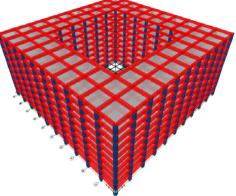


Fig.A.22. Vista tridimensional de la estructura con hueco central FR = 0.36

• +dx, +dy

Tabla A.31. Centros de masas desplazados + dx, + dy de estructura con hueco central FR = 0,36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.852	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737
YCM	31.852	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737

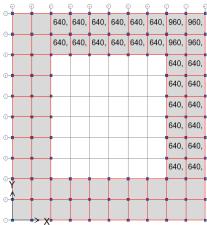


Fig.A.24. Planta de estructura con hueco central FR = 0.36 con distribución de cargas para el movimiento de masas + dx, + dy

• -dx,dy

Tabla A.32. Centros de masas desplazados - dx, + dy de estructura con hueco central FR = 0,36

				1	,	,		,			
Nivel	10	9	8	7	6	5	4	3	2	1	
XCM	28.148	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263	
YCM	31.852	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737	

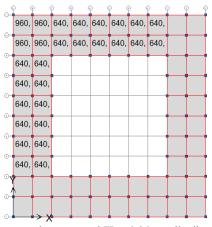


Fig.A.25. Planta de estructura con hueco central FR = 0.36 con distribución de cargas para el movimiento de masas - dx, + dy

• dx,-dy

Tabla A.33. Centros de masas desplazados + dx, - dy de estructura con hueco central FR = 0.36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.852	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737	31.737
YCM	28.148	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263

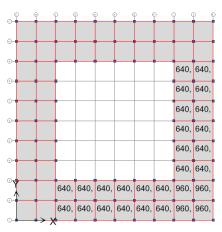


Fig.A.26. Planta de estructura con hueco central FR = 0.36 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx,-dy

Tabla A.34. Centros de masas desplazados - dx, - dy de estructura con hueco central FR = 0.36

						-				
Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.148	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263
YCM	28.148	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263	28.263



Fig.A.27. Planta de estructura con hueco central FR = 0,36 con distribución de cargas para el movimiento de masas - dx, - dy

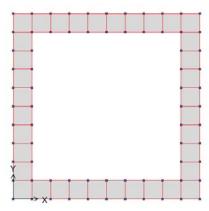

A.2.2.2 PORCENTAJE DE ABERTURA FR = 0,64

Tabla A.35. Dimensión de los elementos que conforman la estructura con hueco central FR = 0.64

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	65 x 65	cm
Espesor de losa	13	cm

Tabla A.36. Centros de masas inicial de la estructura con hueco central FR = 0.64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	30	30	30	30	30	30	30	30	30	30

Fig.A.28. Planta de la estructura con hueco central FR = 0,64

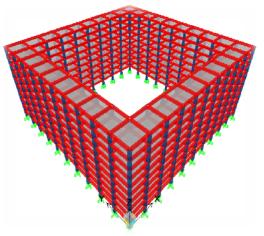


Fig.A.29. Vista tridimensional de la estructura con hueco central FR = 0.64

• +dx; +dy

Tabla A.37. Centros de masas desplazados + dx, + dy de estructura con hueco central FR = 0,64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.895	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770
YCM	31.895	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770

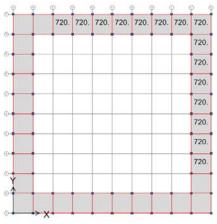


Fig.A.30. Planta de estructura con hueco central FR = 0.64 con distribución de cargas para el movimiento de masas + dx, + dy

• +dx; -dy

Tabla A.38. Centros de masas desplazados + dx, - dy de estructura con hueco central FR = 0.64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.895	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770
YCM	28.105	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230

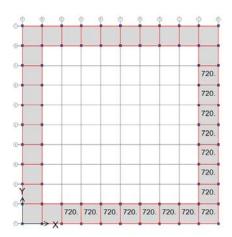


Fig.A.31. Planta de estructura con hueco central FR = 0.64 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx; -dy

Tabla A.39. Centros de masas desplazados - dx, - dy de estructura con hueco central FR = 0.64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.105	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230
YCM	28.105	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230

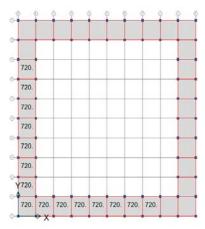


Fig.A.32. Planta de estructura con hueco central FR = 0,64 con distribución de cargas para el movimiento de masas - dx, - dy

• -dx; +dy

Tabla A.40. Centros de masas desplazados - dx, + dy de estructura con hueco central FR = 0.64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.105	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230
YCM	31.895	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770

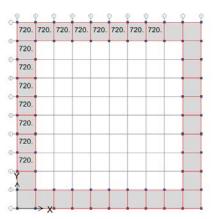


Fig.A.33. Planta de estructura con hueco central FR = 0.64 con distribución de cargas para el movimiento de masas - dx, + dy

A.2.3 ESTRUCTURAS CON HUECOS DISTRIBUIDOS

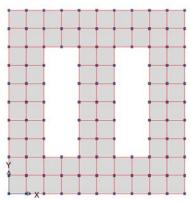

A.2.3.1 PORCENTAJE DE ABERTURA FR = 0,24

Tabla A.41. Dimensión de los elementos que conforman la estructura con huecos distribuidos FR = 0,24

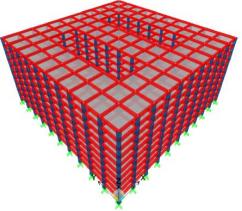

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

Tabla A.42. Centros de masas inicial de la estructura con huecos distribuidos FR = 0.24

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	30	30	30	30	30	30	30	30	30	30

Fig.A.34. Planta de la estructura con huecos distribuidos FR = 0.24

Fig.A.35. Vista tridimensional de la estructura con huecos distribuidos FR = 0,24

• dx; +dy

Tabla A.43. Centros de masas desplazados + dx, + dy de estructura con huecos distribuidos FR = 0.24

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.899	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770
YCM	31.976	31.842	31.842	31.842	31.842	31.842	31.842	31.842	31.842	31.842

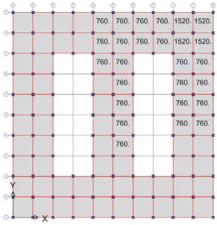


Fig.A.36. Planta de estructura con huecos distribuidos FR = 0,24 con distribución de cargas para el movimiento de masas + dx, + dy

• +dx; - dy

Tabla A.44. Centros de masas desplazados + dx, - dy de estructura con huecos distribuidos FR = 0.24

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.899	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770	31.770
YCM	28.024	28.158	28.158	28.158	28.158	28.158	28.158	28.158	28.158	28.158

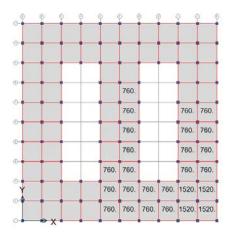


Fig.A.37. Planta de estructura con huecos distribuidos FR = 0,24 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx; -dy

Tabla A.45. Centros de masas desplazados - dx, - dy de estructura con huecos distribuidos FR = 0.24

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.101	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230
YCM	28.024	28.158	28.158	28.158	28.158	28.158	28.158	28.158	28.158	28.158

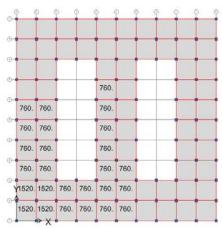


Fig.A.38. Planta de estructura con huecos distribuidos FR = 0,24 con distribución de cargas para el movimiento de masas - dx, - dy

• -dx; +dy

Tabla A.46. Centros de masas desplazados - dx, + dy de estructura con huecos distribuidos FR = 0,24

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.101	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230	28.230
YCM	31.976	31.842	31.842	31.842	31.842	31.842	31.842	31.842	31.842	31.842

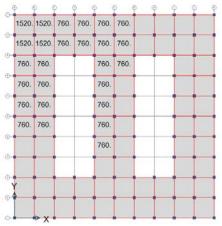


Fig.A.39. Planta de estructura con huecos distribuidos FR = 0.24 con distribución de cargas para el movimiento de masas - dx, + dy

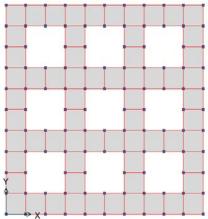

A.2.3.2 PORCENTAJE DE ABERTURA FR = 0,36

Tabla A.47. Dimensión de los elementos que conforman la estructura con huecos distribuidos FR = 0,36

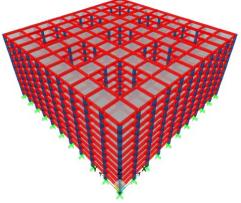

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

Tabla A.48. Centros de masas inicial de la estructura con huecos distribuidos FR = 0.36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	30	30	30	30	30	30	30	30	30	30

Fig.A.40. Planta de la estructura con huecos distribuidos FR = 0.36

Fig.A.41. Vista tridimensional de la estructura con huecos distribuidos FR = 0.36

• +dx; +dy

Tabla A.49. Centros de masas desplazados + dx, + dy de estructura con huecos distribuidos FR = 0,36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.955	31.823	31.823	31.823	31.823	31.823	31.823	31.823	31.823	31.823
YCM	31.946	31.814	31.814	31.814	31.814	31.814	31.814	31.814	31.814	31.814

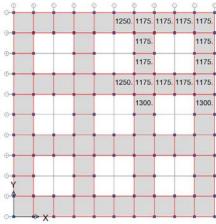


Fig.A.42. Planta de estructura con huecos distribuidos FR = 0.36 con distribución de cargas para el movimiento de masas + dx, + dy

• +dx; -dy

Tabla A.50. Centros de masas desplazados + dx, - dy de estructura con huecos distribuidos FR = 0.36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.955	31.823	31.823	31.823	31.823	31.823	31.823	31.823	31.823	31.823
YCM	28.054	28.186	28.186	28.186	28.186	28.186	28.186	28.186	28.186	28.186

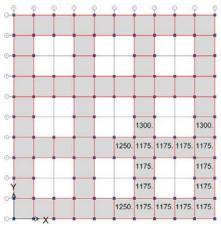


Fig.A.43. Planta de estructura con huecos distribuidos FR = 0,36 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx; -dy

Tabla A.51. Centros de masas desplazados - dx, - dy de estructura con huecos distribuidos FR = 0.36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.045	28.177	28.177	28.177	28.177	28.177	28.177	28.177	28.177	28.177
YCM	28.054	28.186	28.186	28.186	28.186	28.186	28.186	28.186	28.186	28.186

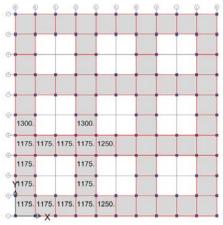


Fig.A.44. Planta de estructura con huecos distribuidos FR = 0,36 con distribución de cargas para el movimiento de masas - dx, - dy

• -dx; +dy

Tabla A.52. Centros de masas desplazados - dx, + dy de estructura con huecos distribuidos FR = 0.36

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.045	28.177	28.177	28.177	28.177	28.177	28.177	28.177	28.177	28.177
YCM	31.946	31.814	31.814	31.814	31.814	31.814	31.814	31.814	31.814	31.814

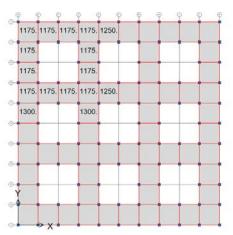
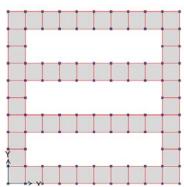


Fig.A.45. Planta de estructura con huecos distribuidos FR = 0.36 con distribución de cargas para el movimiento de masas - dx, + dy

A.2.3.3 PORCENTAJE DE ABERTURA FR = 0,48

Tabla A.53.


Dimensión de los elementos que conforman la estructura con huecos distribuidos FR = 0,48

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

Tabla A.54.

