

UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

"DISEÑO DE CONEXIONES VIGA-COLUMNA SOMETIDAS A CORTE Y FLEXIÓN PARA PÓRTICOS DE ACERO"

REALIZADO POR

Br. HELMUT A. REINOZA KOCH.

Br. JUAN C. RIVERO GUEVARA.

PROFESOR GUIA

Ing. JOSÉ MANUEL VELÁSQUEZ.

460-000

OCTUBRE, 2004.

FECHA

UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

"DISEÑO DE CONEXIONES VIGA-COLUMNA SOMETIDAS A CORTE Y FLEXIÓN PARA PÓRTICOS DE ACERO"

Este Jurado; una vez realizado el examen del presente trabajo ha evaluado su contenido con el resultado: VEINTE PUNTOS (20 pts.)

Firma:
Nombre:

REALIZADO POR

Br. Helmut A. Reinoza Koch

Br. Juan C. Rivero Guevara

PROFESOR GUIA

Ing. José Manuel Velásquez

FECHA

OCTUBRE, 2004.

ÍNDICE GENERAL

DEDICATORIA	iii
AGRADECIMIENTOS	iv
ÍNDICE GENERAL	v
ÍNDICE DE TABLAS	ix
ÍNDICE DE GRÁFICAS	xii
ÍNDICE DE FIGURAS	xíii
ÍNDICE DE ANEXOS	xiv
SINOPSIS	xvi
INTRODUCCIÓN	1
CAPÍTULO I – ANTECEDENTES DE LA INVESTIGACIÓN	2
CAPÍTULO II - EL PROBLEMA	4
II.1. PLANTEAMIENTO DEL PROBLEMA	
II.2. FORMULACIÓN DEL PROBLEMA	4
II.3. OBJETIVOS DE LA INVESTIGACIÓN	5
3.1. Objetivo General	5
3.2. Objetivos Específicos	5
II.4. JUSTIFICACION E IMPORTANCIA DE LA INVESTIGACIONII.5. LIMITACIONES DE LA INVESTIGACIÓN	5 6
CAPÍTULO III - MARCO METODOLÓGICO	7
III.1. TIPO DE INVESTIGACIÓN	7
III.2. DISEÑO DE LA INVESTIGACIÓN	7
III.3. FASES DE LA INVESTIGACIÓN	8
3.1. FASE I: Recopilación Bibliográfica	8

3.2. FASE II: Tabulación de Parámetros de Diseño	8
3.3. FASE III: Fijación de un Procedimiento de Diseño para Conexiones	
IV.4. POBLACIÓN Y MUESTRA	9
4.1. Población	
4.2. Muestra	9
IV.5. TÉCNICAS DE RECOLECCIÓN DE DATOS	9
AND DESCRIPTION OF A STATE OF THE STATE OF T	
CAPÍTULO IV – PERNOS Y SOLDADURAS	10
IV.1. PERNOS	10
1.1. Reseña histórica de los pernos	
1.2. Ventaja de los pernos de alta resistencia	
1.3. Tipos de pernos	
1.4. Tipos de conexiones usadas para pernos	
1.5. Tipos de juntas	13
1.6. Tipos de fallas	
1.7. Dimensiones de los agujeros	16
1.8. Separación entre los centro de los agujeros	18
1.9. Distancia a los bordes	
1.10. Capacidad resistente para diseño	21
1.10.1. Resistencia a la tracción y al corte	21
1.10.2. Resistencia al aplastamiento en las partes conectadas	23
1.10.3. Resistencia a la tracción y tensión diagonal en la plancha	24
1.10.4. Resistencia al corte y tracción combinada	
1.10.5. Resistencia de los elementos afectados en los miembros	24
1.11. Resistencia de los elementos de conexión	26
1.11.1. Resistencia de los elementos de conexión traccionados	26
1.11.2. Resistencia de los elementos de conexión sometidos a corte	27
1.12. Efecto de apalancamiento	34
1.13. Requisitos adicionales para el diseño por resistencia al deslizamiento	34
1.13.1. Diseño para el estado límite de servicio	34
1.13.2. Diseño para el estado límite del agotamiento resistente	37
IV.2. SOLDADURAS	
2.1. Reseña histórica de las soldaduras	39
2.2. Ventajas y desventajas de las soldadura	39
2,3. Tipos de juntas	40
2.4. Tipos de soldaduras	40
2.5. Resistencias de las soldaduras	42
2.6. Soldadura de filete	44
2.6.1. Tamaño mínimo de las soldaduras de filete	45
2.6.2. Tamaños máximos efectivos de las soldaduras de filete	45
2.6.3. Longitudes mínimas de las soldaduras de filete	46
2.6.4. Longitudes máximas de las soldaduras de filete	
2.6.5. Soldaduras intermitentes de filete	47
2.6.6. Juntas solapadas	
2.6.7. Remate de las soldaduras de filete	
2.6.8. Capacidad de diseño en soldaduras de filete	
2.7. Soldadura de ranura	49
2.7.1. Espesores mínimos de las soldaduras de ranuara de penetración parcial	49

2.7.2. Requisitos para el diseño de soldaduras de ranura de penetración completa	50
2.8. Soldaduras de tapón o de canal	50
CAPÍTULO V - CONEXIONES VIGA-COLUMNA RESISTENTES	
A MOMENTO	52
V.1. CLASIFICACIÓN DE LAS CONEXIONES VIGA-COLUMNA	52
V.2. CONEXIONES RESISTENTES A MOMENTO	
2.1. Plancha de extremo: caso particular de conexiones resistentes a momento	54
2.2. Uso de rigidizadores en conexiones resistentes a momento	55
 2.2.1. Consideraciones de diseño de los estados límites de agotamiento en la 	
resistencia de rigidizadores o planchas	56
 2.2.2. Consideraciones adicionales de diseño en la resistencia de rigidizadores y plano 	chas 61
2.3. Consideraciones de diseño para el efecto cortante en el panel de la conexión	
viga-columna en la resistencia de las planchas	62
V.3. PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE	9
PLANCHA DE EXTREMO	85
V.4. PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE PLANCHAS	
ENPERNADAS AL ALA DE LA VIGA CON PLANCHA DE CORTE	98
CAPÍTULO VI - CONSIDERACIONES SÍSMICAS EN EL DISEÑO DE	
CONEXIONES VIGA-COLUMNA	109
VI.1. NIVELES DE DISEÑO	
1.1. Nivel de Diseño 1 (ND1)	
1.1.1. Conexiones viga-columna	
1.1.2. Conexiones rígidas	
1.1.3. Conexiones semi-rígidas	
1.1.4. Solicitaciones por fuerza cortante en las conexiones	
1.1.5. Planchas de continuidad	
1.1.5.1. Requisitos de resistencia de la soldadura en planchas de continuidad	
1.2. Nivel de Diseño 2 (ND2)	
1.2.1. Relaciones ancho/espesor	
1.2.2. Arriostramiento lateral de las vigas 1.2.3. Conexiones viga-columna	
1.2.3. Conexiones viga-columna 1.3. Nivel de Diseño 3 (ND3)	
1.2.1. Palacianas anglas agracas	
1.3.1. Relaciones ancho/espesor	
1.3.2. Áreas de las alas de la viga	
Áreas de las alas de la viga Áreas de las alas de la viga Áreas de las alas de la viga	114
1.3.2. Áreas de las alas de la viga	114 114
Arriostramiento lateral de las alas de la viga Conexiones viga-columna Solicitaciones por fuerza cortante en las conexiones	114 114 114
1.3.2. Áreas de las alas de la viga 1.3.3. Arriostramiento lateral de las alas de la viga 1.3.4. Conexiones viga-columna 1.3.5. Solicitaciones por fuerza cortante en las conexiones 1.3.6. Zona del panel en conexiones viga-columna	114 114 114
1.3.2. Áreas de las alas de la viga 1.3.3. Arriostramiento lateral de las alas de la viga 1.3.4. Conexiones viga-columna 1.3.5. Solicitaciones por fuerza cortante en las conexiones 1.3.6. Zona del panel en conexiones viga-columna 1.3.7. Relación de momentos en los nodos	114 114 115 117
1.3.2. Áreas de las alas de la viga 1.3.3. Arriostramiento lateral de las alas de la viga 1.3.4. Conexiones viga-columna 1.3.5. Solicitaciones por fuerza cortante en las conexiones 1.3.6. Zona del panel en conexiones viga-columna 1.3.7. Relación de momentos en los nodos 1.3.8. Arriostramiento lateral de las conexiones viga-columna	114 114 115 117
1.3.2. Áreas de las alas de la viga 1.3.3. Arriostramiento lateral de las alas de la viga 1.3.4. Conexiones viga-columna 1.3.5. Solicitaciones por fuerza cortante en las conexiones 1.3.6. Zona del panel en conexiones viga-columna 1.3.7. Relación de momentos en los nodos	114 114 115 117 117

0,10	
VI.2.	PUNTOS QUE DEBEN SER TOMADOS EN CUENTA PARA LOS
	PROCEDIMIENTOS PRESENTADOS EN EL CAPÍTULO V. CUANDO SE ESTÁ EN
	PRESENCIA DE UN DISEÑO SÍSMICO
CADÍ	THEO VIII CONCLUSIONES V DECOMENDA CIONES
CAPI	TULO VII – CONCLUSIONES Y RECOMENDACIONES121
nini	
BIBL	IOGRAFÍA124
ANEX	KOS126

ÍNDICE DE TABLAS

Tabla 1. Dimensiones nominales de los agujeros	18
Tabla 2. Distancia minima a los bordes	20
Tabla 3. Valores del incremento de la distancia al borde en agujeros agrandados	21
Tabla 4. Resistencia minorada de diseño a corte simple	22
Tabla 5. Resistencia minorada de diseño a tracción	23
Tabla 6.1. Resistencia minorada al aplastamiento para un Fu=3700 Kg/cm ²	28
Tabla 6.2. Resistencia minorada al aplastamiento para un F _a =5200 Kg/cm ²	
Tabla 7.1. Resistencia minorada a la tracción bajo la acción de cargas cortantes	
para pernos A325-N	30
Tabla 7.2. Resistencia minorada a la tracción bajo la acción de cargas cortantes	
para pernos A325-X	31
Tabla 7.3. Resistencia minorada a la tracción bajo la acción de cargas cortantes	
para pernos A490-N	32
Tabla 7.4. Resistencia minorada a la tracción bajo la acción de cargas cortantes	
para pernos A490-X	33
Tabla 8. Resistencia minorada a corte bajo cargas de servicio	35
Tabla 9. Pretensión mínima para pernos	36
Tabla 10. Resistencia minorada al deslizamiento bajo cargas mayoradas	38
Tabla II. Resistencia de las soldaduras	43
Tabla 12. Tamaño mínimo de las soldaduras de filete	
Tabla 13.1. Capacidad de diseño en soldaduras de filete	
para un F _y de plancha igual a 2500 Kg/cm ²	48
Tabla 13.2. Capacidad de diseño en soldaduras de filete	
para un F _y de plancha igual a 3500 Kg/cm ²	49
Tabla 14. Esposores mínimos de la garganta efectiva en soldaduras de ranura de	
penetración parcial	50
Tabla 15.1. Resistencia minorada a flexión local del ala para perfiles HEA y F _v =2500 K	g/cm ² 65
Tabla 15.2. Resistencia minorada a flexión local del ala para perfiles HEB y F _y =2500 K _y	
Tabla 15.3. Resistencia minorada a flexión local del ala para perfiles CP y F _v =2500 Kg/o	
Tabla 15.4. Resistencia minorada a flexión local del ala para perfiles HEA y F _v =3500 K	
Tabla 15.5. Resistencia minorada a flexión local del ala para perfiles HEB y F _v =3500 Ks	

Tabla Za

Table S

Table?