Centros de masas inicial de la estructura con huecos distribuidos FR = 0,48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	30	30	30	30	30	30	30	30	30	30

Fig.A.46. Planta de la estructura con huecos distribuidos FR = 0.48

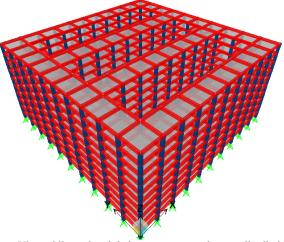


Fig.A.47. Vista tridimensional de la estructura con huecos distribuidos FR = 0,48

• dx,dy

Tabla A.55. Centros de masas desplazados + dx, + dy de estructura con huecos distribuidos FR = 0.48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.922	31.782	31.782	31.782	31.782	31.782	31.782	31.782	31.782	31.782
YCM	31.889	31.752	31.752	31.752	31.752	31.752	31.752	31.752	31.752	31.752

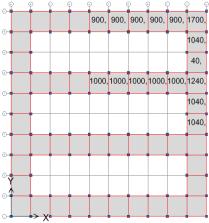


Fig.A.48. Planta de estructura con huecos distribuidos FR = 0.48 con distribución de cargas para el movimiento de masas + dx, + dy

• -dx,dy

Tabla A.56. Centros de masas desplazados - dx, + dy de estructura con huecos distribuidos FR = 0,48

							,				
]	Nivel	10	9	8	7	6	5	4	3	2	1
2	XCM	28.078	28.218	28.218	28.218	28.218	28.218	28.218	28.218	28.218	28.218
	YCM	31.889	31.752	31.752	31.752	31.752	31.752	31.752	31.752	31.752	31.752

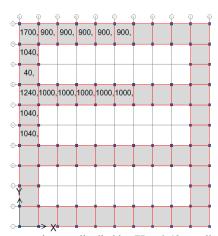


Fig.A.49. Planta de estructura con huecos distribuidos FR = 0.48 con distribución de cargas para el movimiento de masas - dx, + dy

• dx,-dy

Tabla A.57. Centros de masas desplazados + dx, - dy de estructura con huecos distribuidos FR = 0.48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.922	31.782	31.782	31.782	31.782	31.782	31.782	31.782	31.782	31.782
YCM	28.111	28.248	28.248	28.248	28.248	28.248	28.248	28.248	28.248	28.248

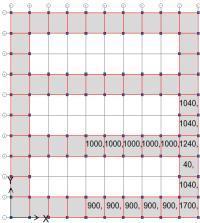


Fig.A.50. Planta de estructura con huecos distribuidos FR = 0,48 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx,-dy

Tabla A.58. Centros de masas desplazados - dx, - dy de estructura con huecos distribuidos FR = 0.48

						,				
Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.078	28.218	28.218	28.218	28.218	28.218	28.218	28.218	28.218	28.218
YCM	28.111	28.248	28.248	28.248	28.248	28.248	28.248	28.248	28.248	28.248

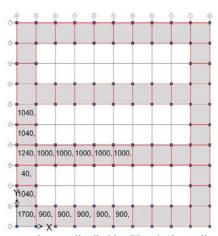


Fig.A.51. Planta de estructura con huecos distribuidos FR = 0,48 con distribución de cargas para el movimiento de masas - dx, - dy

A.2.4 ESTRUCTURAS EN FORMA DE U

A.2.4.1 PORCENTAJE DE ABERTURA FR = 0,32

Tabla A.59. Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0,32

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	75 x 75	cm
Espesor de losa	13	cm

Tabla A.60. Centros de masas inicial de la estructura en forma de "U" FR = 0,32

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	38.006	37.896	37.896	37.896	37.896	37.896	37.896	37.896	37.896	37.896

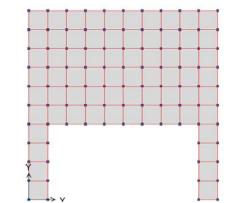


Fig.A.52. Planta de la estructura en forma de "U" FR = 0,32

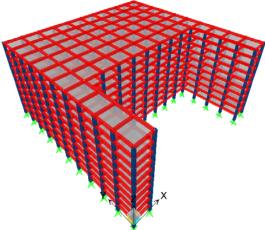


Fig.A.53. Vista tridimensional de la estructura en forma de "U" FR = 0.32

• dx, dy

Tabla A.61. Centros de masas desplazados + dx, + dy de estructura en forma de "U" FR = 0,32

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.97	31.841	31.841	31.841	31.841	31.841	31.841	31.841	31.841	31.841
YCM	39.868	39.637	39.637	39.637	39.637	39.637	39.637	39.637	39.637	39.637

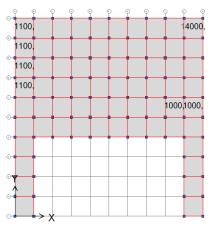


Fig.A.54. Planta de estructura en forma de "U" FR = 0.32 con distribución de cargas para el movimiento de masas + dx, + dy

• dx,-dy

Tabla A.62. Centros de masas desplazados + dx, - dy de estructura en forma de "U" FR = 0,32

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.862	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74
YCM	36.09	36.106	36.106	36.106	36.106	36.106	36.106	36.106	36.106	36.106

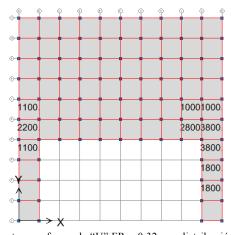


Fig.A.55. Planta de estructura en forma de "U" FR = 0.32 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx,dy

Tabla A.63. Centros de masas desplazados - dx, + dy de estructura en forma de "U" FR = 0.32

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.03	28.159	28.159	28.159	28.159	28.159	28.159	28.159	28.159	28.159
YCM	39.868	39.637	39.637	39.637	39.637	39.637	39.637	39.637	39.637	39.637

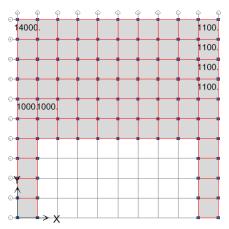


Fig.A.56. Planta de estructura en forma de "U" FR = 0.32 con distribución de cargas para el movimiento de masas - dx, + dy

• -dx,-dy

Tabla A.64. Centros de masas desplazados - dx, - dy de estructura en forma de "U" FR = 0,32

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.138	28.26	28.26	28.26	28.26	28.26	28.26	28.26	28.26	28.26
YCM	36.09	36.106	36.106	36.106	36.106	36.106	36.106	36.106	36.106	36.106

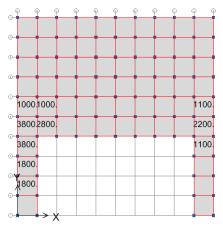


Fig.A.57. Planta de estructura en forma de "U" FR = 0,32 con distribución de cargas para el movimiento de masas - dx, - dy

A.2.4.2 PORCENTAJE DE ABERTURA FR = 0,48

Tabla A.65.

Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0,48

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	40 x 60	cm
Columnas	70 x 70	cm
Espesor de losa	13	cm

Tabla A.66. Centros de masas inicial de la estructura en forma de "U" FR = 0,48

										,	
	Nivel	10	9	8	7	6	5	4	3	2	1
	XCM	30	30	30	30	30	30	30	30	30	30
	YCM	40.495	40.32	40.32	40.32	40.32	40.32	40.32	40.32	40.32	40.32

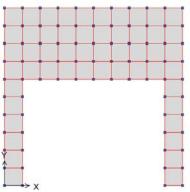
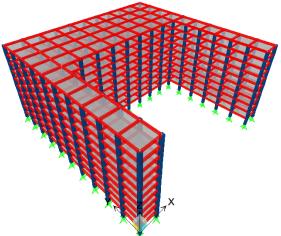



Fig.A.58. Planta de la estructura en forma de "U" FR = 0.48

Fig.A.59. Vista tridimensional de la estructura en forma de "U" FR = 0,48

• +dx, +dy

Tabla A.67. Centros de masas desplazados + dx, + dy de estructura en forma de "U" FR = 0.48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.891	31.76	31.76	31.76	31.76	31.76	31.76	31.76	31.76	31.76
YCM	42.39	42.085	42.085	42.085	42.085	42.085	42.085	42.085	42.085	42.085

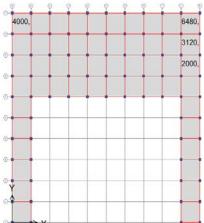


Fig.A.60. Planta de estructura en forma de "U" FR = 0,48 con distribución de cargas para el movimiento de masas + dx, + dy

• dx,-dy

Tabla A.68. Centros de masas desplazados + dx, - dy de estructura en forma de "U" FR = 0.48

				1		, ,			,	
Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.891	31.76	31.76	31.76	31.76	31.76	31.76	31.76	31.76	31.76
YCM	38.608	38.564	38.564	38.564	38.564	38.564	38.564	38.564	38.564	38.564

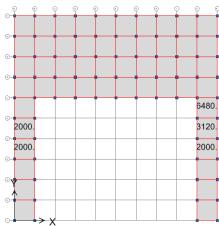


Fig.A.61. Planta de estructura en forma de "U" FR = 0,48 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx,dy

Tabla A.69. Centros de masas desplazados - dx, + dy de estructura en forma de "U" FR = 0.48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.109	28.24	28.24	28.24	28.24	28.24	28.24	28.24	28.24	28.24
YCM	42.39	42.085	42.085	42.085	42.085	42.085	42.085	42.085	42.085	42.085

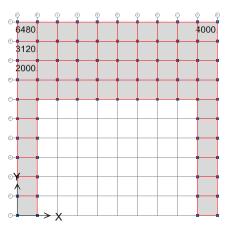


Fig.A.62. Planta de estructura en forma de "U" FR = 0.48 con distribución de cargas para el movimiento de masas - dx, + dy

• -dx,-dy

Tabla A.70. Centros de masas desplazados - dx, - dy de estructura en forma de "U" FR = 0.48

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.109	28.24	28.24	28.24	28.24	28.24	28.24	28.24	28.24	28.24
YCM	38.608	38.564	38.564	38.564	38.564	38.564	38.564	38.564	38.564	38.564

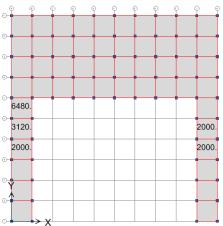


Fig.A.63. Planta de estructura en forma de "U" FR = 0,48 con distribución de cargas para el movimiento de masas - dx, - dy

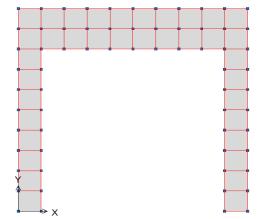

A.2.4.3 PORCENTAJE DE ABERTURA FR = 0.64

Tabla A.71. Dimensión de los elementos que conforman la estructura en forma de "U" FR = 0,64

Elemento	Dimensión	Unidad
Planta	60 x 60	m
Pórticos	6 x 6	m
Vigas	50 x 75	cm
Columnas	65 x 65	cm
Espesor de losa	13	cm

Tabla A.72. Centros de masas inicial de la estructura en forma de "U" FR = 0,64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	30	30	30	30	30	30	30	30	30	30
YCM	39.885	39.736	39.736	39.736	39.736	39.736	39.736	39.736	39.736	39.736

Fig.A.64. Planta de la estructura en forma de "U" FR = 0,64

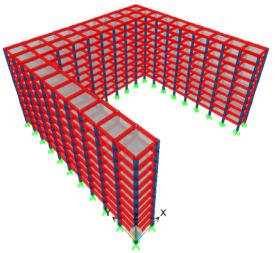


Fig.A.65. Vista tridimensional de la estructura en forma de "U" FR = 0,64

• +dx; +dy

Tabla A.73. Centros de masas desplazados + dx, + dy de estructura en forma de "U" FR = 0,64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.971	31.849	31.849	31.849	31.849	31.849	31.849	31.849	31.849	31.849
YCM	41.825	41.574	41.574	41.574	41.574	41.574	41.574	41.574	41.574	41.574

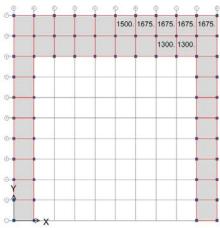
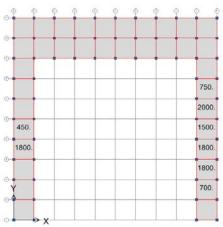



Fig.A.66. Planta de estructura en forma de "U" FR = 0.64 con distribución de cargas para el movimiento de masas + dx, + dy

• +dx; -dy

Tabla A.74. Centros de masas desplazados + dx, - dy de estructura en forma de "U" FR = 0,64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	31.950	31.830	31.830	31.830	31.830	31.830	31.830	31.830	31.830	31.830
YCM	37.890	37.882	37.882	37.882	37.882	37.882	37.882	37.882	37.882	37.882

Fig.A.67. Planta de estructura en forma de "U" FR = 0,64 con distribución de cargas para el movimiento de masas + dx, - dy

• -dx; +dy

Tabla A.75. Centros de masas desplazados - dx, + dy de estructura en forma de "U" FR = 0.64

Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.029	28.151	28.151	28.151	28.151	28.151	28.151	28.151	28.151	28.151
YCM	41.825	41.574	41.574	41.574	41.574	41.574	41.574	41.574	41.574	41.574

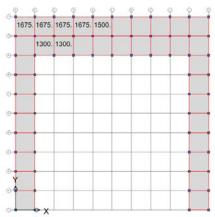
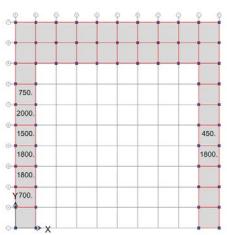



Fig.A.68. Planta de estructura en forma de "U" FR = 0,64 con distribución de cargas para el movimiento de masas - dx, + dy

• -dx; -dy

Tabla A.76. Centros de masas desplazados - dx, - dy de estructura en forma de "U" FR = 0,64

	1 abia 11	70.	Centros de	masas acsp.	uzuuos ux	, dy de esti	uctura cri ro	illia de O	110 0,04	
Nivel	10	9	8	7	6	5	4	3	2	1
XCM	28.050	28.170	28.170	28.170	28.170	28.170	28.170	28.170	28.170	28.170
YCM	37.890	37.882	37.882	37.882	37.882	37.882	37.882	37.882	37.882	37.882

Fig.A.69. Planta de estructura en forma de "U" FR = 0,64 con distribución de cargas para el movimiento de masas - dx, - dy

A.3 RESULTADOS OBTENIDOS

A.3.1 ESTRUCTURAS ALARGADAS

A.3.1.1 DIMENSIONES 8 X 60 M

A.3.1.1.1 ACERO LONGITUDINAL EN COLUMNAS

		(+) dy				(+)dy	
Columna	% Variación	Ubicación	% ∆C.M	Columna	% Variación	Ubicación	% ∆C.M
C32	52,745	٠		C2	52,745	•	
C30	39,569	•	X = 5,875	C6	39,569	•	X = -5,875
C28	38,077	•	Y= 5,875	C4	38,077	•	Y= 5,875
C33	35,927	0		C3	35,927	0	
¥ → X							
y		(-)dy			3 .	ι (-)dy	
	% Variación		% ΔC.M		% Variación	(-)dy Ubicación	% ΔC.M
C2	% Variación 52,745			C32	% Variación 52,745		
C2 C4	% Variación 52,745 39,569		X = -5,875	C32 C28	% Variación 52,745 39,569		X = 5,875
C2	% Variación 52,745			C32	% Variación 52,745		% ΔC.M X = 5,875 Y= -5,875

Fig.A.70. Acero longitudinal estructura Alargada 8 x 60 m

A.3.1.1.2 DERIVA

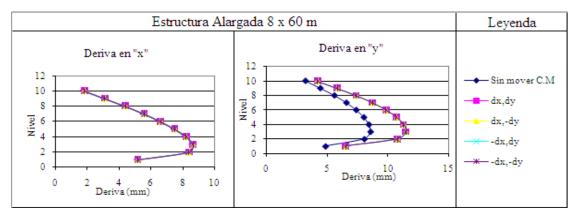


Fig.A.71. Gráfico de deriva estructura alargada 8 x 60 m

Tabla A.80. Derivas estructura alargada 8 x 60 m

				DERIVAS EN	N DIRECCIÓ	N "X"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
NIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00186	0,00188	1,034	0,00188	1,034	0,00188	1,034	0,00188	1,034
9	0,00287	0,00320	11,538	0,00320	11,538	0,00320	11,538	0,00320	11,538
8	0,00394	0,00449	14,146	0,00449	14,146	0,00449	14,146	0,00449	14,146
7	0,00492	0,00565	14,927	0,00565	14,927	0,00565	14,927	0,00565	14,927
6	0,00578	0,00666	15,187	0,00666	15,187	0,00666	15,187	0,00666	15,187
5	0,00652	0,00752	15,232	0,00752	15,232	0,00752	15,232	0,00752	15,232
4	0,00711	0,00819	15,115	0,00819	15,115	0,00819	15,115	0,00819	15,115
3	0,00749	0,00861	15,000	0,00861	15,000	0,00861	15,000	0,00861	15,000
2	0,00728	0,00845	16,018	0,00845	16,018	0,00845	16,018	0,00845	16,018
1	0,00467	0,00544	16,667	0,00544	16,667	0,00544	16,667	0,00544	16,667
				DERIVAS EN	N DIRECCIÓ	N "Y"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
INIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, $- dy$	Variación	en - dx + dy	Variación	en -dx, - dy	Variación
10	0,00323	0,00419	29,762	0,00419	29,762	0,00419	29,762	0,00419	29,762
9	0,00444	0,00581	30,952	0,00581	30,952	0,00581	30,952	0,00581	30,952
8	0,00559	0,00736	31,787	0,00736	31,787	0,00736	31,787	0,00736	31,787
7	0,00657	0,00870	32,456	0,00870	32,456	0,00870	32,456	0,00870	32,456
6	0,00737	0,00980	32,943	0,00980	32,943	0,00980	32,943	0,00980	32,943
5	0,00800	0,01066	33,253	0,01066	33,253	0,01066	33,253	0,01066	33,253
4	0,00841	0,01123	33,562	0,01123	33,562	0,01123	33,562	0,01123	33,562
3	0,00854	0,01143	33,764	0,01143	33,764	0,01143	33,764	0,01143	33,764
2	0,00804	0,01075	33,811	0,01075	33,811	0,01075	33,811	0,01075	33,811
1	0,00486	0,00649	33,564	0,00649	33,564	0,00649	33,564	0,00649	33,564

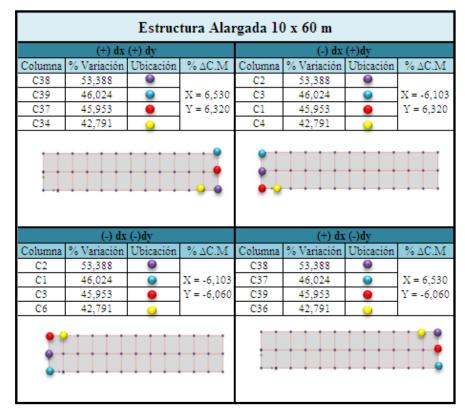
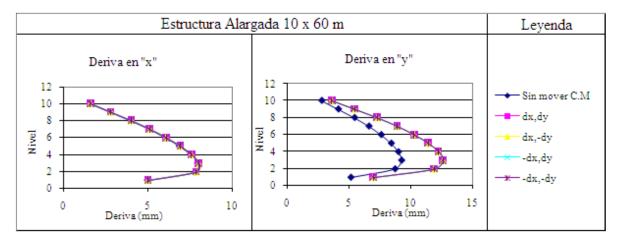

A.3.1.1.3 CORTE BASAL

Tabla A.81. Corte basal estructura alargada 8 x 60 m

	CORTE BASAL EN LA DIRECCIÓN "X"											
Sin de	splazamiento	(+) dx	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy			
Nivel	Vx	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	81574,47	81366,39	-0,255	81366,39	-0,255	81366,39	-0,255	81366,39	-0,255			
9	163924,13	163477,74	-0,272	163477,74	-0,272	163477,74	-0,272	163477,74	-0,272			
8	237934,96	237251,53	-0,287	237251,53	-0,287	237251,53	-0,287	237251,53	-0,287			
7	303824,29	302925,92	-0,296	302925,92	-0,296	302925,92	-0,296	302925,92	-0,296			
6	362537,61	361454,36	-0,299	361454,36	-0,299	361454,36	-0,299	361454,36	-0,299			
5	413395,68	412148,87	-0,302	412148,87	-0,302	412148,87	-0,302	412148,87	-0,302			
4	454795,28	453417,05	-0,303	453417,05	-0,303	453417,05	-0,303	453417,05	-0,303			
3	486634,75	485186,95	-0,298	485186,95	-0,298	485186,95	-0,298	485186,95	-0,298			
2	507873,71	506362,81	-0,297	506362,81	-0,297	506362,81	-0,297	506362,81	-0,297			
1	519195,77	517781,42	-0,272	517781,42	-0,272	517781,42	-0,272	517781,42	-0,272			
					EN LA DIREC							
Sin de	splazamiento	(+) dx (+) d	у	(+) dx $(-)$ dy	y	(-) dx $(+)$ dy	У	(-) dx (-) dy				
Nivel	Vy	Vy	%Variación	Vy	%Variación	Vy	%Variación	Vy	%Variación			
10	80797,73	74126,72	-8,256	74126,72	-8,256	74126,72	-8,256	74126,72	-8,256			
9	159775,8	146108,87	-8,554	146108,87	-8,554	146108,87	-8,554	146108,87	-8,554			
8	228595,53	208347,23	-8,858	208347,23	-8,858	208347,23	-8,858	208347,23	-8,858			
7	288365,44	262048,43	-9,126	262048,43	-9,126	262048,43	-9,126	262048,43	-9,126			
6	340814,52	309201,85	-9,276	309201,85	-9,276	309201,85	-9,276	309201,85	-9,276			
5	385810,37	349917,7	-9,303	349917,7	-9,303	349917,7	-9,303	349917,7	-9,303			
4	422254,92	383086,25	-9,276	383086,25	-9,276	383086,25	-9,276	383086,25	-9,276			
3	450527,22	408995,24	-9,219	408995,24	-9,219	408995,24	-9,219	408995,24	-9,219			
2	469656,01	426514,85	-9,186	426514,85	-9,186	426514,85	-9,186	426514,85	-9,186			
1	480504,68	437705,6	-8,907	437705,6	-8,907	437705,6	-8,907	437705,6	-8,907			


A.3.1.2 DIMENSIONES 10 X 60 M

A.3.1.2.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.72. Acero longitudinal estructura Alargada 10 x 60 m

A.3.1.2.2 DERIVA

Fig.A.73. Gráfico de deriva estructura alargada 10 x 60 m

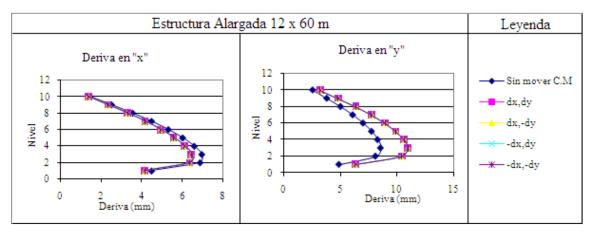
Tabla A.82. Derivas estructura alargada 10 x 60 m

	Tabla A.82. Derivas estructura alargada 10 x 60 m DERIVAS EN DIRECCIÓN "X"												
				DERIVAS EN									
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
INIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00160	0,00163	1,497	0,00163	1,497	0,00163	1,497	0,00163	1,497				
9	0,00280	0,00284	1,199	0,00284	1,199	0,00284	1,199	0,00284	1,199				
8	0,00400	0,00405	1,079	0,00405	1,079	0,00405	1,079	0,00405	1,079				
7	0,00509	0,00514	0,943	0,00514	0,943	0,00514	0,943	0,00514	0,943				
6	0,00606	0,00612	0,951	0,00612	0,951	0,00612	0,951	0,00612	0,951				
5	0,00688	0,00695	0,907	0,00695	0,907	0,00695	0,907	0,00695	0,907				
4	0,00754	0,00761	0,891	0,00761	0,891	0,00761	0,891	0,00761	0,891				
3	0,00797	0,00804	0,843	0,00804	0,843	0,00804	0,843	0,00804	0,843				
2	0,00783	0,00789	0,735	0,00789	0,735	0,00789	0,735	0,00789	0,735				
1	0,00499	0,00503	0,769	0,00503	0,769	0,00503	0,769	0,00503	0,769				
				DERIVAS EN	V DIRECCIÓ	N "Y"							
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00280	0,00366	30,479	0,00366	30,479	0,00366	30,479	0,00366	30,479				
9	0,00415	0,00550	32,486	0,00550	32,486	0,00550	32,486	0,00550	32,486				
8	0,00547	0,00732	33,684	0,00732	33,684	0,00732	33,684	0,00732	33,684				
7	0,00664	0,00892	34,346	0,00892	34,346	0,00892	34,346	0,00892	34,346				
6	0,00763	0,01030	34,906	0,01030	34,906	0,01030	34,906	0,01030	34,906				
5	0,00844	0,01142	35,304	0,01142	35,304	0,01142	35,304	0,01142	35,304				
4	0,00903	0,01225	35,673	0,01225	35,673	0,01225	35,673	0,01225	35,673				
3	0,00929	0,01261	35,814	0,01261	35,814	0,01261	35,814	0,01261	35,814				
2	0,00875	0,01190	35,985	0,01190	35,985	0,01190	35,985	0,01190	35,985				
1	0,00516	0,00701	35,688	0,00701	35,688	0,00701	35,688	0,00701	35,688				