Table E

Table

Table I

Table I Table I Table I

Zabla

Tabla 15.6.	Resistencia minorada a flexión local del ala para perfiles CP y F _y =3500 Kg/cm ² 66
Tabla 16.1.	Resistencia minorada al pandeo del alma comprimida
	para perfiles HEA y F _y =2500 Kg/cm ²
Tabla 16.2.	Resistencia minorada al pandeo del alma comprimida
	para perfiles HEB y F _y =2500 Kg/cm ²
Tabla 16.3.	Resistencia minorada al pandeo del alma comprimida
	para perfiles CP y F _y =2500 Kg/cm ²
Tabla 16.4.	Resistencia minorada al pandeo del alma comprimida
	para perfiles HEA y F _y =3500 Kg/cm ² 73
Tabla 16.5.	Resistencia minorada al pandeo del alma comprimida
	para perfiles HEB y F _y =3500 Kg/cm ² 73
Tabla 16.6.	Resistencia minorada al pandeo del alma comprimida
	para perfiles CP y F_y =3500 Kg/cm ²
Tabla 17.1.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0.4N_y$, perfiles HEA y F_y =2500 Kg/cm^2 75
Tabla 17.2.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0,4N_y$, perfiles HEB y F_y =2500 Kg/cm^2 75
Tabla 17.3.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0,4N_y$, perfiles CP y F_y =2500 Kg/cm^2 75
Tabla 17.4.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0,4N_y$, perfiles HEA y F_y =3500 Kg/cm^2 76
Tabla 17.5.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0,4N_y$, perfiles HEB y F_y =3500 Kg/cm ² 76
Tabla 17.6.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu \le 0.4N_y$, perfiles CP y F_y =3500 Kg/cm^2 76
Tabla 18.1.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu > 0.4N_y$, perfiles HEA y $F_y=2500 \text{ Kg/cm}^2$ 78
Tabla 18.2.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu > 0.4N_y$, perfiles HEB y F_y =2500 Kg/cm^2 78
Tabla 18.3.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para $Nu > 0.4N_y$, perfiles CP y F_y =2500 Kg/cm^2 78
Tabla 18.4.	Resistencia minorada a corte sin considerar los efectos de la
	deformación en el panel para Nu > 0.4N., perfiles HEA v F.=3500 Kg/cm ²

Table

Tabla 18.5.	Resistencia minorada a corte sin considerar los efectos de la	
	deformación en el panel para Nu > 0,4N _y , perfiles HEB y F _y =3500 Kg/cm ²	79
Tabla 18.6.	Resistencia minorada a corte sin considerar los efectos de la	
	deformación en el panel para Nu> 0,4N _y , perfiles CP y F _y =3500 Kg/cm ²	79
Tabla 19.1.	Relaciones A _f / A _w para perfiles W	31
Tabla 19.2.	Relaciones A _f / A _w para perfiles HEA	32
Tabla 19.3.	Relaciones A _f / A _w para perfiles HEB	32
Tabla 19.4.	Relaciones A _f / A _w para perfiles CP	32
Tabla 20.1.	Valores de C _a para pernos A325	33
	Valores de C _a para pernos A490	
Tabla 21.1.	Relaciones ancho/espesor para elementos comprimidos no rigidizados	12
	Relaciones ancho/espesor para elementos comprimidos rigidizados	

ÍNDICE DE GRÁFICAS

Gráfica 1.	Resistencia minorada a la flexión local del ala
Gráfica 2-a	 Resistencia minorada a la cedencia local del alma para F_y=2500 Kg/cm²
	cuando F está aplicada a una distancia x > de del extremo del miembro
Gráfica 2-l	 Resistencia minorada a la cedencia local del alma para F_y=3500 Kg/cm²,
	cuando F está aplicada a una distancia x > dc del extremo del miembro
Gráfica 3-a	 Resistencia minorada a la cedencia local del alma para F_y=2500 Kg/cm²,
	cuando F está aplicada a una distancia x ≤ del extremo del miembro
Gráfica 3-l	 Resistencia minorada a la cedencia local del alma para F_y=3500 Kg/cm²,
	cuando F está aplicada a una distancia x ≤ de del extremo del miembro
Gráfica 4.	Resistencia minorada al pandeo del alma comprimida
Gráfica 5.	Resistencia minorada a corte sin considerar deformaciones
	en el panel para $N_u \le 0,4N_y$
Gráfica 6.	Resistencia minorada a corte sin considerar deformaciones
	en el panel para N _u >0,4N _y 80

ÍNDICE DE FIGURAS

Figura 1. Conexión por deslizamiento crítico	13
Figura 2. Junta traslapada	13
Figura 3. Junta a tope	14
Figura 4. Junta de planos múltiples	14
Figura 5. Falla por cortante doble y múltiple	15
Figura 6. Falla por aplastamiento	15
Figura 7. Fallas en las planchas	16
Figura 8. Tipos de agujeros	
Figura 9. Distancias a bordes de planchas	
Figura 10. Distancias del centro del perno a bordes (falla en bloque)	
Figura 11. Efecto de apalancamiento	
Figura 12. Tipos de juntas	
Figura 13. Tipos de soldaduras	
Figura 14. Biselados	
Figura 15. Diámetros nominales para soldaduras de filete	
Figura 16. Tamaño máximo efectivo para las soldaduras de filete	
Figura 17. Dimensiones de las soldaduras de tapón y de canal	
Figura 18. Conexión típica resistente a momento	
Figura 19. Porción "T" a considerar en planchas de extremo	
Figura 20. Rigidizadores	56
Figura 21. Distancias d _f y h en perfiles	
Figura 22. Panel de la conexión viga-columna	
Figura 23. Ubicación de la rótula plástica	
Figura 24. Determinación del corte en la rótula plástica	
Figura 25. Determinación del momento en cada sección crítica	
Figura 26. Conexión con planchas laterales	131
Figura 27. Conexión con alma de viga ranuradas	
Figura 28. Conexiones con cartelas empernadas	135
Figura 29. Almas agujereadas de las vigas	

EJEMPLO NUMÉRICO 1	145
EJEMPLO NUMÉRICO 2	
TABLAS PARA PERFILES HEA, HEB, CP Y W	

SINOPSIS

En Venezuela actualmente la construcción de estructuras de acero experimenta un gran auge entre los diferentes materiales de construcción, lo cual ha ameritado la necesidad de fijar pautas para su diseño, siendo una de sus fases la selección del tipo de conexión viga-columna para pórticos de acero sometidos a corte y flexión, la cual no posee un procedimiento que facilite la aplicación de La Norma Covenin Mindur 1618-98 Estructuras de Acero para Edificaciones, para la selección de la alternativa de conexión más adecuada a las solicitaciones actuantes.

El principal objetivo de la investigación realizada durante un lapso de 12 semanas, se basó en la determinación de un procedimiento para el diseño de conexiones viga-columna sometidas a corte y flexión bajo solicitaciones sísmicas y no sísmicas, en pórticos de acero; para llegar a este objetivo se procedió a investigar los diferentes parámetro que fija La Norma antes mencionada, tales como la resistencias de los pernos, soldaduras y planchas, distancias entre pernos, entre otros, a partir de los cuales se realizaron diferentes tablas que facilitan al Ingeniero, la selección del tipo de conector, tipo de agujero, espesor de plancha y resistencias minoradas, que se usarán a la hora del diseño de la conexión viga-columna. Durante parte del desarrollo del presente trabajo, se tomaron y explicaron conceptos básicos de la Norma, extrayéndose de igual forma, tablas de mayor relevancia para el diseño de dichas conexiones. De igual manera se investigó las posibles fallas que se pueden ocasionar por las fuerzas concentradas actuantes en la conexión, tales como: flexión local del ala, cedencia local del alma, aplastamiento local del alma, pandeo lateral del alma, pandeo del alma comprimida y el efecto cortante sobre el panel de la conexión, las cuales son de gran importancia para su diseño.

INTRODUCCIÓN

A través de la historia, el hombre ha tratado de mejorar las materias, primas, para obtener los resultados ideales para las diversas solicitaciones en las construcciones. En las últimas décadas, los ingenieros y arquitectos han estado requiriendo continuamente aceros, más resistentes, más soldables y con propiedades anticorrosivas. La investigación llevada a cabo por la industria del acero durante los últimos años ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen muchos de los requisitos, existiendo ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales.

En las estructuras de acero una parte de gran importancia son las conexiones vigascolumnas, en las cuales: perfiles, planchas, pernos o soldaduras se unen para integrar las partes como una unidad. Dichas conexiones en los miembros estructurales son de tal importancia que pueden llegar a significar un eslabón débil en la estructura, cuando éstas han sido inadecuadamente diseñadas, hasta el punto de llegar a ser el causal del colapso de la estructura ante solicitaciones.

Entre las diferentes conexiones viga-columna se pueden encontrar las de tipo simple, semirígida y rígida, las cuales se clasifican de acuerdo a su grado de rotación; siendo las rígida y semirígidas las conexiones de mayor importancia ante solicitaciones de corte y momento, debido a que tienen la capacidad de transmitir en un mayor porcentaje el momento de un miembro a otro, mediante la adecuada distribución de pernos, soldaduras y planchas.

Es por esto, que el presente trabajo especial de grado tiene como principal objetivo, generar pautas que permitan de una forma sencilla el diseño más óptimo de una conexión viga-columna, mediante la ayuda de tablas y ecuaciones basadas en parámetros de La Norma COVENIN-MINDUR 1618-98 Estructuras de Acero para Edificaciones. Método de los Estados Límites, a través del cual se logre de forma completa y detallada un adecuado diseño de la conexión, sin dejar a un lado el criterio del Ingeniero.

CAPÍTULO I ANTECEDENTES DE LA INVESTIGACIÓN

I.1. TÍTULO "Normalización de conexiones en estructuras metálicas a fuerza axial, corte simple y momento"

Trabajo Especial de Grado desarrollado por Juan Carlos Arriaga y Carlos E. Millán (en el año 1994) y presentado a la Universidad Católica Andrés Bello (UCAB) como requisito para optar al título de Ingeniero Civil.

El problema planteado por los autores es la falta de una adecuada ampliación de los conocimientos sobre las conexiones en el campo de la Ingeniería Estructural mediante la complementación de experiencias prácticas a la Norma vigente a fin de permitir un mejor desempeño en el mundo del trabajo.

Para la solución de dicho problema se elaboró un cuerpo de conclusiones y recomendaciones, que permiten la adecuada aplicación de estas Normas, al constituir una referencia de detalles y de diseño para las conexiones más comunes, las cuales fueron asociadas con una selección de perfiles laminados y fabricados, de uso habitual dentro del medio constructivo de Venezuela.