A.3.1.2.3 CORTE BASAL

Tabla A.83. Corte basal estructura alargada 10 x 60 m

	CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dx	x (+) dy		x (-) dy		(+) dy	(-) dx	x (-) dy				
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación				
10	98851,93	98581,86	-0,273	98581,86	-0,273	98581,86	-0,273	98581,86	-0,273				
9	201436,46	200770,36	-0,331	200770,36	-0,331	200770,36	-0,331	200770,36	-0,331				
8	293782,66	292573,86	-0,411	292573,86	-0,411	292573,86	-0,411	292573,86	-0,411				
7	375993,25	374447,54	-0,411	374447,54	-0,411	374447,54	-0,411	374447,54	-0,411				
6	449228,17	447549,6	-0,374	447549,6	-0,374	447549,6	-0,374	447549,6	-0,374				
5	512770,46	510763,89	-0,391	510763,89	-0,391	510763,89	-0,391	510763,89	-0,391				
4	564649,87	562339,19	-0,409	562339,19	-0,409	562339,19	-0,409	562339,19	-0,409				
3	604626,57	602858,7	-0,292	602858,7	-0,292	602858,7	-0,292	602858,7	-0,292				
2	631559,77	629499,71	-0,326	629499,71	-0,326	629499,71	-0,326	629499,71	-0,326				
1	645619,03	647069,01	0,225	647069,01	0,225	647069,01	0,225	647069,01	0,225				
					EN LA DIREC	CCIÓN "Y"							
Sin de	splazamiento	(+) dx (+) d	у	(+) dx (-) dy $(-) dx (+) dy$			у	(-) dx (-) dy	,				
Nivel	VY	Vy	%Variación	Vy	%Variación	Vy	%Variación	Vy	%Variación				
10	90679,24	83929,08	-7,444	83929,08	-7,444	83929,08	-7,444	83929,08	-7,444				
9	182174,96	167792,74	-7,895	167792,74	-7,895	167792,74	-7,895	167792,74	-7,895				
8	262390,98	240206,94	-8,455	240206,94	-8,455	240206,94	-8,455	240206,94	-8,455				
7	332502,01	303006,06	-8,871	303006,06	-8,871	303006,06	-8,871	303006,06	-8,871				
6	394438,6	358926,41	-9,003	358926,41	-9,003	358926,41	-9,003	358926,41	-9,003				
5	447800,88	407552,24	-8,988	407552,24	-8,988	407552,24	-8,988	407552,24	-8,988				
4	491055,87	446751,12	-9,022	446751,12	-9,022	446751,12	-9,022	446751,12	-9,022				
3	524620,57	477346,23	-9,011	477346,23	-9,011	477346,23	-9,011	477346,23	-9,011				
2	547154,42	498588,53	-8,876	498588,53	-8,876	498588,53	-8,876	498588,53	-8,876				
1	560275	512616,12	-8,506	512616,12	-8,506	512616,12	-8,506	512616,12	-8,506				


A.3.1.3 DIMENSIONES 12X60 M

A.3.1.3.1 ACERO LONGITUDINAL EN COLUMNAS

		Estruc	tura Alaı	rgada 12	2 x 60 m		
	(+) dx	(+) dy			(-) dx	(+)dy	
Columna	% Variación	Ubicación	% ∆C.M	Columna	% Variación	Ubicación	% ∆C.M
C33	37,585	•		C3	37,585	•	
C31	37,215	•	X = 5,877	C1	37,215	•	X = -5,877
C32	27,567		Y = 5,700	C2	27,567	•	Y = 5,700
C30	17,956	0		C6	17,956	0	
		(-)dy			(+) dx		
Columna	% Variación	Ubicacion	% ΔC.M	Columna		Ubicacion	% ΔC.M
C1	37,585	_	V - 6 077	C31	37,585	_	W - 6 077
C3 C2	37,215 27,567	_	X = -5,877 Y = -5,700		37,215 27,567		X = 5,877 Y = -5,700
C4	17,956		15,700	C28	17,956		15,700
•	1,,50				11,550		

Fig.A.74. Acero longitudinal estructura Alargada 12 x 60 m

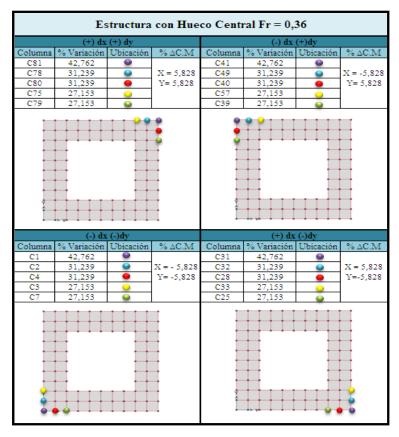
A.3.1.3.2 DERIVA

Fig.A.75. Gráfico de deriva estructura alargada 12 x 60 m

Tabla A.84. Derivas estructura alargada 12 x 60 m

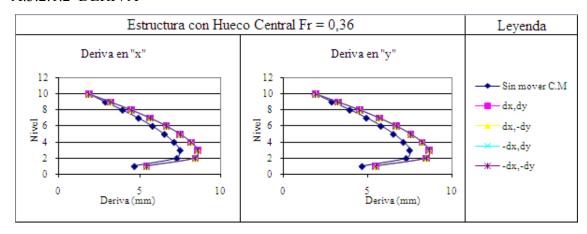
				DERIVAS EN	N DIRECCIÓ	N "X"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
NIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00144	0,00135	-6,312	0,00135	-6,312	0,00135	-6,312	0,00135	-6,312
9	0,00249	0,00233	-6,551	0,00233	-6,551	0,00233	-6,551	0,00233	-6,551
8	0,00353	0,00329	-6,793	0,00329	-6,793	0,00329	-6,793	0,00329	-6,793
7	0,00447	0,00416	-6,874	0,00416	-6,874	0,00416	-6,874	0,00416	-6,874
6	0,00530	0,00493	-6,975	0,00493	-6,975	0,00493	-6,975	0,00493	-6,975
5	0,00600	0,00558	-7,034	0,00558	-7,034	0,00558	-7,034	0,00558	-7,034
4	0,00658	0,00611	-7,080	0,00611	-7,080	0,00611	-7,080	0,00611	-7,080
3	0,00695	0,00646	-7,113	0,00646	-7,113	0,00646	-7,113	0,00646	-7,113
2	0,00686	0,00637	-7,133	0,00637	-7,133	0,00637	-7,133	0,00637	-7,133
1	0,00447	0,00414	-7,304	0,00414	-7,304	0,00414	-7,304	0,00414	-7,304
				DERIVAS EN	N DIRECCIÓ	N "Y"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
INIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00259	0,00319	23,191	0,00319	23,191	0,00319	23,191	0,00319	23,191
9	0,00384	0,00480	25,031	0,00480	25,031	0,00480	25,031	0,00480	25,031
8	0,00505	0,00636	26,046	0,00636	26,046	0,00636	26,046	0,00636	26,046
7	0,00612	0,00776	26,745	0,00776	26,745	0,00776	26,745	0,00776	26,745
6	0,00704	0,00894	27,080	0,00894	27,080	0,00894	27,080	0,00894	27,080
5	0,00778	0,00992	27,452	0,00992	27,452	0,00992	27,452	0,00992	27,452
4	0,00832	0,01063	27,813	0,01063	27,813	0,01063	27,813	0,01063	27,813
3	0,00857	0,01098	28,108	0,01098	28,108	0,01098	28,108	0,01098	28,108
2	0,00813	0,01044	28,335	0,01044	28,335	0,01044	28,335	0,01044	28,335
1	0,00491	0,00630	28,474	0,00630	28,474	0,00630	28,474	0,00630	28,474

A.3.1.3.3 CORTE BASAL


Tabla A.85. Corte basal estructura alargada 12 x 60 m

	CORTE BASAL EN LA DIRECCIÓN "X"												
Cin da	splazamiento	(±) da	x(+) dy		x(-) dy			() ds	y () dy				
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	(+) dy %Variación	Vx	(-) dy %Variación				
10	144672,8	133243,45	-7,900	133243,45	-7,900	133243,45	-7,900	133243,45	-7,900				
9	289483,41	266083,17	-8,083	266083,17	-8,083	266083,17	-8,083	266083,17	-8,083				
8	419483,12	385136,8	-8,188	385136,8	-8,188	385136,8	-8,188	385136,8	-8,188				
7	535011,58	490834,94	-8,257	490834,94	-8,257	490834,94	-8,257	490834,94	-8,257				
6	637921,12	585012,43	-8,294	585012,43	-8,294	585012,43	-8,294	585012,43	-8,294				
5	727314,7	666865,54	-8,311	666865,54	-8,311	666865,54	-8,311	666865,54	-8,311				
4	800431,39	733825,47	-8,321	733825,47	-8,321	733825,47	-8,321	733825,47	-8,321				
3	856988,09	785696,05	-8,319	785696,05	-8,319	785696,05	-8,319	785696,05	-8,319				
2	895445,09	821064,75	-8,307	821064,75	-8,307	821064,75	-8,307	821064,75	-8,307				
1	915538,4	839738,08	-8,279	839738,08	-8,279	839738,08	-8,279	839738,08	-8,279				
			CORT	EBASAL I	EN LA DIREC	CCIÓN "Y"							
Sin de	splazamiento	(+) dx (+) d	у	(+) dx (-) dy	У	(-) dx (+) dy	I	(-) dx (-) dy	,				
Nivel	VY	Vy	%Variación	Vy	%Variación	Vy	%Variación	Vy	%Variación				
10	141095,83	123565,92	-12,424	123565,92	-12,424	123565,92	-12,424	123565,92	-12,424				
9	279429,47	244242,25	-12,593	244242,25	-12,593	244242,25	-12,593	244242,25	-12,593				
8	401503,59	350688,83	-12,656	350688,83	-12,656	350688,83	-12,656	350688,83	-12,656				
7	508705,3	444162,3	-12,688	444162,3	-12,688	444162,3	-12,688	444162,3	-12,688				
6	603440,74	526983,63	-12,670	526983,63	-12,670	526983,63	-12,670	526983,63	-12,670				
5	684972,46	598426,47	-12,635	598426,47	-12,635	598426,47	-12,635	598426,47	-12,635				
4	751023,68	656089,8	-12,641	656089,8	-12,641	656089,8	-12,641	656089,8	-12,641				
3	802005,59	700569,33	-12,648	700569,33	-12,648	700569,33	-12,648	700569,33	-12,648				
2	836147,87	730595,25	-12,624	730595,25	-12,624	730595,25	-12,624	730595,25	-12,624				
1	855087,68	748147,25	-12,506	748147,25	-12,506	748147,25	-12,506	748147,25	-12,506				

A.3.2 ESTRUCTURAS CON HUECO CENTRAL


A.3.2.1 PORCENTAJE DE ABERTURA FR = 0.36

A.3.2.1.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.76. Acero longitudinal estructura con hueco central FR = 0.36

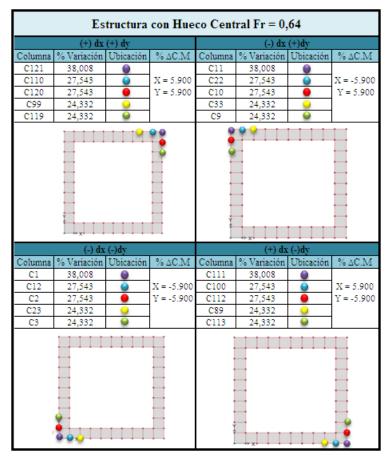
A.3.2.1.2 DERIVA

Fig.A.77. Gráfico de deriva estructura con hueco central FR = 0.36

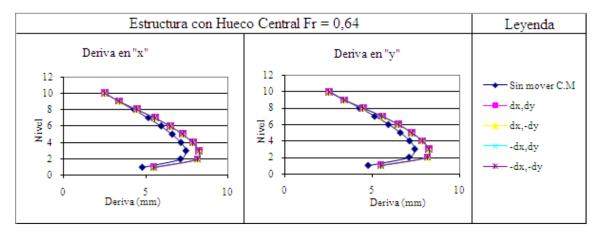
Tabla A.86. Derivas estructura con hueco central FR = 0.36

	DYDWA C YNA DYDWGGYÓN HAVH												
				DERIVAS EN	I DIRECCIÓ								
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
TALVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00186	0,00188	1,034	0,00188	1,034	0,00188	1,034	0,00188	1,034				
9	0,00287	0,00320	11,538	0,00320	11,538	0,00320	11,538	0,00320	11,538				
8	0,00394	0,00449	14,146	0,00449	14,146	0,00449	14,146	0,00449	14,146				
7	0,00492	0,00565	14,927	0,00565	14,927	0,00565	14,927	0,00565	14,927				
6	0,00578	0,00666	15,187	0,00666	15,187	0,00666	15,187	0,00666	15,187				
5	0,00652	0,00752	15,232	0,00752	15,232	0,00752	15,232	0,00752	15,232				
4	0,00711	0,00819	15,115	0,00819	15,115	0,00819	15,115	0,00819	15,115				
3	0,00749	0,00861	15,000	0,00861	15,000	0,00861	15,000	0,00861	15,000				
2	0,00728	0,00845	16,018	0,00845	16,018	0,00845	16,018	0,00845	16,018				
1	0,00467	0,00544	16,667	0,00544	16,667	0,00544	16,667	0,00544	16,667				
				DERIVAS EN	N DIRECCIÓ	N "Y"							
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
NIVEL	inicial	en + dx, + dy	Variación	en + dx, - dy	Variación	en - dx + dy	Variación	en -dx, - dy	Variación				
10	0,00186	0,00188	1,034	0,00188	1,034	0,00188	1,034	0,00188	1,034				
9	0,00287	0,00320	11,538	0,00320	11,538	0,00320	11,538	0,00320	11,538				
8	0,00394	0,00449	14,146	0,00449	14,146	0,00449	14,146	0,00449	14,146				
7	0,00492	0,00565	14,927	0,00565	14,927	0,00565	14,927	0,00565	14,927				
6	0,00578	0,00666	15,187	0,00666	15,187	0,00666	15,187	0,00666	15,187				
5	0,00652	0,00752	15,232	0,00752	15,232	0,00752	15,232	0,00752	15,232				
4	0,00711	0,00819	15,115	0,00819	15,115	0,00819	15,115	0,00819	15,115				
3	0,00749	0,00861	15,000	0,00861	15,000	0,00861	15,000	0,00861	15,000				
2	0,00728	0,00845	16,018	0,00845	16,018	0,00845	16,018	0,00845	16,018				
1	0,00467	0,00544	16,667	0,00544	16,667	0,00544	16,667	0,00544	16,667				

A.3.2.1.3 CORTE BASAL


Tabla A.87. Corte basal estructura con hueco central FR = 0.36

	CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy				
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación				
10	422419,51	402566,59	-4,700	402566,59	-4,700	402566,59	-4,700	402566,59	-4,700				
9	840155,62	804248,98	-4,274	804248,98	-4,274	804248,98	-4,274	804248,98	-4,274				
8	1214172,49	1167150,7	-3,873	1167150,7	-3,873	1167150,7	-3,873	1167150,7	-3,873				
7	1545973,43	1488520,1	-3,716	1488520,1	-3,716	1488520,1	-3,716	1488520,1	-3,716				
6	1840916,03	1770872,6	-3,805	1770872,6	-3,805	1770872,6	-3,805	1770872,6	-3,805				
5	2096348,1	2014748,8	-3,892	2014748,8	-3,892	2014748,8	-3,892	2014748,8	-3,892				
4	2304653,42	2216902,3	-3,808	2216902,3	-3,808	2216902,3	-3,808	2216902,3	-3,808				
3	2465357,35	2373041,2	-3,745	2373041,2	-3,745	2373041,2	-3,745	2373041,2	-3,745				
2	2573773,45	2475330,7	-3,825	2475330,7	-3,825	2475330,7	-3,825	2475330,7	-3,825				
1	2631129	2541441,8	-3,409	2541441,8	-3,409	2541441,8	-3,409	2541441,8	-3,409				
					EN LA DIREC								
	splazamiento	` '	(+) dy		x (-) dy	(-) dx (+) dy			x(-) dy				
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación				
10	422419,51	402566,59	-4,700	402566,59	-4,700	402566,59	-4,700	402566,59	-4,700				
9	840155,62	804248,98	-4,274	804248,98	-4,274	804248,98	-4,274	804248,98	-4,274				
8	1214172,49	1167150,7	-3,873	1167150,7	-3,873	1167150,7	-3,873	1167150,7	-3,873				
7	1545973,43	1488520,1	-3,716	1488520,1	-3,716	1488520,1	-3,716	1488520,1	-3,716				
6	1840916,03	1770872,6	-3,805	1770872,6	-3,805	1770872,6	-3,805	1770872,6	-3,805				
5	2096348,1	2014748,8	-3,892	2014748,8	-3,892	2014748,8	-3,892	2014748,8	-3,892				
4	2304653,42	2216902,3	-3,808	2216902,3	-3,808	2216902,3	-3,808	2216902,3	-3,808				
3	2465357,35	2373041,2	-3,745	2373041,2	-3,745	2373041,2	-3,745	2373041,2	-3,745				
2	2573773,45	2475330,7	-3,825	2475330,7	-3,825	2475330,7	-3,825	2475330,7	-3,825				
1	2631129	2541441,8	-3,409	2541441,8	-3,409	2541441,8	-3,409	2541441,8	-3,409				


A.3.2.3 PORCENTAJE DE ABERTURA FR = 0.64

A.3.2.3.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.78. Acero longitudinal estructura con hueco central FR = 0.64

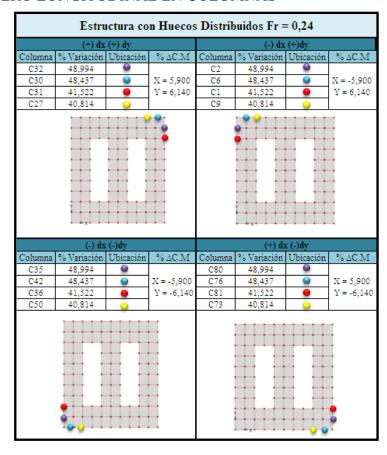
A.3.2.3.2 DERIVA

Fig.A.79. Gráfico de deriva estructura con hueco central FR = 0,64

Tabla A.88. Derivas estructura con hueco central FR = 0.64

				DERIVAS EN	N DIRECCIÓ	N "X"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
NIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00254	0,00252	-0,567	0,00252	-0,567	0,00252	-0,567	0,00252	-0,567
9	0,00338	0,00340	0,568	0,00340	0,568	0,00340	0,568	0,00340	0,568
8	0,00429	0,00448	4,591	0,00448	4,591	0,00448	4,591	0,00448	4,591
7	0,00516	0,00557	8,101	0,00557	8,101	0,00557	8,101	0,00557	8,101
6	0,00594	0,00650	9,451	0,00650	9,451	0,00650	9,451	0,00650	9,451
5	0,00662	0,00727	9,783	0,00727	9,783	0,00727	9,783	0,00727	9,783
4	0,00715	0,00787	10,067	0,00787	10,067	0,00787	10,067	0,00787	10,067
3	0,00745	0,00825	10,625	0,00825	10,625	0,00825	10,625	0,00825	10,625
2	0,00712	0,00816	14,488	0,00816	14,488	0,00816	14,488	0,00816	14,488
1	0,00478	0,00550	14,960	0,00550	14,960	0,00550	14,960	0,00550	14,960
				DERIVAS EN	N DIRECCIÓ	N "Y"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
INIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00254	0,00252	-0,567	0,00252	-0,567	0,00252	-0,567	0,00252	-0,567
9	0,00338	0,00340	0,568	0,00340	0,568	0,00340	0,568	0,00340	0,568
8	0,00429	0,00448	4,591	0,00448	4,591	0,00448	4,591	0,00448	4,591
7	0,00516	0,00557	8,101	0,00557	8,101	0,00557	8,101	0,00557	8,101
6	0,00594	0,00650	9,451	0,00650	9,451	0,00650	9,451	0,00650	9,451
5	0,00662	0,00727	9,783	0,00727	9,783	0,00727	9,783	0,00727	9,783
4	0,00715	0,00787	10,067	0,00787	10,067	0,00787	10,067	0,00787	10,067
3	0,00745	0,00825	10,625	0,00825	10,625	0,00825	10,625	0,00825	10,625
2	0,00712	0,00816	14,488	0,00816	14,488	0,00816	14,488	0,00816	14,488
1	0,00478	0,00550	14,960	0,00550	14,960	0,00550	14,960	0,00550	14,960

A.3.2.2.3 CORTE BASAL


Tabla A.89. Corte basal estructura con hueco central FR = 0,64

	CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy	(+) d:	x (-) dy	(-) dx	(+) dy	(-) dz	x(-) dy				
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación				
10	256655,5	245622,64	-4,299	245622,64	-4,299	245622,64	-4,299	245622,64	-4,299				
9	510361,43	491488,35	-3,698	491488,35	-3,698	491488,35	-3,698	491488,35	-3,698				
8	736681,54	713718,45	-3,117	713718,45	-3,117	713718,45	-3,117	713718,45	-3,117				
7	936773,43	910086,79	-2,849	910086,79	-2,849	910086,79	-2,849	910086,79	-2,849				
6	1114009,65	1081598,9	-2,909	1081598,9	-2,909	1081598,9	-2,909	1081598,9	-2,909				
5	1267153,15	1229171,8	-2,997	1229171,8	-2,997	1229171,8	-2,997	1229171,8	-2,997				
4	1392095,18	1351920,4	-2,886	1351920,4	-2,886	1351920,4	-2,886	1351920,4	-2,886				
3	1488720,84	1447002,4	-2,802	1447002,4	-2,802	1447002,4	-2,802	1447002,4	-2,802				
2	1554256,64	1508889,5	-2,919	1508889,5	-2,919	1508889,5	-2,919	1508889,5	-2,919				
1	1589097,63	1550754,6	-2,413	1550754,6	-2,413	1550754,6	-2,413	1550754,6	-2,413				
			CORT	EBASALI	EN LA DIREC	CCION "Y"							
Sin des	splazamiento	(+) dx	(+) dy	(+) dz	x (-) dy	(-) dx	(+) dy	(-) dx (-) dy					
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación				
10	256655,5	245622,64	-4,299	245622,64	-4,299	245622,64	-4,299	245622,64	-4,299				
9	510361,43	491488,35	-3,698	491488,35	-3,698	491488,35	-3,698	491488,35	-3,698				
8	736681,54	713718,45	-3,117	713718,45	-3,117	713718,45	-3,117	713718,45	-3,117				
7	936773,43	910086,79	-2,849	910086,79	-2,849	910086,79	-2,849	910086,79	-2,849				
6	1114009,65	1081598,9	-2,909	1081598,9	-2,909	1081598,9	-2,909	1081598,9	-2,909				
5	1267153,15	1229171,8	-2,997	1229171,8	-2,997	1229171,8	-2,997	1229171,8	-2,997				
4	1392095,18	1351920,4	-2,886	1351920,4	-2,886	1351920,4	-2,886	1351920,4	-2,886				
3	1488720,84	1447002,4	-2,802	1447002,4	-2,802	1447002,4	-2,802	1447002,4	-2,802				
2	1554256,64	1508889,5	-2,919	1508889,5	-2,919	1508889,5	-2,919	1508889,5	-2,919				
1	1589097,63	1550754,6	-2,413	1550754,6	-2,413	1550754,6	-2,413	1550754,6	-2,413				

A.3.3 ESTRUCTURAS CON HUECOS DISTRIBUIDOS

A.3.3.1 PORCENTAJE DE ABERTURA FR = 0.24

A.3.3.1.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.80. Acero longitudinal estructura con huecos distribuidos FR = 0,24

A.3.3.1.2 DERIVA

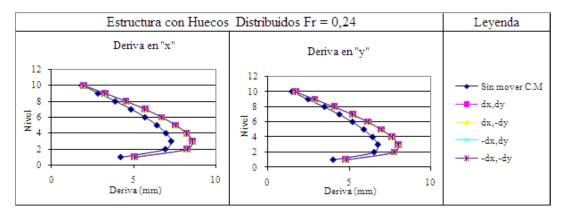
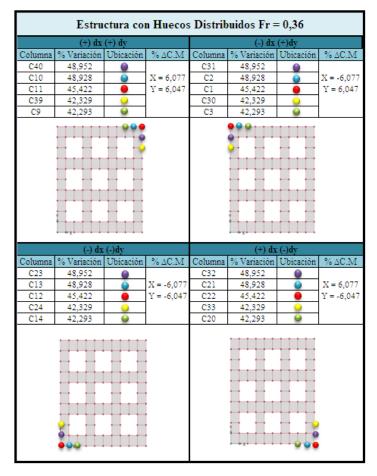