Se llegó a la conclusión, una vez estudiado el problema, de la importancia que tiene un diseño cuidadoso de los elementos conectores en una estructura metálica, tomando en cuenta en la medida de lo posible, el mayor número de factores que puedan afectar el comportamiento final de dicha estructura.

I.2. TÍTULO "Diseño sísmico de conexiones viga-columna en estructuras de acero"

Trabajo Especial de Grado desarrollado por Marienella Mazzeo Aranguren (en el año 1997) y presentado a la Universidad Católica Andrés Bello (UCAB) como requisito para optar al título de Ingeniero Civil.

El problema planteado por el autor son las disyuntivas e interrogantes que se han planteado con la puesta en práctica del diseño de estructuras de acero por el método de los factores de carga y resistencia, tanto por la denominada calibración del método mismo, como por las consecuencias

originadas por las respuestas sismorresistentes de algunas estructuras de acero diseñadas y construidas con conexiones vigas-columnas soldadas.

Es por esto, que se propuso considerando las experiencias de sismos resientes, un esquema para la mejora del comportamiento sismorresistente de una conexión viga-columna, tomando en cuenta, en su diseño, las recomendaciones vigentes.

En base al problema, se llegó a la conclusión de la necesidad de limitar los esfuerzos en las conexiones soldadas cuando estas coinciden con las secciones de máximas solicitaciones. Esto se logra alejando la formación de las articulaciones plásticas de la cara de las columnas mediante colocación de cartelas en los extremos de las vigas, recortes de las alas de las vigas, a fin de usar el criterio viga débil-columna fuerte.

CAPÍTULO II EL PROBLEMA

II.1. PLANTEAMIENTO DEL PROBLEMA

En lo que respecta al diseño de estructuras de acero, existe gran diversidad de uniones vigas-columnas, lo que trae como consecuencia grandes variantes en los elementos usados para conectar y en la forma como estos transmiten las fuerzas. A la hora de seleccionar la alternativa más adecuada entre las diversas conexiones vigas-columnas sometida a corte y flexión, en el diseño de estructuras de acero, no existe un procedimiento que facilite la aplicación de La Norma Covenin Mindur 1618-98 Estructuras de Acero para Edificaciones. Método de los Estados Límites, en este sentido, este trabajo especial de grado contempla establecer un estudio detallado de casos típicos de conexiones, su comportamiento y criterios de diseño, con el fin de establecer un procedimiento estándar a seguir, para el diseño del tipo conexión viga-columna, que se adecue a parámetros establecídos en dicha norma.

II.2. FORMULACIÓN DEL PROBLEMA

Conocida la situación actual, y las consecuencias originadas por la falta de ordenamiento de criterios de diseño de las conexiones viga-columna sometidas a corte y flexión, se formula la siguiente pregunta global:

¿Será posible que mediante la fijación de un procedimiento de diseño para las conexiones vigacolumna sometidas a corte y flexión en pórticos de acero, se pueda contribuir a aclarar y afianzar las pautas a seguir para un adecuado diseño acorde a La Norma Covenin Mindur 1618-98?

A partir de esta interrogante, surgen las siguientes inquietudes específicas:

- ¿Se podrá realizar una serie de tablas que permitan determinar las resistencias requeridas para facilitar el diseño de las conexiones?
- ¿Se podrá realizar un conjunto de tablas y gráficas que permitan determinar la necesidad de uso de rigidizadores y planchas adosadas en el diseño de las conexiones?

 ¿Cómo se pueden fijar las diferentes pautas en el diseño de conexiones viga-columna resistentes a corte y momento debido a su amplio número de variantes?

IL3. OBJETIVOS DE LA INVESTIGACIÓN

3.1. Objetivo General

Determinación de un procedimiento para el diseño de conexiones vígas-columnas sometidas a corte y flexión para pórticos de acero.

3.2. Objetivos Específicos

- Elaboración de una serie de tablas en donde se tabularán las diferentes resistencias (corte, tracción, aplastamientos, entre otros) tanto de soldaduras, pernos y planchas.
 - Elaboración de un conjunto de tablas y gráficas que permitirán verificar la necesidad del uso de rigidizadores y planchas adosadas en el panel de la conexión, de acuerdo a los diferentes tipos de perfiles.
 - Explicación detallada de los diferentes parámetros de La Norma Covenin Mindur 1618-98 que deben ser verificadas al momento del diseño de la conexión.
 - Debido al amplio número de conexiones viga-columna que existen en las estructuras de acero y a la complejidad de sus diseño, se seleccionarán 2 tipos de conexiones comúnmente usadas, a las cuales se les fijarán pautas, a fin de crear un instructivo básico de diseño.

II.4. JUSTIFICACIÓN E IMPORTANCIA DE LA INVESTIGACIÓN

En las estructuras de acero una parte de gran importancia son las conexiones vigascolumnas, en las cuales: perfiles, planchas, pernos o soldaduras se unen para integrar las partes como una unidad. Dichas conexiones en los miembros estructurales son de tal importancia que pueden llegar a significar un eslabón débil en la estructura, cuando éstas han sido inadecuadamente diseñadas, hasta el punto de llegar a ser el causal del colapso de la estructura ante solicitaciones.

Es por este motivo que se optará por definir los diferentes parámetros y requisitos necesarios a la hora del diseño de la conexión, a fin de crear un procedimiento que se adecue a los requerimientos de La Norma Covenin Mindur 1618-98.

IL5. LIMITACIONES DE LA INVESTIGACIÓN

- Debido al amplio número de conexiones existentes, se seleccionaron 2 tipos de conexiones vigas columnas sometidas a corte y flexión, para su estudio detallado.
- Sólo conexiones de pórticos ortogonales en el plano.
- Sólo perfiles de alma abierta.
- El diseño de las conexiones viga-columna únicamente contempla uniones de vigas a almas de columnas.

CAPÍTULO III MARCO METODOLÓGICO

Una vez formulado el problema de la investigación, delimitados los objetivos y fijada la teoría que sustenta la investigación, se delimitarán los procedimientos de orden metodológico, a través de los cuales se intenta dar respuesta a las diversas interrogantes objeto de investigación, a fin de crear condiciones de fiabilidad, objetividad y validez de los hechos estudiados, los resultados y las conclusiones que de ella se originen.

III.1. TIPO DE INVESTIGACIÓN

De acuerdo a la naturaleza del problema planteado, esta investigación se considera del tipo aplicada, ya que ella depende de los descubrimientos y avances de la investigación básica y se enriquece con ellos, caracterizándose por su interés en la aplicación, utilización y consecuencias prácticas de los conocimientos. La investigación aplicada busca el conocer para hacer, para actuar, para construir, para modificar. (Tevni Grajales G., 2000)

Por otra parte, también se considerada como un proyecto del tipo *factible*, ya que consiste en la investigación, elaboración y desarrollo de una propuesta viable para solucionar problemas, requerimientos o necesidades. (UPEL, 2003).

III.2. DISEÑO DE LA INVESTIGACIÓN

El diseño de la investigación se inserta en un diseño documental, debido a que el estudio del problema se realiza con el propósito de ampliar y profundizar el conocimiento de su naturaleza, con apoyo principalmente en trabajos previos, datos divulgados por medios impresos, audiovisuales o electrónicos. (UPEL, 2003).

III.3. FASES DE LA INVESTIGACIÓN

El trabajo de investigación a realizar constara de 3 fases de desarrollo, las cuales se presentaran a continuación:

3.1. FASE I: Recopilación Bibliográfica.

Esta fase es de gran importancia ya que en ella se realiza la recopilación del material que conformará la teoría y el marco metodológico de la misma, con el propósito de ampliar y profundizar el conocimiento de la naturaleza del problema en estudio. Todo esto se logrará a través de la indagación exhaustiva y sistemática de material bibliográfico, audiovisual o electrónico, que directa o indirectamente aportarán información útil para el desarrollo de este trabajo especial de grado.

3.2. FASE II: Tabulación de Parámetros de Diseño.

Para el desarrollo de esta fase, se fijará por medio de tablas los diferentes parámetros de diseño establecidos en La Norma COVENIN-MINDUR 1618-98 Estructuras de Acero para Edificaciones. Método de los Estados Límites, a fin de facilitar al Ingeniero la selección del tipo de conector, tipo de agujero y espesor de plancha acorde a las solicitaciones presentadas y a sus resistencias, que se usarán a la hora del diseño de la conexión viga-columna. De igual forma se realizarán tablas y gráficas de las diferentes resistencias a los estados límites de agotamiento resistente de la columna, a fin de determinar la necesidad del uso de rigidizadores y/o planchas adosadas al panel de la conexión.

3.3. FASE III: Fijación de un Procedimiento de Diseño para Conexiones.

Utilizando las tablas de la fase anterior, las cuales facilitarán las pautas a seguir para el cumplimiento de esta fase, se fijará un procedimiento para el diseño de dos tipos diferentes de conexiones viga-columna sometidas a corte y flexión, tomando en consideración todas las posibles fallas que puedan originarse en los miembros de la conexión.

IV.4. POBLACIÓN Y MUESTRA

4.1. Población

En la presente investigación las unidades de análisis objeto de observación y estudio, serán las conexiones viga-columnas sometidas a corte y flexión para pórticos de acero. Todas ellas constituyen la población o universo de estudio para la investigación planteada.

Importa destacar que la población de conexiones viga-columna está referida a perfiles laminados de alma abierta en pórticos ortogonales en el plano.

4.2. Muestra

Como anteriormente se ha indicado, la población en estudio está integrada por las conexiones viga-columna sometidas a corte y flexión para pórticos de acero y dadas las características de esta población de díversas variantes en su diseño y concepción, se tomarán como unidades de estudio a un conjunto de 2 conexiones viga-columna, a partir de las cuales se fijarán los procedimientos para su diseño y selección.

IV.5. TÉCNICAS DE RECOLECCIÓN DE DATOS

Con el objeto de recopilar toda la información necesaria para el desarrollo de este trabajo especial de grado, se hará uso principalmente de técnicas documentales. Se utilizará primeramente la observación documental como punto de partida en el análisis de las fuentes bibliográficas, mediante una lectura general de los textos, se iniciará la búsqueda y observación de los hechos presentes en los materiales escritos consultados que son de interés para esta investigación. Esta lectura inicial, será seguida de varias lecturas más detenidas y rigurosas de los textos, a fin de extraer los planteamientos esenciales y los aspectos más relevantes. Posteriormente se usará la técnica de presentación resumida, que permitirá plasmar de manera fiel y en síntesis las ideas básicas que contienen las obras consultadas para lograr el objetivo de la investigación. Es importante destacar que esta técnica es de gran importancia en la construcción de los contenidos teóricos de la investigación.

CAPÍTULO IV PERNOS Y SOLDADURAS

IV.1. PERNOS

1.1. Reseña histórica de los pernos

Durante muchos años el método aceptado para conectar los miembros de una estructura de acero fue el remachado. Sin embargo, en años recientes, el uso de remaches ha declinado debido al auge experimentado por la soldadura, y más recientemente por el uso de pernos de alta resistencia. C. Batho y E. H. Bateman sostuvieron por primera vez en 1934 que los pernos de alta resistencia podrían emplearse satisfactoriamente para el ensamble de estructuras de acero, pero fue hasta 1947 que se estableció el Research Council on Riveted and Bolted Estructural Joints of the Engineering Foundation (Consejo para la investigación de juntas estructurales remachadas y atornilladas). Este grupo publicó sus primeras especificaciones en 1951 y los pernos de alta resistencia fueron aceptados rápidamente por arquitectos e ingenieros de puentes para estructuras sometidas a cargas, tanto estáticas como dinámicas.