Fig.A.81. Gráfico de deriva estructura con huecos distribuidos FR = 0,24

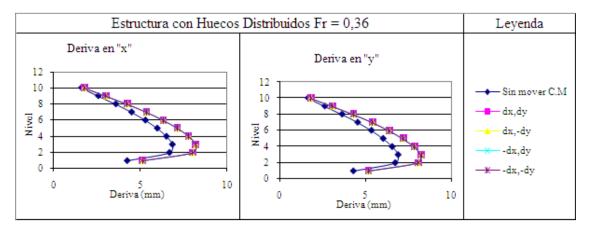
Tabla A.90. Derivas estructura con huecos distribuidos FR = 0.24

	DERIVAS EN DIRECCIÓN "X"												
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00187	0,00196	4,884	0,00196	4,884	0,00196	4,884	0,00196	4,884				
9	0,00285	0,00326	14,503	0,00326	14,503	0,00326	14,503	0,00326	14,503				
8	0,00389	0,00455	17,037	0,00455	17,037	0,00455	17,037	0,00455	17,037				
7	0,00485	0,00571	17,822	0,00571	17,822	0,00571	17,822	0,00571	17,822				
6	0,00569	0,00672	18,128	0,00672	18,128	0,00672	18,128	0,00672	18,128				
5	0,00641	0,00757	18,114	0,00757	18,114	0,00757	18,114	0,00757	18,114				
4	0,00696	0,00823	18,194	0,00823	18,194	0,00823	18,194	0,00823	18,194				
3	0,00728	0,00860	18,206	0,00860	18,206	0,00860	18,206	0,00860	18,206				
2	0,00693	0,00827	19,404	0,00827	19,404	0,00827	19,404	0,00827	19,404				
1	0,00422	0,00506	20,023	0,00506	20,023	0,00506	20,023	0,00506	20,023				
				DERIVAS EN	N DIRECCIÓ	N "Y"							
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
MIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00150	0,00172	14,377	0,00172	14,377	0,00172	14,377	0,00172	14,377				
9	0,00248	0,00290	17,021	0,00290	17,021	0,00290	17,021	0,00290	17,021				
8	0,00348	0,00411	18,207	0,00411	18,207	0,00411	18,207	0,00411	18,207				
7	0,00439	0,00521	18,818	0,00521	18,818	0,00521	18,818	0,00521	18,818				
6	0,00519	0,00617	18,964	0,00617	18,964	0,00617	18,964	0,00617	18,964				
5	0,00588	0,00699	18,954	0,00699	18,954	0,00699	18,954	0,00699	18,954				
4	0,00641	0,00764	19,176	0,00764	19,176	0,00764	19,176	0,00764	19,176				
3	0,00673	0,00803	19,258	0,00803	19,258	0,00803	19,258	0,00803	19,258				
2	0,00650	0,00777	19,483	0,00777	19,483	0,00777	19,483	0,00777	19,483				
1	0,00400	0,00479	19,664	0,00479	19,664	0,00479	19,664	0,00479	19,664				

A.3.3.1.3 CORTE BASAL


Tabla A.91. Corte basal estructura con huecos distribuidos FR = 0.24

CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	505995,5	482728,45	-4,598	482728,45	-4,598	482728,45	-4,598	482728,45	-4,598			
9	1007081,7	964055,75	-4,272	964055,75	-4,272	964055,75	-4,272	964055,75	-4,272			
8	1453879,66	1396072,8	-3,976	1396072,8	-3,976	1396072,8	-3,976	1396072,8	-3,976			
7	1849543,56	1777783,9	-3,880	1777783,9	-3,880	1777783,9	-3,880	1777783,9	-3,880			
6	2201024,22	2113652,6	-3,970	2113652,6	-3,970	2113652,6	-3,970	2113652,6	-3,970			
5	2504513,29	2403278	-4,042	2403278	-4,042	2403278	-4,042	2403278	-4,042			
4	2750797,35	2641517,3	-3,973	2641517,3	-3,973	2641517,3	-3,973	2641517,3	-3,973			
3	2940239,75	2824843,8	-3,925	2824843,8	-3,925	2824843,8	-3,925	2824843,8	-3,925			
2	3066237,48	2944389,9	-3,974	2944389,9	-3,974	2944389,9	-3,974	2944389,9	-3,974			
1	3134999,66	3019759,7	-3,676	3019759,7	-3,676	3019759,7	-3,676	3019759,7	-3,676			
					EN LA DIREC							
	splazamiento	· · · · · ·	(+) dy		x (-) dy	(-) dx (+) dy			x(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	503558,15	472900,02	-6,088	472900,02	-6,088	472900,02	-6,088	472900,02	-6,088			
9	1004445,78	948324,67	-5,587	948324,67	-5,587	948324,67	-5,587	948324,67	-5,587			
8	1452323,54	1377682,6	-5,139	1377682,6	-5,139	1377682,6	-5,139	1377682,6	-5,139			
7	1849607,89	1757240,4	-4,994	1757240,4	-4,994	1757240,4	-4,994	1757240,4	-4,994			
6	2203166,69	2090199,9	-5,127	2090199,9	-5,127	2090199,9	-5,127	2090199,9	-5,127			
5	2509363,56	2378103,8	-5,231	2378103,8	-5,231	2378103,8	-5,231	2378103,8	-5,231			
4	2758643,88	2617417,9	-5,119	2617417,9	-5,119	2617417,9	-5,119	2617417,9	-5,119			
3	2950860,02	2801504,2	-5,061	2801504,2	-5,061	2801504,2	-5,061	2801504,2	-5,061			
2	3079662,41	2920868,5	-5,156	2920868,5	-5,156	2920868,5	-5,156	2920868,5	-5,156			
1	3149193,47	3006727,7	-4,524	3006727,7	-4,524	3006727,7	-4,524	3006727,7	-4,524			


A.3.3.2 PORCENTAJE DE ABERTURA FR = 0,36

A.3.3.2.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.82. Acero longitudinal estructura con huecos distribuidos FR = 0.36

A.3.3.2.2 DERIVA

Fig.A.83. Gráfico de deriva estructura con huecos distribuidos FR = 0,36

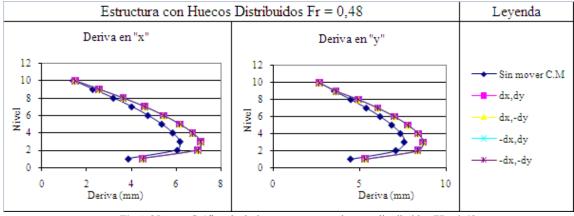
Tabla A.92. Derivas estructura con huecos distribuidos FR = 0.36

	DERIVAS EN DIRECCIÓN "X"													
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%					
INIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación					
10	0,00164	0,00180	9,971	0,00180	9,971	0,00180	9,971	0,00180	9,971					
9	0,00260	0,00304	17,006	0,00304	17,006	0,00304	17,006	0,00304	17,006					
8	0,00360	0,00427	18,375	0,00427	18,375	0,00427	18,375	0,00427	18,375					
7	0,00451	0,00538	19,149	0,00538	19,149	0,00538	19,149	0,00538	19,149					
6	0,00531	0,00634	19,349	0,00634	19,349	0,00634	19,349	0,00634	19,349					
5	0,00599	0,00715	19,391	0,00715	19,391	0,00715	19,391	0,00715	19,391					
4	0,00652	0,00780	19,588	0,00780	19,588	0,00780	19,588	0,00780	19,588					
3	0,00686	0,00820	19,524	0,00820	19,524	0,00820	19,524	0,00820	19,524					
2	0,00669	0,00802	19,871	0,00802	19,871	0,00802	19,871	0,00802	19,871					
1	0,00426	0,00514	20,744	0,00514	20,744	0,00514	20,744	0,00514	20,744					
				DERIVAS EN	N DIRECCIÓ	N "Y"								
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%					
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación					
10	0,00164	0,00180	9,971	0,00180	9,971	0,00180	9,971	0,00180	9,971					
9	0,00260	0,00304	17,190	0,00304	17,190	0,00304	17,190	0,00304	17,190					
8	0,00360	0,00427	18,509	0,00427	18,509	0,00427	18,509	0,00427	18,509					
7	0,00451	0,00538	19,149	0,00538	19,149	0,00538	19,149	0,00538	19,149					
6	0,00531	0,00634	19,349	0,00634	19,349	0,00634	19,349	0,00634	19,349					
5	0,00599	0,00715	19,391	0,00715	19,391	0,00715	19,391	0,00715	19,391					
4	0,00652	0,00780	19,661	0,00780	19,661	0,00780	19,661	0,00780	19,661					
3	0,00686	0,00820	19,594	0,00820	19,594	0,00820	19,594	0,00820	19,594					
2	0,00669	0,00802	19,871	0,00802	19,871	0,00802	19,871	0,00802	19,871					
1	0,00426	0,00514	20,744	0,00514	20,744	0,00514	20,744	0,00514	20,744					


A.3.3.2.3 CORTE BASAL

Tabla A.93. Corte basal estructura con huecos distribuidos FR = 0.36

CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	446997	422615,08	-5,455	422615,08	-5,455	422615,08	-5,455	422615,08	-5,455			
9	891473,96	846262,75	-5,072	846262,75	-5,072	846262,75	-5,072	846262,75	-5,072			
8	1288827,64	1228030,4	-4,717	1228030,4	-4,717	1228030,4	-4,717	1228030,4	-4,717			
7	1640922,86	1565443,5	-4,600	1565443,5	-4,600	1565443,5	-4,600	1565443,5	-4,600			
6	1953901,67	1861884,7	-4,709	1861884,7	-4,709	1861884,7	-4,709	1861884,7	-4,709			
5	2225098,89	2118262,7	-4,801	2118262,7	-4,801	2118262,7	-4,801	2118262,7	-4,801			
4	2446337,8	2330966,2	-4,716	2330966,2	-4,716	2330966,2	-4,716	2330966,2	-4,716			
3	2617240,22	2495381,1	-4,656	2495381,1	-4,656	2495381,1	-4,656	2495381,1	-4,656			
2	2732786,14	2603501,5	-4,731	2603501,5	-4,731	2603501,5	-4,731	2603501,5	-4,731			
1	2794237,13	2674667,5	-4,279	2674667,5	-4,279	2674667,5	-4,279	2674667,5	-4,279			
					EN LA DIREC	CCION "Y"						
Sin de	splazamiento	(+) dz	x (+) dy	(+) dz	x (-) dy	(-) dx	(+) dy	(-) dz	x(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	446997	422371,47	-5,509	422371,47	-5,509	422371,47	-5,509	422371,47	-5,509			
9	891473,96	845810,43	-5,122	845810,43	-5,122	845810,43	-5,122	845810,43	-5,122			
8	1288827,64	1227419,6	-4,765	1227419,6	-4,765	1227419,6	-4,765	1227419,6	-4,765			
7	1640922,86	1564682,8	-4,646	1564682,8	-4,646	1564682,8	-4,646	1564682,8	-4,646			
6	1953901,67	1860956,6	-4,757	1860956,6	-4,757	1860956,6	-4,757	1860956,6	-4,757			
5	2225098,89	2117185	-4,850	2117185	-4,850	2117185	-4,850	2117185	-4,850			
4	2446337,8	2329801,8	-4,764	2329801,8	-4,764	2329801,8	-4,764	2329801,8	-4,764			
3	2617240,22	2494151	-4,703	2494151	-4,703	2494151	-4,703	2494151	-4,703			
2	2732786,14	2602197,6	-4,779	2602197,6	-4,779	2602197,6	-4,779	2602197,6	-4,779			
1	2794237,13	2673456,9	-4,322	2673456,9	-4,322	2673456,9	-4,322	2673456,9	-4,322			


A.3.3.3 PORCENTAJE DE ABERTURA FR = 0,48

A.3.3.3.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.84. Acero longitudinal estructura con huecos distribuidos FR = 0,48

A.3.3.3.2 DERIVA

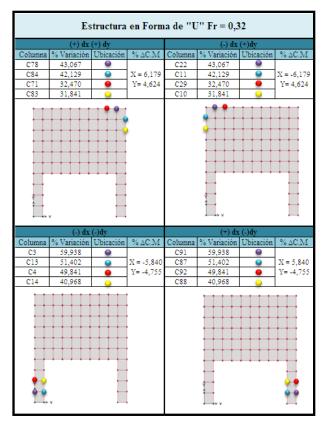
Fig.A.85. Gráfico de deriva estructura con huecos distribuidos FR= 0,48