Las conexiones que anteriormente se hacían con pernos y tuercas ordinarias no eran muy satisfactorias al momento de aplicárseles cargas vibratorias, debido a que dichas tuercas se aflojaban. Durante años este problema se resolvió usando contratuercas, pero los pernos de alta resistencia proporcionan una solución más eficiente.

El montaje de estructuras de acero por medio de pernos es un proceso que, además de rápido, requiere de mano de obra menos especializada que cuando se trabaja con remaches o soldadura. Estos factores dan a las juntas con pernos unas ventajas económicas en comparación con otros tipos de conexiones.

1.2. Ventajas de los pernos de alta resistencia

Entre las ventajas que proporcionan el uso de pernos de alta resistencia se encuentran las siguientes:

1. La mano de obra empleada para empernar es mucho menor que la empleada para remachar.

- Poseen una mayor resistencia que los remaches y por lo tanto se requieren de menor número de pernos para realizar la conexión.
- Se requiere de mano de obra menos especializada de la que se requiere para realizar conexiones soldadas o remachadas.
- 4. No se requieren pernos de montaje que deban removerse después, como en las juntas soldadas.
- 5. Poseen un procedimiento de conexión menos ruidoso en comparación con el remachado.
- Se requieren de equipos más económicos para su colocación.
- Poseen una mayor resistencia a la fatiga que las remachas, siendo dicha resistencia igual o mayor que la obtenida en juntas soldadas equivalentes.
- Facilidad de armado y desarmado que poseen las conexiones con pernos en las estructuras de acero.

1.3 Tipos de pernos

Pernos Mecánicos o de Baja resistencia

Estos pernos los designa la ASTM como A307 y se fabrican con aceros al carbono, con características de esfuerzos y deformaciones muy parecidas a los del acero A36. Están disponibles en diámetros que van desde 5/8 de plg. hasta 1 ½ de plg. en incrementos de 1/8 de plg. Los pernos A307 se fabrican generalmente con cabezas y tuercas cuadradas para reducir costos, pero las cabezas hexagonales se usan a veces porque tienen una apariencia un poco más atractiva, son más fáciles de manipular con las llaves mecánicas y requieren menos espacio para girarlas. Tienen relativamente grandes tolerancias en el vástago y en las dimensiones de la cuerda, pero su resistencia de diseño son menores que los pernos de alta resistencia. Se usan principalmente en estructuras ligeras sujetas a cargas estáticas y en miembros secundarios (largueros, correas, riostras, plataformas, armaduras pequeñas, etc.)

Pernos de Alta Resistencia.

Estos pernos se fabrican a base de acero al carbono tratado térmicamente y aceros aleados; tienen resistencia a la tensión de dos o más veces la de los pernos mecánicos. Existen dos tipos básicos, los A325 (carbono tratado térmicamente) y los A490 de mayor resistencia (tratados térmicamente con acero aleado). Los pernos de alta resistencia pueden apretarse hasta que se alcanza esfuerzos muy altos de tensión, de manera que las partes conectadas quedan fuertemente afianzadas entre la tuerca del perno y su cabeza, lo que permiten que las cargas se transfieran principalmente por fricción.

En ocasiones se fabrican pernos de alta resistencia a partir de acero A449 con diámetros mayores de 1 ½ plg. que es el diámetro máximo de los A325 y A490.

1.4 Tipos de conexiones usadas para pernos

Cuando los pernos bien sean de baja o de alta resistencia se conectan con los miembros quedando estos fuertemente abrazados entre sí, se genera una resistencia al deslizamiento en la superficie de contacto igual a la fuerza de fricción que ocurre entre dichos miembros, que no es más que la fuerza aplicada al apretar el perno multiplicada por el coeficiente de fricción del material. Ahora de acuerdo a la magnitud de la fuerza cortante actuante con respecto a la fuerza permisible por fricción generada, las conexiones se clasifican en:

· Por Aplastamiento:

Ocurre cuando la fuerza actuante es mayor que la resistencia al deslizamiento, ocasionando que los miembros se deslicen, y en consecuencia las cargas de las planchas tienden a degollar a los conectores en el plano entre los miembros y a apoyarse contra los lados de los pernos. Los pernos deben tener suficiente resistencia para soportar la fuerza cortante satisfactoriamente, y los miembros que los forman deben ser lo bastante fuerte para soportan el desgarramiento por los conectores. En este tipo de conexión pueden utilizarse pernos tipo A307, A325 y A490.

Por Deslizamiento Crítico:

Para este tipo de conexión se usan únicamente los pernos de alta resistencia A325 y A490 a los cuales se les aplica una fuerza de tensión en el momento de conectarlos a los miembros, originando una resistencia confiable por fricción al deslizamiento. Si las cargas actuantes por trasmitirse son menores que esta resistencia por fricción, las fuerzas totales se resisten únicamente por dicha fricción y los pernos no quedan sometidos ni a corte ni aplastamiento, pero si la carga aplicada excede a la resistencia por fricción habrá un deslizamiento, quedando posteriormente los pernos sometidos a corte y aplastamiento. En la Figura 1 se observa una conexión por deslizamiento crítico.

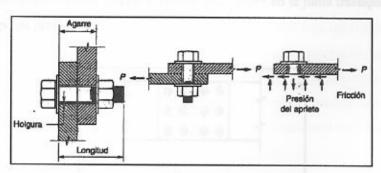


Figura 1

1.5. Tipos de juntas

Junta Traslapada

Una junta traslapada es simplemente una junta en la que dos miembros se traslapan y se conectan entre sí con algún tipo de sujetadores. La junta traslapada no es una conexión estructural conveniente y debe usarse solo para conexiones menores. Tiene el inconveniente de que el eje de la fuerza en un miembro no es colineal con el eje de gravedad de la fuerza en el otro miembro, originando una excentricidad que causa efectos secundarios de flexión. Éste tipo de conexión deben diseñarse por lo menos, con dos sujetadores en cada línea. Ver Figura 2.

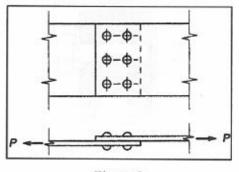


Figura 2

Junta a Tope

Se designan así las juntas en donde dos caras se enfrentan directamente. En este tipo de junta los miembros se deslizarán un poco y tenderán a degollar simultáneamente a los pernos en los dos planos de contacto, quedando estos sometidos a cortante doble y aplastamiento. La principal ventaja de este tipo de junta es que se posee una condición de carga más simétrica dando como

resultado una reducción o eliminación de la flexión que ocurre en la junta traslapada. En la Figura 3 se observa este tipo de junta a tope.

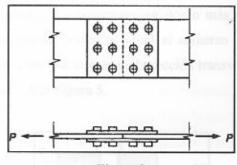


Figura 3

Juntas de Planos Múltiple

Se tienen en ocasiones juntas en las que se conectan tres o más miembros y los pernos quedan sometidos a cortante múltiple. Desde el punto de vista de la capacidad de carga del perno, la junta en cortante múltiple, es teóricamente igual a tantas veces el número de planos cortantes simples que éste posea. Ver Figura 4.

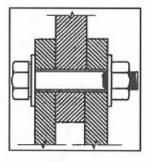


Figura 4

1.6. Tipos de fallas

- Falla en los pernos:
 - Falla por corte

Una conexión empernada que falla por cortante puede fallar por los siguientes modos:

 Cortante simple: ocurre cuando las cargas en las planchas tienden a degollar a los conectores en un plano entre las planchas. La resistencia de

diseño es igual al esfuerzo cortante permisible del perno multiplicada por el área de su sección transversal, siendo dicha área igual a $\pi^*d^2/4$.

ii. Cortante doble y múltiple: ocurre cuando las cargas en las planchas tienden a degollar a los conectores en dos o más planos entre las planchas. La resistencia de diseño es igual al esfuerzo cortante permisible del perno multiplicado por el área de la sección transversal y el número de planos de contacto. Ver Figura 5.

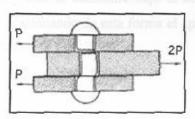


Figura 5

b. Falla por aplastamiento

Ocurre cuando se tiene una conexión con plancha de gran espesor respecto al diámetro del perno y ésta se encuentra bajo la acción de una fuerza que tiende a deslizar las planchas, ocurriendo de esta forma el aplastamiento del perno contra la plancha sin llegar a cortarlo. Ver Figura 6.

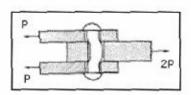


Figura 6

c. Falla por tracción

Ocurre cuando la fuerza actúa en la dirección del eje longitudinal del perno, estando éste sometido únicamente a una fuerza de tracción

· Falla en las planchas:

Cuando las cargas aplicadas superan la fuerza de fricción de la junta, ésta tiende a deslizarse ocasionando fallas (desgarramientos) en los miembros conectados, las cuales se clasifican en:

a. Aplastamiento

Ocurre cuando se tiene una conexión con pernos de gran diámetro respecto al espesor de la plancha y ésta se encuentra bajo la acción de una fuerza que tiende a deslizar las planchas, ocasionando de esta forma el aplastamiento de las mismas contra el perno. Ver Figura 7-a.

b. Tracción

Este tipo de falla en la plancha puede observarse en la Figura 7-b.

c. Tensión diagonal

Este tipo de falla en la plancha puede observarse en la Figura 7-c.

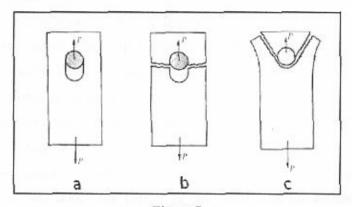


Figura 7

1.7. Dimensiones de los agujeros

Además de los agujeros de tamaño estándar hay tres tipos de agujeros ensanchados como lo son: agujeros agrandados, agujeros de ranura corta y agujeros de ranura larga, los cuales poseen unas dimensiones requeridas mostradas en la Tabla 1. Es necesario el uso de arandelas sobre los agujeros ensanchados en las caras exteriores.

Los agujeros serán del tamaño estándar, a menos que el ingeniero responsable del proyecto lo especifique de otra manera. No deben utilizarse agujeros de ranura en las conexiones de los miembros sometidos a fatiga. A continuación se presentan los distintos tipos de agujeros anteriormente especificados (Ver Figura 8):

Agujeros agrandados:

Este tipo de agujero podrá utilizarse en todos aquellos empalmes diseñados con conexiones de deslizamiento crítico, pero no en conexiones sometidas a aplastamiento.

· Agujeros de ranura corta:

Podrán utilizarse en todos los empalmes, sean diseñados como conexiones tipo aplastamiento o de deslizamiento crítico. En las conexiones de deslizamiento crítico no será necesario considerar la orientación de la ranura en el agujero, pero en las conexiones del tipo aplastamiento, la dirección de la ranura en el agujero será perpendicular a la línea de acción de la carga.

· Agujeros de ranura larga:

Se utilizarán agujeros ranura larga solamente en una de las partes empalmadas de una conexión de deslizamiento crítico o por aplastamiento que presente una superficie de contacto individual. Los agujeros de ranura larga podrán utilizarse sin consideración de la dirección de la carga, en conexiones de deslizamiento crítico, pero serán perpendiculares a la dirección de la carga en conexiones tipo aplastamiento. En las planchas exteriores con agujeros de ranura larga, se suministrarán pletinas a modo de arandelas o pletinas continuas con agujeros estándar de tamaño suficiente como para cubrir totalmente el agujero de ranura larga después de su colocación. En las conexiones con pernos de alta resistencia, las arandelas de pletina o las pletinas continuas tendrán un espesor mayor de 8 mm (5/16 plg) y de un material de grado estructural no necesariamente endurecido.

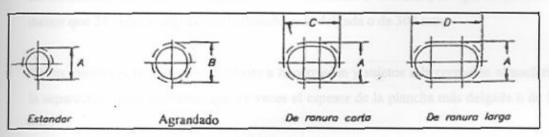


Figura 8

Tabla 1
Dimensiones nominales de los agujeros

Diámetro del perno		DIMENSIONES DE AGUJEROS, da			
		Estándar	Agrandados	ndados Ranura corta	Ranura larga
mm	plg	Diámetro	Diámetro	(ancho x largo)	(ancho x largo)
1/2	12,7	14,3	15,9	14,3 x 17,5	14,3 x 31,8
5/8	15,9	17,5	20,6	17,5 x 22,2	17,5 x 39,7
M1	16	18	20	18 x 22	18 x 40
3/4	19,1	20,6	23,8	20,6 x 25,4	20,6 x 47,6
M20		22	24	22 x 26	22 x 50
M2	22	24	28	24 x 30	24 x 55
7/8	22,2	23,8	27	23,8 x 28,6	23,8 x 55,6
M24		27,0 ^(a)	30	27 x 32	27 x 60
1	25,4	27	31,8	27,0 x 33,3	27,0 x 63,5
M27		30	35	30 x 37	30 x 67
M3	30	d+ 2,0	d+8,0	(d+2,0)(d+9,5)	(d+2.0)(2.5d)
1 1/4	31,8	33	38	33 x 40	33 x 75
M36		d+ 3,0	d+8,0	(d+3)(d+10)	(d+3)(2,5d)

Nota:

(a) La tolerancia permite usar pernos de 25 mm.

1.8. Separación entre los centros de los agujeros

Separación mínima

La distancia entre los centros de los agujeros de cualquier tamaño debe ser mayor a 2,7 veces el diámetro nominal del perno, pero preferiblemente mayor que 3 veces el diámetro.

Separación máxima

La separación longitudinal entre los pernos de elementos en contacto continuo de una plancha y un perfil o dos planchas será la indicada a continuación:

- En los miembros pintados o no pintados y no sometidos a corrosión, la separación debe ser menor que 24 veces el espesor de la plancha más delgada o de 300 mm.
- En los miembros no pintados resistente a la corrosión y sujetos a la corrosión atmosférica,
 la separación debe ser menor que 14 veces el espesor de la plancha más delgada o de 180 mm.

1.9. Distancia a los bordes

Distancias mínimas

Las distancias de los centros de los agujeros estándar a cualquier borde debe ser mayor que las especificadas en la Tabla 2 y al valor requerido para:

Pernos interiores: $L_c = s - d_a$

Pernos externos: $L_e = L_e - 0.5 d_a$

En donde:

s es la separación centro a centro entre pernos.

da es el diámetro del agujero.

Le es la distancia del centro del agujero externo al borde.

L_c es la distancia del borde del agujero al final de la plancha o la distancia entre los bordes de los agujeros internos.

En la Figura 9 se observan de forma más detallada las distancias especificada anteriormente.

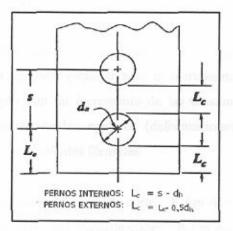


Figura 9

Tabla 2

Distancia mínima a bordes

Diámetro nominal del perno d		A bordes cortados con	A bordes laminados de pletinas, perfiles o barras y bordes cortados con	
plg	mm	cizalla	soplete ⁽ⁿ⁾	
1/2	12,7	22	19	
5/8	15,9	29	22	
M	16	28	22	
3/4	19,1	32	25	
M:	20	34 ^(b)	26	
M:	22	38 ^(b)	28	
7/8	22,2	38 ^(b)	29	
M:	24	42 ^(b)	30	
1	25,4	44 ^(b)	32	
M:	27	48	34	
1 1/8	28,6	51	38	
M	30	52	38	
1 1/4	31,8	57	41	
1 3/8	34,9	1,75d	1,25d	
M	36	64	46	
≥ N	136	1,75d	1,25d	

Notas:

- (a) Todas las distancias al borde en esta columna pueden reducirse en 3 mm cuando la perforación está en un punto en donde la tensión no excede el veinticinco por ciento (25 %) de la máxima resistencia en el elemento.
- (b) Pueden ser 32 mm en los extremos de ángulos que conectan vigas y en las conexiones con planchas extremas.

Las distancias del centro de los agujeros ensanchados o ranurados a cualquier borde será menor que la estipulada para agujeros estándar más el incremento aplicable s₂ de la Tabla 3. Adicionalmente se debe cumplir con un incremento de las tensiones de aplastamiento a fin de controlar el efecto de ovalización de los agujeros (deformaciones mayores de 6 mm), dicho incremento viene reflejado por las siguientes fórmulas:

roscas excluidas del plano de corte: $R_t/m A_b = 0,50 F_u$ roscas incluidas en el plano de corte: $R_t/m A_b = 0,40 F_u$

Siendo m el número de planos de corte.

En las conexiones de deslizamiento crítico, la distancia desde el centro del perno extremo hasta el borde de la parte conectada en la dirección de las cargas, cumplirá con los requisitos de ovalización antes mencionado, a fin de garantizar la resistencia minorada al aplastamiento.

A continuación se presentan los valores del incremento s2 para los agujeros agrandados:

Tabla 3

Valores del incremento de la distancia al borde en agujeros agrandados

Diámetro nominal del perno		Agujeros	Agujeros de ranura				
		agrandados	Perpendic	Paralelos al			
mm	plg		Ranura corta	Ranura soplete (a)	(a) DOFGE		
≤ 22 (M22)	7/8	2	3				
M24, 25	1	3	3	0,75 d	0		
≥ M27, 29	1 1/8	3	5				

Nota:

Las distancias están en milímetros.

(a) Cuando la longitud de la ranura es menor que la máxima permisible en la Tabla 1, s₂ puede reducirse a la mitad de la diferencia entre las longitudes máxima y real de la ranura.

Distancias máximas

La distancia máxima desde el centro de un conector al borde más cercano de una de las piezas en contacto será 12 veces el espesor de la plancha, pero no debe ser mayor de 150 mm.

1.10. Capacidad resistente para diseño

Se debe verificar que la resistencia minorada de una conexión empernada tanto para tracción normal, corte, corte y tracción combinada y al aplastamiento debe ser menor que las solicitaciones mayoradas actuantes en dicha conexión.

1.10.1. Resistencia a la tracción y al corte

La resistencia minorada a la tracción o al corte de los pernos será Φ R_t , la cual viene dada por la siguiente fórmula:

$\Phi R_t = \Phi F_t A_b$

En donde:

Abes el área del perno correspondiente a su diámetro nominal.

F_t es la tensión teórica de corte (F_{tv}) o tracción normal (F_{tt}) para el tipo de perno dada en la Tabla 4 y Tabla 5 respectivamente.

R_t es la resistencia teórica de un perno sometido a corte o tracción normal, especificada en la Tabla 4 y 5 respectivamente.

Φ es el factor de minoración de la resistencia teórica, siendo este igual a 0,75.

A continuación en las siguientes tablas se presentan los valores de F_{tv} (tensión teórica de corte), F_{tt} (tensión teórica de tracción) y las resistencias minoradas de diseño a corte y tracción correspondiente a cada diámetro nominal de pernos:

Tabla 4

Resistencia minorada de diseño a corte simple

Diámetro nominal del perno Área nominal		plg	1/2	5/8	3/4	7/8	1	1 1/8	1 1/4	1 3/8	1 1/2
		mm em²	12,7	15,9 1,98	19,1 2,85	3,88	25,4 5,07	28,6 6,41	7,92	34,9 9,58	38,1 11,40
A307	1690		1606	2509	3613	4917	6423	8129	10035	12143	1445
A325-N	3370		3202	5003	7204	9805	12807	16209	20011	24213	28816
A325-X	4220	Φ Rt Ab (Kg)	4009	6265	9021	12279	16037	20297	25058	30321	36084
A490-N	4220		4009	6265	9021	12279	16037	20297	25058	30321	3608
A490-X	5270		5007	7823	11266	15334	20028	25348	31293	37865	45062

Nota:

El sufijo N indica de la rosca de los pernos está incluida en el plano de corte,

El sufijo X indica de la rosca de los pernos está excluida en el plano de corte.

El valor de Φ es igual a 0,75.

En la condición de corte doble la resistencia de diseño se obtiene duplicando los valores tabulados.

Los valores tabulados se reducirán en un 20% en los empalmes de miembros a tracción, cuando la longitud de la conexión medida paralelamente a la línea de acción de la fuerza, exceda de 1270 mm.

Tabla 5
Resistencia minorada de diseño a tracción

Diámetro nominal del perno d		Area nominal Ab	Resistencia minorada de diseño a tracción (Kg)						
			A307		/	\325	A490		
plg	mm	- cm ²	Ftt (Kg/cm ²)	Φ Rt Ab (Kg)	Ftt (Kg/cm ²)	Φ Rt Ab (Kg)	Ftt (Kg/cm ²)	Φ Rt Ab (Kg)	
1/2	12,7	1,27		3002		6014	37-32	7544	
5/8	15,9	1,98	3160	4691	6330	9397	7940	11787	
3/4	19,1	2,85		6755		13531		16973	
7/8	22,2	3,88		9194		18418		23102	
1	25,4	5,07		12009		24056		30175	
1 1/8	28,6	6,41		15199		30446		38190	
1 1/4	31,8	7,92		18764		37587		47148	
1 3/8	34,9	9,58		22705		45481		57049	
11/2	38,1	11,40		27020		54126		67893	

Nota:

El valor de Φ es igual a 0,75.

1.10.2. Resistencia al aplastamiento en las partes conectadas

La resistencia minorada al aplastamiento se debe verificar tanto en las conexiones tipo aplastamiento como en las conexiones tipo deslizamiento crítico, dicha resistencia será la suma de las resistencias minoradas al aplastamiento de los pernos individuales, multiplicada por un factor de minoración de $\Phi = 0.75$. La resistencia teórica R_t será determinada bajo las siguientes condiciones:

 Cuando las deformaciones en el agujero del perno sometido a solicitaciones de servicio es una consideración de diseño:

$$R_t=1,2 L_c t F_u \le 2,4 d t F_u$$

Cuando las deformaciones en el agujero del perno sometido a solicitaciones de servicio no
es una consideración de diseño:

$$R_t = 1.5 L_c t F_u \le 3.0 d t F_u$$

 Para un perno en una conexión con agujeros de ranura larga, cuyo eje mayor sea perpendicular a la dirección de la línea de acción de las fuerzas:

$$R_t = L_c t F_u \le 2.0 d t F_u$$

En donde el significado de las variables utilizadas en las expresiones anteriores son:

F_u es la resistencia mínima de agotamiento en tracción especificada para la parte conectada.
 L_c es la distancia libre en la dirección de la fuerza, entre el borde del agujero y el borde del

agujero adyacente o al borde del material.

d es el diámetro nominal del perno.

t es el espesor de la parte conectada.