Tabla A.94. Derivas estructura con huecos distribuidos FR = 0,48

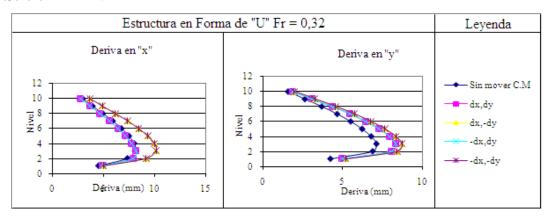
DERIVAS EN DIRECCIÓN "X"												
NIINTEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%			
NIVEL	inicial	en + dx, + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación			
10	0,00143	0,00150	5,387	0,00150	5,387	0,00150	5,387	0,00150	5,387			
9	0,00229	0,00257	12,134	0,00257	12,134	0,00257	12,134	0,00257	12,134			
8	0,00321	0,00364	13,623	0,00364	13,623	0,00364	13,623	0,00364	13,623			
7	0,00402	0,00460	14,439	0,00460	14,439	0,00460	14,439	0,00460	14,439			
6	0,00474	0,00544	14,676	0,00544	14,676	0,00544	14,676	0,00544	14,676			
5	0,00536	0,00615	14,785	0,00615	14,785	0,00615	14,785	0,00615	14,785			
4	0,00585	0,00672	14,943	0,00672	14,943	0,00672	14,943	0,00672	14,943			
3	0,00617	0,00709	14,942	0,00709	14,942	0,00709	14,942	0,00709	14,942			
2	0,00605	0,00697	15,238	0,00697	15,238	0,00697	15,238	0,00697	15,238			
1	0,00387	0,00451	16,357	0,00451	16,357	0,00451	16,357	0,00451	16,357			
				DERIVAS EN	N DIRECCIÓ	N "Y"						
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%			
NIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación			
10	0,00265	0,00265	0,000	0,00265	0,000	0,00265	0,000	0,00265	0,000			
9	0,00353	0,00362	2,585	0,00362	2,585	0,00362	2,585	0,00362	2,585			
8	0,00448	0,00492	9,861	0,00492	9,861	0,00492	9,861	0,00492	9,861			
7	0,00538	0,00605	12,589	0,00605	12,589	0,00605	12,589	0,00605	12,589			
6	0,00618	0,00701	13,520	0,00701	13,520	0,00701	13,520	0,00701	13,520			
5	0,00685	0,00780	13,875	0,00780	13,875	0,00780	13,875	0,00780	13,875			
4	0,00735	0,00839	14,034	0,00839	14,034	0,00839	14,034	0,00839	14,034			
3	0,00757	0,00868	14,639	0,00868	14,639	0,00868	14,639	0,00868	14,639			
2	0,00709	0,00836	17,942	0,00836	17,942	0,00836	17,942	0,00836	17,942			
1	0,00446	0.00530	18,945	0.00530	18,945	0,00530	18,945	0.00530	18,945			

A.3.3.3.3 CORTE BASAL

Tabla A.95. Corte basal estructura con huecos distribuidos FR = 0.48


CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	369384,73	339052,42	-8,212	339052,42	-8,212	339052,42	-8,212	339052,42	-8,212			
9	739073,53	684539,6	-7,379	684539,6	-7,379	684539,6	-7,379	684539,6	-7,379			
8	1069573,49	999341,72	-6,566	999341,72	-6,566	999341,72	-6,566	999341,72	-6,566			
7	1362336,33	1278263,8	-6,171	1278263,8	-6,171	1278263,8	-6,171	1278263,8	-6,171			
6	1622698,57	1521668,2	-6,226	1521668,2	-6,226	1521668,2	-6,226	1521668,2	-6,226			
5	1848666,8	1731813,9	-6,321	1731813,9	-6,321	1731813,9	-6,321	1731813,9	-6,321			
4	2033393,71	1908306	-6,152	1908306	-6,152	1908306	-6,152	1908306	-6,152			
3	2176487,48	2044550,8	-6,062	2044550,8	-6,062	2044550,8	-6,062	2044550,8	-6,062			
2	2273773,27	2131258,1	-6,268	2131258,1	-6,268	2131258,1	-6,268	2131258,1	-6,268			
1	2325587,84	2201250,5	-5,346	2201250,5	-5,346	2201250,5	-5,346	2201250,5	-5,346			
					EN LA DIREC							
Sin de	splazamiento		x (+) dy		x (-) dy		(+) dy		(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	375315,53	361716,65	-3,623	361716,65	-3,623	361716,65	-3,623	361716,65	-3,623			
9	745733,95	722253,81	-3,149	722253,81	-3,149	722253,81	-3,149	722253,81	-3,149			
8	1073712,79	1044850,6	-2,688	1044850,6	-2,688	1044850,6	-2,688	1044850,6	-2,688			
7	1362458,06	1328724,5	-2,476	1328724,5	-2,476	1328724,5	-2,476	1328724,5	-2,476			
6	1617723,6	1577051,7	-2,514	1577051,7	-2,514	1577051,7	-2,514	1577051,7	-2,514			
5	1837341,17	1790624,5	-2,543	1790624,5	-2,543	1790624,5	-2,543	1790624,5	-2,543			
4	2015242,91	1967182,7	-2,385	1967182,7	-2,385	1967182,7	-2,385	1967182,7	-2,385			
3	2152156,65	2102493,1	-2,308	2102493,1	-2,308	2102493,1	-2,308	2102493,1	-2,308			
2	2243435,83	2186838,6	-2,523	2186838,6	-2,523	2186838,6	-2,523	2186838,6	-2,523			
1	2293531,9	2260184,1	-1,454	2260184,1	-1,454	2260184,1	-1,454	2260184,1	-1,454			

A.3.4 ESTRUCTURAS EN FORMA DE "U"


A.3.4.1 PORCENTAJE DE ABERTURA FR = 0.32

A.3.4.1.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.86. Acero longitudinal estructura en forma de "U" FR = 0,32

A.3.4.1.2 DERIVA

Fig.A.87. Gráfico de deriva estructura en forma de "U" FR= 0,32

Tabla A.96. Derivas estructura en forma de "U" FR= 0,32

	DERIVAS EN DIRECCIÓN "X"												
NIINZEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00296	0,00276	-6,494	0,00369	24,675	0,00276	-6,494	0,00369	24,675				
9	0,00391	0,00367	-6,143	0,00491	25,676	0,00367	-6,143	0,00491	25,676				
8	0,00492	0,00464	-5,756	0,00620	25,951	0,00464	-5,756	0,00620	25,951				
7	0,00588	0,00557	-5,383	0,00740	25,693	0,00557	-5,383	0,00740	25,693				
6	0,00675	0,00641	-5,050	0,00847	25,462	0,00641	-5,050	0,00847	25,462				
5	0,00747	0,00711	-4,820	0,00936	25,386	0,00711	-4,820	0,00936	25,386				
4	0,00797	0,00775	-2,830	0,01001	25,587	0,00775	-2,830	0,01001	25,587				
3	0,00807	0,00816	1,130	0,01017	26,056	0,00816	1,130	0,01017	26,056				
2	0,00732	0,00791	8,000	0,00920	25,705	0,00791	8,000	0,00920	25,705				
1	0,00449	0,00489	8,877	0,00500	11,337	0,00489	8,877	0,00500	11,337				
				DERIVAS EN	N DIRECCIÓ	N "Y"							
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%				
INIVI	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación				
10	0,00158	0,00183	15,805	0,00197	24,620	0,00183	15,805	0,00197	24,620				
9	0,00263	0,00305	16,088	0,00325	23,949	0,00305	16,088	0,00325	23,949				
8	0,00368	0,00432	17,210	0,00456	23,729	0,00432	17,210	0,00456	23,729				
7	0,00464	0,00545	17,373	0,00574	23,578	0,00545	17,373	0,00574	23,578				
6	0,00549	0,00643	17,148	0,00677	23,447	0,00643	17,148	0,00677	23,447				
5	0,00620	0,00725	16,950	0,00765	23,297	0,00725	16,950	0,00765	23,297				
4	0,00676	0,00792	17,033	0,00833	23,137	0,00792	17,033	0,00833	23,137				
3	0,00709	0,00832	17,253	0,00872	22,869	0,00832	17,253	0,00872	22,869				
2	0,00686	0,00804	17,145	0,00841	22,673	0,00804	17,145	0,00841	22,673				
1	0,00422	0,00493	16,951	0,00518	22,867	0,00493	16,951	0,00518	22,867				

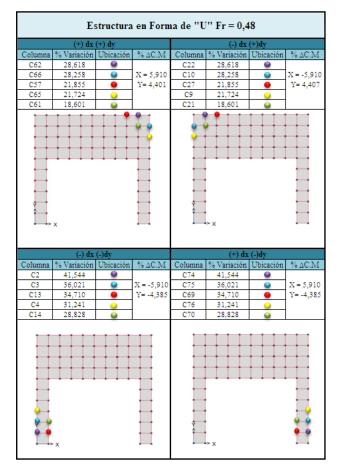
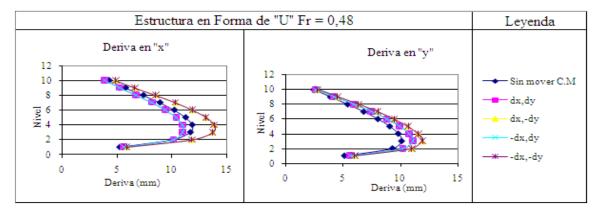

A.3.4.1.3 CORTE BASAL

Tabla A.97. Corte basal estructura en forma de "U" FR = 0.32

CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy		x (-) dy		(+) dy	(-) dz	x (-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	427921,12	426380,19	-0,360	401775,63	-6,110	426380,19	-0,360	401775,63	-6,110			
9	861317,06	853765,59	-0,877	802986,4	-6,772	853765,59	-0,877	802986,4	-6,772			
8	1256881,84	1239938,8	-1,348	1164197,7	-7,374	1239938,8	-1,348	1164197,7	-7,374			
7	1606855,44	1581131,4	-1,601	1482768	-7,722	1581131,4	-1,601	1482768	-7,722			
6	1910676,99	1880008,3	-1,605	1761571,9	-7,804	1880008,3	-1,605	1761571,9	-7,804			
5	2171806,79	2138875,3	-1,516	2002013,2	-7,818	2138875,3	-1,516	2002013,2	-7,818			
4	2390547,87	2355470,7	-1,467	2201734,3	-7,898	2355470,7	-1,467	2201734,3	-7,898			
3	2557711,95	2520853,1	-1,441	2355759,7	-7,896	2520853,1	-1,441	2355759,7	-7,896			
2	2662801,76	2621907,5	-1,536	2454855,4	-7,809	2621907,5	-1,536	2454855,4	-7,809			
1	2740807,15	2715305,4	-0,930	2527262,5	-7,791	2715305,4	-0,930	2527262,5	-7,791			
					EN LA DIREC							
Sin de	splazamiento	(+) dz	(+) dy	(+) dz	x(-) dy	(-) dx	(+) dy	(-) dz	x(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	441376,89	400826,32	-9,187	417537,52	-5,401	400826,32	-9,187	417537,52	-5,401			
9	879278,89	805253,28	-8,419	834526,68	-5,090	805253,28	-8,419	834526,68	-5,090			
8	1271246,24	1172631,3	-7,757	1209939,3	-4,823	1172631,3	-7,757	1209939,3	-4,823			
7	1619231,88	1496808,2	-7,561	1542261,9	-4,753	1496808,2	-7,561	1542261,9	-4,753			
6	1928851,32	1778834,1	-7,778	1835119,7	-4,859	1778834,1	-7,778	1835119,7	-4,859			
5	2196737,44	2022472,7	-7,933	2088330	-4,935	2022472,7	-7,933	2088330	-4,935			
4	2414831,04	2227584,3	-7,754	2297457	-4,861	2227584,3	-7,754	2297457	-4,861			
3	2583197,62	2385090,1	-7,669	2458741,6	-4,818	2385090,1	-7,669	2458741,6	-4,818			
2	2695406,44	2484202,7	-7,836	2563955,7	-4,877	2484202,7	-7,836	2563955,7	-4,877			
1	2757498,68	2568570,3	-6,851	2636053,1	-4,404	2568570,3	-6,851	2636053,1	-4,404			