En la Tabla 6.1 y 6.2 se presentan las máximas resistencias minoradas al aplastamiento, para la primera y segunda condición, tabuladas de acuerdo a los diámetros de los pernos, espesores de planchas y resistencias últimas de F_u igual a 3700 y 5200 Kg/cm².

1.10.3. Resistencia a la tracción y tensión diagonal en la plancha

Estos tipos de fallas se controlan tomando en consideración las diferentes distancias mínimas desde el centro de los agujeros a los bordes, especificadas en la Tabla 2 y con la separación mínima entre los centros de los agujeros ya mencionados.

1.10.4. Resistencia al corte y tracción combinada

Existen conexiones sometidas a corte y a tracción simultáneamente, en las cuales los pernos que las conectan tienden a disminuir su resistencia última a cortante y a tracción, esto puede evidenciarse por medio de una curva elíptica experimental de interacción, la cual puede aproximarse a tres líneas rectas interrumpidas obtenidas mediante pruebas, dichas rectas varían de acuerdo al tipo de perno y si la rosca está excluida o incluida en el plano de corte. En esta curva se evidencia como la resistencia teórica a tracción disminuye a medida que aumenta la resistencia teórica al corte.

Desde la tabla 7.1 hasta la 7.4 se presentan las resistencias minoradas a la tracción bajo la acción de cargas cortantes, únicamente en pernos A325 y A490, con rosca incluida y excluida en el plano de corte, para agujeros tipo estándar.

1.10.5. Resistencia de los elementos afectados en los miembros

1. Resistencia a la rotura por corte

La resistencia minorada a lo largo del plano de falla de cortante en los elementos afectados será igual a Φ R_s , donde:

 $\Phi R_t = \Phi 0.60 F_u A_{uv}$, siendo:

Fu es la resistencia última de los elementos afectados (3700 ó 5200 Kg/cm2).

Φ es el factor de minoración e igual a 0,75.

Any es el área neta sometida a corte, la cual se calcula de la siguiente forma:

 $A_{nv} = [a - 1,5(d + 3mm)] t$, donde:

a es la distancia desde el centro del perno más interno al borde perpendicular a la línea de acción de la fuerza del elemento afectado (Ver Figura 10-a).

d es el diámetro nominal del perno.

t es el espesor del elemento afectado.

2. Resistencia a la rotura por tracción

La resistencia minorada a lo largo del plano de tracción en los elementos afectados en los miembros será igual a Φ R_t, donde:

$$\Phi R_t = \Phi F_u A_{nt}$$
, siendo:

F_u es la resistencia última de los elementos afectados (3700 ó 5200 Kg/cm²).

Φ es el factor de minoración e igual a 0,75.

Ant es el área neta sometida a tracción, la cual se calcula de la siguiente forma:

$$A_{nt} = [b - 0.5(d + 3mm)] t$$
, donde:

b es la distancia desde el centro del perno al borde paralelo a la línea de acción de la fuerza del elemento afectado (Ver Figura 10-b).

d es el diámetro nominal del perno.

t es el espesor del elemento afectado.

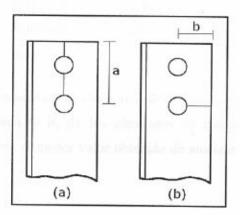


Figura 10

3. Resistencia por rotura en el bloque de corte

Se verificará la rotura en el bloque de corte en las conexiones de los extremos de las vigas cuya ala superior haya sido cortada y desmembrada, en los miembros traccionados y en las planchas usadas como cartelas. La resistencia minorada a la rotura por bloque de corte, Φ R_{bs}, estará determinada por el mecanismo que controle el modo de falla:

 Cuando F_u A_{nt} ≥ 0,6 F_u A_{nv}, el mecanismo de falla es de cedencia por corte y rotura por tracción.

$$\Phi R_{bs} = \Phi [0.6 F_y A_v + F_u A_{nt}]$$

 Cuando 0,6 F_u A_{nv} > F_u A_{nt}, el mecanismo de falla es de cedencia por tracción y rotura por corte.

$$\Phi R_{bs} = \Phi [0.6 F_u A_{uv} + F_y A_t]$$

En todos los casos se debe cumplir que:

$$\Phi R_{bs} \le \Phi [0.6 F_u A_{nv} + F_y A_{nt}]$$

En las fórmulas anteriores:

Ant es el área neta traccionada.

Anv es el área neta sometida a corte.

At es el área total traccionada.

Av es el área total sometida a corte.

Φ es el factor de minoración e igual a 0,75.

1.11. Resistencia de los elementos de conexión

Las resistencias que a continuación se presentan son aplicables para diseño de los elementos de conexión, tales como los rigidizadores, las cartelas o planchas de nodos, los ángulos, las ménsulas y en las conexiones viga-columna.

1.11.1. Resistencia de los elementos de conexión traccionados

La resistencia minorada Φ R_t de los elementos de conexión soldados o empernados, estáticamente traccionados, será el menor valor obtenido de analizar los siguientes estados límites de agotamiento resistente:

Cedencia por tracción

$$R_t = A F_y$$

 $\Phi = 0.90$

A es el área transversal.

2. Rotura por tracción

$$R_t = A_n F_u$$

 $\Phi = 0.75$

 A_n es el área transversal suprimiendo el área proyectada de los agujeros.

El área neta estará limitada al valor de A_n ≤ 0,85 A

3. Rotura por bloque de corte

Se calculará según los criterios anteriormente especificados para este tipo de estado límite de agotamiento.

1.11.2. Resistencia de los elementos de conexión sometidos a corte

Para los elementos de conexión que estén afectados por corte, su resistencia minorada Φ R_t se determinará para el estado límite aplicable que asegure que sea mayor o igual que las solicitaciones mayoradas. La resistencia minorada Φ R_t a la cedencia por corte en los elementos de conexión, se calcula como:

$$R_t = 0.60 \text{ A } F_y$$

 $\Phi = 0.90$

A es el área transversal

Para los elementos de conexión comprimidos, se seleccionará el estado límite apropiado.

A continuación se presentan las Tabla 6.1 y 6.2 con las máximas resistencias minoradas al aplastamiento y las Tablas 7.1 a la 7.4 con las resistencias minoradas a la tracción bajo la acción de cargas cortantes:

Resistencia minorada al aplastamiento para un Fu igual a 3700 Kg/cm2 Tabla 6.1

Falla	ndición	las p	las planchas mm	0	_	90	6	02	Ξ	12	13	4	52	92	17	18	61	20
	ഠാ	Diamet	Diametros pernos															
┪	9	plg	mm					H	esistenci	IN THINDS	'ada al	aplastan	Resistencia minorada al aplastamiento (Kg)	Kg)				
	-	10	12.7	5075	5921	6767	7612	8458	9304	10150	10996	11841	12687	13533	14379	15225	16071	16916
	7		12,0	6344	7401	8458	_	_	_			14802					20088	
	-	5/8		6344	7401	8458	9515	10573	11630	12687	13745	14802	15859	16916	17974	1	20088	21146
	7	1	200	7930	9251	10573				15859		18502			Lo	-		
_	-	2	Mile	6394	7459	8525	9590	10656	11722	12787		14918		17050		19181	20246	21312
_	2	į		7992	9324	10656	_	13320				_			22644			
_	-	3/4	191	7612	8881	10150	11419	12687	13956	15225	16493	17762	19031	20300	21568			25375
_	2	-		9515	11101	12687				_	20617		100	25375	26961			
_	-	M	MD0	7992	9324	10656	11988	13320	14652	15984	17316	18648	19980	21312	22644	23976		26640
_	7	-		0666	11655	\equiv	14985	16650	18315	_	21645		24975			29970	31635	
_	-	M	M22	8791	10256		13187			17582	19048	20513	21978	23443	24908	26374	27839	29304
_	2			10989	12821	14652	16484					25641			_		34799	
_	-	7/8	333	8881	10361	11841	13322	14802	16282	17762	19242	20723	22203	23683	25163	26643	28124	29604
-01	75		2,44	11101	12952		16652		20353		24053	25903	27753	29604			35154	
icai	-	Σ	M24	9590	11189	12787	14386	15984	17582	19181	20779	22378	23976	25574	27173	28771	30370	31968
_	77			11988	13986	15984	17982			23976		27972	29970	31968			37962	
_	-	-	25.4	10150	11841		15225	16916	18608	_	21991	23683	25375	27066	28758	30450	32141	3383
1	2	-		12687	14802	16916	19031	21146	23260	25375		_	31718	33833	-	m	40176	422
_	-	M	M27	10789	12587	14386	16184	17982	19780		23377	25175	26973	26973 28771	30569	32368	34166	3596
_	-2	1		13487	15734	17982	20230		24725		29221	31469	33716	35964	38212	40460	42707	
_	-	11/8	28.6	11419	13322	15225	17128	19031	20934	22837	24740	26643	28546	30450	32353	34256	36159	38062
	-2	-		14273	16652	19031	21410	23789	26168	28546							45199	
_	-	M	MBO	11988	13986	15984	17982	19980	21978	23976	25974	27972	29970	31968	33966	35964	37962	39960
	2	-		14985	17483	19980	22478	24975	27473	29970	32468	34965	37463	39960	-		47453	
_	-	1 1/4	31.8	12687	14802	16916	19031	21146	23260	25375	27489	29604	31718	33833	_	38062	40176	4229
_	7	-			18502					31718	34361		39648	42291			50221	52864
_	-	1 3/8	34.0	13956	16282	18608	20934	23260	25586	27912	30238	32564	34890	37216	39542	41868	44194	46520
_	2			17445	20353	_			31983	34890	37798		43613	46520	_		55243	58150
_	-	Σ	M36	14386	16783	18161	21578	23976		28771	31169	33566	35964	38362	40759	43157	45554	47952
_	7	1		17982	20979					35964	38961	41958	44955	47952	_		56943	
_	-	11/2	38.1			_		25375	27912	30450	32987	35524	38062	40599	43137	45674	48212	50749
-	2			19031	22203	25375	28546	31718	34890	38062	41234	AAAAA	CESER	50740	43031	57003	23603	63437

El valor de 1 representa cuando la deformación del agujero es una consideración de diseño El valor de 2 representa cuando la deformación del agujero no es una consideración de diseño