A.3.4.2 PORCENTAJE DE ABERTURA FR = 0,48

A.3.4.2.1 ACERO LONGITUDINAL EN COLUMNAS

Fig.A.88. Acero longitudinal estructura en forma de "U" FR = 0,48

A.3.4.2.2 DERIVA

Fig.A.89. Gráfico de deriva estructura en forma de "U" FR = 0,48

Tabla A.98. Derivas estructura en forma de "U" FR =0,48

				DERIVAS EN	N DIRECCIÓ	N "X"			
NIINZEI	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00426	0,00388	-9,009	0,00486	14,077	0,00388	-9,009	0,00486	14,077
9	0,00577	0,00526	-8,819	0,00661	14,642	0,00526	-8,819	0,00661	14,642
8	0,00739	0,00676	-8,506	0,00852	15,325	0,00676	-8,506	0,00852	15,325
7	0,00890	0,00819	-7,983	0,01032	15,912	0,00819	-7,983	0,01032	15,912
6	0,01021	0,00943	-7,616	0,01188	16,314	0,00943	-7,616	0,01188	16,314
5	0,01124	0,01041	-7,387	0,01311	16,652	0,01041	-7,387	0,01311	16,652
4	0,01184	0,01098	-7,259	0,01386	17,072	0,01098	-7,259	0,01386	17,072
3	0,01167	0,01099	-5,800	0,01372	17,565	0,01099	-5,800	0,01372	17,565
2	0,01001	0,01015	1,390	0,01181	17,977	0,01015	1,390	0,01181	17,977
1	0,00523	0,00563	7,622	0,00586	12,121	0,00563	7,622	0,00586	12,121
				DERIVAS EN	N DIRECCIÓ	N "Y"			
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%
NIVEL	inicial	en + dx, $+ dy$	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación
10	0,00244	0,00264	8,251	0,00283	15,717	0,00264	8,251	0,00283	15,717
9	0,00390	0,00425	8,990	0,00456	17,118	0,00425	8,990	0,00456	17,118
8	0,00541	0,00594	9,752	0,00637	17,642	0,00594	9,752	0,00637	17,642
7	0,00682	0,00748	9,718	0,00803	17,746	0,00748	9,718	0,00803	17,746
6	0,00805	0,00881	9,416	0,00946	17,461	0,00881	9,416	0,00946	17,461
5	0,00909	0,00993	9,245	0,01066	17,327	0,00993	9,245	0,01066	17,327
4	0,00984	0,01077	9,415	0,01155	17,415	0,01077	9,415	0,01155	17,415
3	0,01013	0,01110	9,569	0,01190	17,480	0,01110	9,569	0,01190	17,480
2	0,00933	0,01022	9,624	0,01096	17,499	0,01022	9,624	0,01096	17,499
1	0,00513	0,00564	9,822	0,00604	17,774	0.00564	9,822	0.00604	17,774

A.3.4.2.3 CORTE BASAL

Tabla A.99. Corte basal estructura en forma de "U" FR = 0.48

CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy	(+) dz	x (-) dy	(-) dx	(+) dy	(-) dz	x (-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	245980,21	251936,25	2,421	226089,69	-8,086	251936,25	2,421	226089,69	-8,086			
9	492517,37	499698,62	1,458	453622,94	-7,897	499698,62	1,458	453622,94	-7,897			
8	713851,68	719204,59	0,750	658972,15	-7,688	719204,59	0,750	658972,15	-7,688			
7	906530,38	911416,6	0,539	837775,22	-7,584	911416,6	0,539	837775,22	-7,584			
6	1072276,33	1079448,2	0,669	990264,83	-7,648	1079448,2	0,669	990264,83	-7,648			
5	1215151,69	1223762,1	0,709	1120444,1	-7,794	1223762,1	0,709	1120444,1	-7,794			
4	1335539,02	1343903,3	0,626	1231039,9	-7,824	1343903,3	0,626	1231039,9	-7,824			
3	1426171,74	1437544,1	0,797	1316562,2	-7,686	1437544,1	0,797	1316562,2	-7,686			
2	1482152,62	1492707,9	0,712	1369208,4	-7,620	1492707,9	0,712	1369208,4	-7,620			
1	1537779,79	1552233,5	0,940	1426310	-7,249	1552233,5	0,940	1426310	-7,249			
			CORT	EBAŞAL I	EN LA DIREC	CCION "Y"						
Sin des	splazamiento	(+) dx	(+) dy	(+) dz	x (-) dy	(-) dx	(+) dy	(-) dx	(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	266520,36	241594,09	-9,352	245252,4	-7,980	241594,09	-9,352	245252,4	-7,980			
9	526992,08	483651,31	-8,224	492971,21	-6,456	483651,31	-8,224	492971,21	-6,456			
8	756602,62	701066,27	-7,340	717496,35	-5,169	701066,27	-7,340	717496,35	-5,169			
7	959150,64	890865,81	-7,119	914390,67	-4,667	890865,81	-7,119	914390,67	-4,667			
6	1139371,43	1054915	-7,413	1083884,4	-4,870	1054915	-7,413	1083884,4	-4,870			
5	1294533,1	1196645,5	-7,562	1229199,7	-5,047	1196645,5	-7,562	1229199,7	-5,047			
4	1419812,62	1315990,9	-7,312	1351592,7	-4,805	1315990,9	-7,312	1351592,7	-4,805			
3	1516691,75	1406251,9	-7,282	1445010,4	-4,726	1406251,9	-7,282	1445010,4	-4,726			
2	1579627,56	1462359,9	-7,424	1502592,7	-4,877	1462359,9	-7,424	1502592,7	-4,877			
1	1620012,31	1520508	-6,142	1558629,7	-3,789	1520508	-6,142	1558629,7	-3,789			

A.3.4.3 PORCENTAJE DE ABERTURA FR = 0.64

A.3.4.3.1 ACERO LONGITUDINAL EN COLUMNAS

	Es	structura	en Forn	ıa de "U	J'' Fr = 0,0	64				
	(+) dx	(+) dy			(-) dx	(+)dy				
Columna	% Variación	Ubicación	% ΔC.M	Columna	% Variación	Ubicación	% ΔC.M			
C33	35,695	٠		C3	35,695	•				
C30	25,813	•	X = 6,163	C6	25,813	•	X = -6,163			
C32	23,358	•	Y = 4,626	C2	23,358	•	Y = 4,626			
C27	23,094	0		C9	23,094	0				
	× ×				×					
	(-) dx			(+) dx (-)dy						
	% Variación	Ubicación	% ∆C.M		% Variación	Ubicación	% ∆C.M			
C42	47,951	•		C50	47,951	•				
C34	47,923	•	X = -6,100	C58	47,923	9	X = 6,100			
C35	38,851	•	Y = -4,666	C59	38,851		Y = -4,666			
C43	35,777	9		C51	35,777	9				
	v • • ×			V	b X	8				
	'ACIÓN: EN I TURA 1.125 : VARIACIÓN	SE PRESEN	TÓ UNA		ACIÓN: EN I TURA 1.125 VARIACIÓN	SE PRESEN	TÓ UNA			

Fig.A.90. Acero longitudinal estructura en forma de "U" FR = 0,64

A.3.4.3.2 DERIVA

Fig.A.91. Gráfico de deriva estructura en forma de "U" FR= 0,64

Tabla A.100. Derivas estructura en forma de "U" FR= 0,64

	Tabla A.100. Delivas estructura en forma de 0 TR 0,04													
				DERIVAS EN	N DIRECCIÓ	N "X"								
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%					
NIVEL	inicial	en $+ dx$, $+ dy$	Variación	en + dx, $- dy$	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación					
10	0,00443	0,00397	-10,293	0,00545	23,077	0,00397	-10,293	0,00545	23,077					
9	0,00590	0,00527	-10,659	0,00730	23,678	0,00527	-10,659	0,00730	23,678					
8	0,00727	0,00649	-10,759	0,00903	24,158	0,00649	-10,759	0,00903	24,158					
7	0,00842	0,00752	-10,718	0,01048	24,515	0,00752	-10,718	0,01048	24,515					
6	0,00933	0,00832	-10,757	0,01164	24,807	0,00832	-10,757	0,01164	24,807					
5	0,00998	0,00891	-10,769	0,01249	25,144	0,00891	-10,769	0,01249	25,144					
4	0,01036	0,00924	-10,838	0,01303	25,753	0,00924	-10,838	0,01303	25,753					
3	0,01035	0,00922	-10,941	0,01309	26,472	0,00922	-10,941	0,01309	26,472					
2	0,00953	0,00847	-11,083	0,01211	27,053	0,00847	-11,083	0,01211	27,053					
1	0,00564	0,00543	-3,827	0,00716	26,786	0,00543	-3,827	0,00716	26,786					
				DERIVAS EN	N DIRECCIÓ	N "Y"								
NIVEL	Con C.M.	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%	Con C.M. desplazado	%					
NIVEL	inicial	en + dx + dy	Variación	en + dx, - dy	Variación	en - dx, + dy	Variación	en -dx, - dy	Variación					
10	0,00190	0,00182	-3,797	0,00190	0,000	0,00182	-3,797	0,00190	0,000					
9	0,00289	0,00300	3,821	0,00327	13,289	0,00300	3,821	0,00327	13,289					
8	0,00396	0,00421	6,424	0,00457	15,515	0,00421	6,424	0,00457	15,515					
7	0,00495	0,00529	6,783	0,00574	15,795	0,00529	6,783	0,00574	15,795					
6	0,00582	0,00622	6,848	0,00673	15,759	0,00622	6,848	0,00673	15,759					
5	0,00654	0,00700	6,970	0,00757	15,701	0,00700	6,970	0,00757	15,701					
4	0,00711	0,00763	7,220	0,00824	15,789	0,00763	7,220	0,00824	15,789					
3	0,00749	0,00804	7,367	0,00867	15,759	0,00804	7,367	0,00867	15,759					
2	0,00744	0,00801	7,613	0,00862	15,806	0,00801	7,613	0,00862	15,806					
1	0,00504	0,00542	7,619	0,00584	15,905	0,00542	7,619	0,00584	15,905					

A.3.4.3.3 CORTE BASAL

Tabla A.101. Corte basal estructura en forma de "U" FR = 0.64

CORTE BASAL EN LA DIRECCIÓN "X"												
Sin de	splazamiento	(+) dz	x (+) dy	(+) d:	x (-) dy	(-) dx	(+) dy	(-) dz	x(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	222724,39	241927,66	8,622	202261,97	-9,187	241927,66	8,622	202261,97	-9,187			
9	445602,8	484351,09	8,696	402980,33	-9,565	484351,09	8,696	402980,33	-9,565			
8	647810,87	704330,15	8,725	583431,1	-9,938	704330,15	8,725	583431,1	-9,938			
7	826809,41	898275,66	8,644	741254,96	-10,348	898275,66	8,644	741254,96	-10,348			
6	983450,61	1066202	8,414	877652,57	-10,758	1066202	8,414	877652,57	-10,758			
5	1119250,36	1210036,9	8,111	995281,61	-11,076	1210036,9	8,111	995281,61	-11,076			
4	1232144,99	1330515,8	7,984	1094352,5	-11,183	1330515,8	7,984	1094352,5	-11,183			
3	1314787,93	1423772,1	8,289	1169883,7	-11,021	1423772,1	8,289	1169883,7	-11,021			
2	1365232,44	1483115,2	8,635	1218018,1	-10,783	1483115,2	8,635	1218018,1	-10,783			
1	1427146,5	1524971	6,855	1266129,4	-11,282	1524971	6,855	1266129,4	-11,282			
					EN LA DIREC			() 4	()			
	splazamiento		(+) dy	` /	x (-) dy	(-) dx (+) dy			(-) dy			
Nivel	VX	Vx	%Variación	Vx	%Variación	Vx	%Variación	Vx	%Variación			
10	244358,57	226583,63	-7,274	230769,16	-5,561	226583,63	-7,274	230769,16	-5,561			
9	487521,09	454881,45	-6,695	464607,73	-4,700	454881,45	-6,695	464607,73	-4,700			
8	706814,78	663402,33	-6,142	679406,78	-3,878	663402,33	-6,142	679406,78	-3,878			
7	901730,27	848203,06	-5,936	870470,82	-3,467	848203,06	-5,936	870470,82	-3,467			
6	1073822,27	1008740,9	-6,061	1036248,2	-3,499	1008740,9	-6,061	1036248,2	-3,499			
5	1222303,16	1146901,1	-6,169	1177888,4	-3,634	1146901,1	-6,169	1177888,4	-3,634			
4	1345459,27	1263891,5	-6,062	1296990,9	-3,602	1263891,5	-6,062	1296990,9	-3,602			
3	1442264,62	1355519,1	-6,015	1390974,6	-3,556	1355519,1	-6,015	1390974,6	-3,556			
2	1504875,53	1413457,4	-6,075	1451735,5	-3,531	1413457,4	-6,075	1451735,5	-3,531			
1	1545654,98	1456685,5	-5,756	1493473,7	-3,376	1456685,5	-5,756	1493473,7	-3,376			