Fu igual a 3700 Kg/cm² Φ igual a 0,75

28

Resistencia minorada al aplastamiento para un Fu igual a 5200 Kg/cm2

Falla	nòisib	las p	Espesores de las planchas mm	9	7	00	6	10	11	12	13	7	15	16	17	18	61	20
	Cor	Diámet	Diametros pernos					Re	Resistencia minorada al aplastamiento (Kg)	a minor	ada al a	plastan	viento (1	(8)				
		big	mm												1			١
	-	1/2	12.7	7132	8321	9510	10698		13076		15453	_		19020	20208	21397	22586	2377
	2	1	,::	8915	10401	11887	13373	14859	16345	17831	19317	20803	22289	23774	25260	26746	28232	29718
	-	5/8	150	8915	10401	11887	13373	14859	16345		19317	20803	22289	23774	25260	26746	28232	2971
	2	0	2,51	11144	13002	14859	16716	18574	20431	22289	24146	009	27861	29718	31575	33433	35290	37148
Ī	1	1	9119	8986	10483	11981	13478	14976	16474	17971	19469	960	5 22464	23962	25459	26957	28454	
	2		1010	11232	13104	14976	16848	18720	20592		24336	26208	0808	29952	31824	33696	35568	
Ī	-	3/4	101	86901	12482	14265	16048	17831	19614	21397	23180	24963	6746	28529	30312	32095		35662
	2		12,1	13373	15602	17831	20060	22289	24517	26746	28975 3	31204	33433	35662	37890		42348	4457
	-	1	New N	11232	13104	14976	16848	18720		22464	24336	26208	28080	29952	31824	33696	35568	37440
Γ	2		WILL WILL	14040	16380	18720	21060	23400		28080	30420	32760	35100	37440	39780	42120	44460	46800
Π	-		,	12355	14414	16474	18533	20592	22651	24710	26770	28829	30888	32947	35006	37066	39125	4118
	2		477	15444	18018		23166	25740		30888	33462	36036	38610	41184	43758		48906	
	-	210	1,00	12482	14562	16642	18722	20803	22883	24963	27043 2	29124	29124 31204	33284	35364	37445	39525	41605
-	2	9//	7,77	15602	8202	20803	23403	26003	28604	31204	33804	36405			44206		49406	52007
qua	-	1	,00	13478	15725	17971	20218	22464	24710	26957	29203	29203 31450	33696	35942	38189	40435	42682	44928
iun	2		4774	16848	19656	22464	25272	28080	30888	33696	36504	39312	42120		47736	50544	53352	56160
qse	-	-	75.4	14265	16642	19020	21397	23774	26152	28529	30907	33284	35662	38039	40416	42794	45171	47549
ıdı	2		4,00	17831	20803	20803 23774	26746	29718		35662	38633	41605	4	47549	50521	53492	56464	59436
,			707	15163	17690	20218	22745	25272	27799	30326	32854	35381	37908	40435	42962	45490	48017	5054
	2		15/	18954	22113	25272	28431		34749	37908	41067	44226	47385	50544	53703	56862		63180
	_	1 1/0	300	16048	18722			26746	29421	32095	34770	37445	40119	42794	45469	48143	50818	53492
Π	2	6/1	0,04	20060						40119	43463		50149		56836	62109	63522	99899
T	-	1	1000	16848	19656	22464	25272	28080	30888	33696	36504	39312	42120	44928	47736	50544	53352	56160
Ī	2		050	21060	24570					42120	45	49140	52650	56160	59670		06999	70200
		1 177	10.15	17831	20803	23774	26746	29718	32690	35662	38633	41605	44577	47549	50521	53492	56464	59436
	2	+//-	51,8	22289			33433	-	40862	44577	48	52007			63151		70580	74295
		1 1/0	34.0		22883	26152	29421	32690	35959	39228	42497	45766	49035	52304	55573	58842	62111	65380
	2	0/5	5,45	24517	28604					49035	53121		61293	65380	99+69	73552	77638	81725
Ī	_	1	MAG	20218	23587	26957	30326	33696	37066	40435		47174	50544	53914	57283	60653	64022	67392
Ī	2	1	051	25272 29484 33696	29484		37908	42120	46332	50544	54756			67392	71604	75816	80028	84240
	-	110	38.1	21397	24963		32095	35662	39228	42794	46360	49926	53492	57059	60625	64191	67757	71323
	61	7.1.1	1,00	26746	31204	35662	40119	44577	40035	53402	57050	80408	66866	71323	75781	80239	84696	89154

Fu igual a 5200 Kg/cm² Φ ígual a 0,75

El valor de 1 representa cuando la deformación del agujero es una consideración de diseño El valor de 2 representa cuando la deformación del agujero no es una consideración de diseño

29

Resistencia minorada a la tracción bajo la acción de cargas cortantes para pernos A325-N Tabla 7.1

Acea (Kg/cm2) mm 12,7 15,9 16 19,1 23 22,2 25,4 25,4 27 28,6 30 31,8 34,9 36 31,1 Fy F <td< th=""><th>Diámetro</th><th>ro</th><th>plg</th><th>1/2</th><th>2/8</th><th>M16</th><th>3/4</th><th>M20</th><th>M22</th><th>2/8</th><th>M24</th><th>-</th><th>M27</th><th>1 1/8</th><th>M30</th><th>1.1/4</th><th>1 3/8</th><th>M36</th><th>11/2</th></td<>	Diámetro	ro	plg	1/2	2/8	M16	3/4	M20	M22	2/8	M24	-	M27	1 1/8	M30	1.1/4	1 3/8	M36	11/2
a Frage Resistencia minorada a la transcrión hajo la acción de cargas cortantes (Kg) (Kg/cm2) 6.029 9400 9542 13530 14907 1867 1862 21459 2470 27203 30431 3365 35472 41164 46971 6.330 6.029 9400 9542 13530 14907 1867 2081 23347 2638 29518 32557 36472 41164 46971 6.140 5848 9118 9256 13124 4460 17499 17867 2081 23347 2638 29518 32557 36472 41164 46971 5.760 5480 8554 8881 12312 13656 16416 16762 1920 21874 2769 3042 31541 41784 4004 5.700 5308 8271 8397 1190 12718 11785 16209 1893 2047 2131 23684 28257 31960 4010 4201	nomins	al	mm	12,7	15,9		161	20	22	22,2	24	25,4	27	28,6	30	31,8	34,9	36	38,1
FT Resistencia minorada a la traectón hajo la acción de cargas cortantes (Kg) 6330 6029 9400 9542 13520 14907 18041 18420 21459 24070 27203 30431 33565 37600 45481 48425 6140 614	Area	Arca	cm ₂	_	1,98			3,14	3,8	3,88	4,52	5,07	5,73	6,41	7,07	7,92	9,58	10,2	11,4
(Kg/cm2) 6320 6029 9400 9542 13530 14907 1804 18420 21459 24070 27203 30431 33565 37600 45481 48425 6140 5848 918 9256 13124 14460 17499 17867 20815 23347 26587 22557 36572 44116 46971 5550 5567 8826 8928 8929 10 12718 14101 16502 17315 2017 122625 25570 28603 31550 33543 42751 44647 14368 44064 55570 5305 8271 1906 13117 1857 16209 18822 21180 23937 26778 29535 33086 40200 4261 1750 12118 11094 12222 14792 15102 17522 11002 23937 26778 29535 33086 40200 4261 1575 1570 4430 4430 4430 4430 4430 4430 4430 44	FV	Ft				1	Des Seeker				Total Line	1					New York		
6330 6029 9400 9542 13530 14907 18041 18420 23447 27203 30431 33563 37600 45481 4671 5950 5668 9548 9118 9256 13124 14460 17499 17867 20815 2337 2657 36472 44116 46771 5950 5566 5468 8554 8681 1271 18563 16201 12625 2357 2667 3464 4138 4004 4136 41640 1752 1952 24754 2669 3454 4864 4136 41640 1752 1952 1852 1660 1952 12457 2660 4464 4136 41640 1868 1171 1875 1620 18882 2118 2550 2851 1875 1456 1868 1888 2118 2393 2660 3666 3858 4188 2118 2152 21479 1888 2118 2521 2521 <td< td=""><td>(Kg/cm2)</td><td>(Kg/ci</td><td>m2)</td><td></td><td></td><td></td><td>Kesisic</td><td>ICIA IIII</td><td>Borada</td><td>a la tr</td><td>нослон</td><td>Dajo Ia</td><td>асстоп</td><td>de car</td><td>gas co</td><td>Tames</td><td>(BW)</td><td></td><td></td></td<>	(Kg/cm2)	(Kg/ci	m2)				Kesisic	ICIA IIII	Borada	a la tr	нослон	Dajo Ia	асстоп	de car	gas co	Tames	(BW)		
6140 5848 9118 9256 13124 14460 17499 17867 20347 26347 26357 36472 3416 4671 5950 5667 8836 8970 12718 14012 16958 17315 20171 2625 25570 28605 31550 35434 42751 4518 5700 5486 8554 1882 1180 1882 21180 2953 3308 4004 4604 5380 5124 798 8110 11500 15333 15620 1882 2118 2570 3850 4201 4214 4180 4804 4763 4205 4806	1000	633	0	6029	9400		13530	14907	18041		21459	24070	27203	30431	33565	37600	45481	48425	54122
950 5667 8836 8970 12718 14012 16928 17315 2017 2262 25570 28605 31550 3454 4751 4751 4664 4665 4665 4665 4665 4665 4665 4665 4665 4665 4665 4666 4666 4667	1100	614	0	5848	9118	9256	13124	14460	17499	17867	20815	23347	26387	29518	32557	36472	44116	46971	52497
5760 5486 8554 8683 12312 13565 16416 16762 19526 21902 24754 27691 30542 34214 41386 44064 5370 5370 8271 8397 11906 13117 13875 16209 1882 21180 23937 26738 33086 40020 4261 5380 5124 7824 11904 12221 1533 1566 1882 2337 2673 2673 3952 3700 3700 4763 7424 7824 1943 7251 10281 11372 1430 15081 13709 13697 1660 18290 2051 2431 4360 4403 4500 1443 7251 10281 13167 1444 1562 18261 18261 18281 13709 18297 16601 8678 18281 18291 18292 18281 18292 18281 18292 18281 18292 18281 18292 18281	1200	595	0	5667		8970		14012	16958		20171	22625	25570	28605	31550	35343		45518	50873
5570 5305 8271 8397 11906 1317 15875 16209 18882 21180 2393 26778 29535 33086 40020 4201 3380 5124 7987 11150 1222 14792 15103 17594 19735 22301 25864 28527 31957 38655 41157 5190 4943 7707 7824 11075 1500 19013 21488 26731 2950 3700 3870 4810 4850 4620 4670 4686 6965 9875 1080 1370 1500 1800 1800 1300 180	1300	576	0	5486		8683			16416	16762	19526	21902	24754	27691	30542	34214	41386	44064	49248
5380 5124 7989 8110 11500 12670 1533 15656 18238 20457 2312 25864 2852 31957 38655 41157 5190 4943 7707 7824 11094 12222 14792 15103 1735 22304 24951 27520 30829 3729 3904 5000 4763 7425 7538 10688 11775 14250 16306 18290 20671 23124 25505 28571 3450 35925 3828 4430 4220 6861 6865 9875 10880 3167 1344 1562 1758 1829 20671 23129 2667 3678 3858 3858 3858 6014 6108 8671 9881 1430 18281 1852 1858 1443 1858 1858 1848 1868 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 <td< td=""><td>1400</td><td>557</td><td></td><td>5305</td><td></td><td>8397</td><td>11906</td><td>13117</td><td>15875</td><td>16209</td><td>18882</td><td>21180</td><td>23937</td><td>26778</td><td>29535</td><td>33086</td><td>40020</td><td>42611</td><td>47624</td></td<>	1400	557		5305		8397	11906	13117	15875	16209	18882	21180	23937	26778	29535	33086	40020	42611	47624
\$190 4943 7707 7824 11094 12222 14792 1550 19735 22304 24951 27304 29700 39704 \$5000 4763 7425 7338 10688 11775 14250 14550 19013 21488 24038 26513 29700 35925 38250 4810 4582 7143 7251 10281 11328 13790 15630 20671 23124 25505 28571 3450 36797 4620 4401 6861 6865 9875 10880 13167 13644 15662 17568 1984 22211 24498 27443 33195 33543 4430 4220 6579 6678 9469 10431 1238 16421 16421 1844 1662 17568 1742 1843 1843 1843 1843 2443 3318 3318 3318 3318 3318 3318 3318 3318 3318 3318	1500	538	0	5124		8110	-	12670	15333	15656	18238	20457	23121	25864	28527		38655		45999
\$000 4763 7425 7538 10588 11775 14250 14550 16903 12488 24038 26513 29700 33925 38250 4810 4582 7143 7251 10281 11328 13709 13997 16306 18290 26673 25505 28571 34500 36797 4620 4401 6861 6963 9469 10433 12626 12891 15621 12324 25505 28571 3450 36797 4240 4030 6579 6678 9469 10433 12626 12891 15621 12441 15681 12827 24498 2743 33193 33480 3860 3677 5732 5819 9928 12084 12334 16581 16581 16581 16582 16582 16582 16582 16582 16582 16582 16582 16582 16582 16581 16582 16582 16582 16582 16582	1600	519		4943			11094	12222	14792	15103	17594	19735	22304	24951	27520	30829	37290	39704	44375
4810 4582 7143 7251 10281 11328 13709 13997 16306 18290 20671 23124 25505 28571 34500 367343 4620 4401 6861 6965 9875 10880 13167 13444 15662 17568 19854 22211 24498 27443 33195 33393 4430 4220 6579 6678 9469 10433 12626 17568 19854 12034 22312 24498 27443 33195 33843 4240 4030 6679 6678 9469 10433 12664 12321 26384 22483 23480 32480 3860 3677 3670 3670 3670 3688 11543 11661 13730 17469 19460 2180 2674 1748 3676 3688 1855 1488 3689 3689 3689 3689 3689 3689 3689 3689 3689 3689 3689 </td <td>1700</td> <td>200</td> <td></td> <td>4763</td> <td></td> <td></td> <td>10688</td> <td></td> <td>14250</td> <td>14550</td> <td>16950</td> <td>19013</td> <td>21488</td> <td></td> <td>26513</td> <td></td> <td>35925</td> <td>38250</td> <td>42750</td>	1700	200		4763			10688		14250	14550	16950	19013	21488		26513		35925	38250	42750
4620 4401 6861 6965 9875 10880 13167 13444 15662 17568 19854 22211 24498 27443 33195 35343 4430 4220 6579 6678 9469 10433 12626 12891 15018 16845 19038 21297 23490 26314 31830 33890 4240 4039 6296 6392 9063 9985 12084 1374 16123 18221 20394 26481 2670 3670 3860 3677 2748 6268 2546 1001 11233 13085 16481 15721 17644 19460 26622 2678 22928 27734 2578 22928 27734 2572 2646 26622 2678 10460 10680 12441 19453 16460 2681 1478 16481 2679 14478 16460 2681 2671 14478 1857 26468 22928 27774 27772 <	1800	481		4582			10281	11328	13709	13997	16306	18290	20671	23124	25505	28571	_	36797	41126
4430 4220 6579 6678 9469 10433 12626 1208 15018 16123 1821 2038 2139 25314 31830 33890 4240 4039 6296 6392 9063 9985 12084 1233 16123 18221 20384 22483 25186 30464 32436 3860 3677 532 5819 8251 9090 11001 11233 13085 16468 12470 17405 20468 22928 27734 29529 3480 3315 5168 5246 7439 8195 9918 10127 17471 13231 14455 14460 2360 2260 2260 2260 2260 2260 2260 2260 2260 2260 2260 2260 2260 1260 12771 17441 19460 22628 22628 22728 22730 22628 22728 22728 2260 2260 2260 2260 1260	1900	462		4401	1989	969	_	_	13167	13444	15662	17568	19854		24498	27443	33195	35343	39501
4240 4039 6296 6392 9063 9985 12084 12338 14374 16123 18221 20384 22483 25186 30464 32436 4050 3858 6014 6105 8657 9538 11543 11786 13730 15400 17405 19470 21475 24057 22099 30993 3860 3677 5732 5819 8251 9090 11001 11233 13085 1678 1658 12441 13955 15772 1764 19460 21802 26369 28079 3480 3315 5168 5246 7439 8195 9918 10127 11797 13231 14955 16730 18453 26369 28079 3100 2953 4604 4675 6626 7301 8835 9021 10509 17891 16438 18414 22248 28620 2720 2521 4604 4676 6626 6853	2000	443		4220	6259	8299		_	12626		15018	16845	19038		23490	26314	31830	33890	37877
4050 3858 6014 6105 8657 9538 11543 11786 13730 15400 17405 19470 21475 24057 29099 30983 3860 3670 3670 3670 3670 11001 11233 13085 14678 16588 18557 20468 22928 27734 29529 30982 3870 3496 5450 5533 7845 8643 10460 10680 12441 13955 16772 17644 19460 21800 26369 28076 3480 3315 5168 5246 7439 8195 9918 10127 11797 1323 14955 16730 18483 26622 28076 26622 2671 2671 2671 2671 2671 2671 2671 2671 1441 13955 16730 18483 2671 2671 2671 11787 11787 11787 14488 2672 2671 2671 1448 2672 </td <td>2100</td> <td>424</td> <td></td> <td>4039</td> <td>6296</td> <td>6392</td> <td>1000</td> <td>5866</td> <td>12084</td> <td></td> <td>14374</td> <td>16123</td> <td></td> <td>20384</td> <td></td> <td></td> <td></td> <td></td> <td>36252</td>	2100	424		4039	6296	6392	1000	5866	12084		14374	16123		20384					36252
3860 3670 3671 5732 5819 8251 9090 11001 11233 13085 14678 1658 18557 20468 22928 27734 29520 3670 3496 5450 5533 7845 8643 10460 10680 12441 13955 15772 17644 19460 21800 26369 28076 3480 3315 5168 5246 7439 8195 9918 10127 11797 13233 14955 16730 18453 20671 25004 26622 3100 2953 4604 4673 6626 7301 8835 9021 10509 11788 13322 14903 16438 18414 22744 23745 2910 2720 4371 4387 6220 6853 8294 8468 9865 11065 1390 15438 18414 22774 23742 2720 2530 400 5814 5406 7752	2200	405	0	3858	6014	6105		9538			13730	15400	17405	19470	21475	24057	29099	30983	34628
3670 3496 5450 5533 7845 8643 10460 10680 12441 13955 15772 17644 19460 21800 26369 28076 3480 3315 5168 5246 7439 8195 9918 10127 11797 13231 14955 16730 18453 20671 25004 26622 3290 3134 4886 4960 7032 7748 9377 9574 11153 12510 14139 15817 17445 19543 23639 25169 2910 2953 4604 4673 6626 7301 8835 9021 10509 11788 13322 14940 15274 23715 2720 2910 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15243 18814 22774 23715 2530 2410 3757 3814 5406 7752 7915	2300	386		3677	5732			0606	110011	11233			16588		20468	22928	27734		33003
3480 3315 5168 5246 7439 8195 9918 10127 11797 13233 14955 16453 2662 26621 26629 26639 25169 26629 26169 26629 25169 26629 25169 26629 25169 25169 26629 25169 26629 25169 25169 2517 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15430 17285 20908 22262 2501 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15430 17285 20908 22262 2501 2410 3757 3814 5408 771 7362 8577 9620 10873 12163 18178 19353 2530 2410 3757 3814 5408 721 7362 8898 10056 11250 12408 18978	2400	367		3496		5533		8643	10460	10680		13955	15772	17644	19460	21800	26369	28076	31379
3290 3134 4886 4960 7032 7748 9377 9574 11153 12510 14139 15817 17445 19543 23639 25169 3100 2953 4604 4673 6626 7301 8835 9021 10509 11788 13322 14903 16438 18414 22274 23715 2910 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15430 17285 20908 22262 2520 2591 4039 4100 5814 6406 7752 7915 9221 10343 11689 13076 14423 16157 19543 20808 2530 2218 8414 52274 23715 2530 2511 4039 4100 5814 6406 7752 7915 9221 10343 11689 13076 14423 16157 19543 19355 2530 2520 3475 3528 5002 5511 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 2530 2531 4530 3528 5003 5128 6557 7289 8175 9240 10336 11400 12771 15448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1877 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	2500	348	0	3315		5246		-	9166	10127		13233	14955	16730	18453	20671	25004	26622	29754
3100 2953 4604 4673 6626 7301 8835 9021 10509 11788 13322 14903 16438 18414 22274 23715 2910 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15430 17285 20908 22262 2220 2220 2410 3757 3814 5408 5958 7211 7362 8577 9620 10843 12163 13415 15028 18178 19355 2340 2229 3475 3528 5003 5118 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1977 15448 16448 1867 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977 13977 13977 13977 15448 14994 1867 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	2600	329	0	3134	4886	4960	25.53	7748	9377	9574	11153	12510	14139	15817	17445			25169	28130
2910 2772 4321 4387 6220 6853 8294 8468 9865 11065 12506 13990 15430 17285 20908 22262 2720 2521 4039 4100 5814 6406 7752 7915 9221 10343 11689 13076 14423 16157 19543 20808 2530 2410 3757 3814 5408 5958 7211 7362 8577 9620 10873 12163 13415 15028 18178 19355 2340 2229 3475 3528 5002 5511 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 2150 2048 3193 3241 4596 5063 6128 6257 7289 8175 9240 10336 11400 12771 15448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1877 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	2700	310	0	2953		4673		7301	8835	9021	10509	11788		14903	16438	18414	22274		26505
2720 2591 4039 4100 5814 6406 7752 7915 9221 10343 11689 13076 14423 16157 19543 20808 2530 2410 3757 3814 5408 7211 7362 8577 9620 10873 12163 13415 15028 18178 19355 2340 2229 3475 3528 5002 5511 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 2150 2048 3193 3241 4596 5063 6128 6257 7289 8175 9240 10336 11400 12771 15448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1867 2713 2754 3905 4303 5207 5317 6194 <td>2800</td> <td>291</td> <td>0</td> <td>2772</td> <td></td> <td>_</td> <td>_</td> <td>6853</td> <td>8294</td> <td>8468</td> <td>9865</td> <td>11065</td> <td></td> <td></td> <td>15430</td> <td></td> <td>20908</td> <td>22262</td> <td>24881</td>	2800	291	0	2772		_	_	6853	8294	8468	9865	11065			15430		20908	22262	24881
2530 2410 3757 3814 5408 7211 7362 8577 9620 10873 12163 13415 15028 18178 19355 2340 2229 3475 3528 5002 5511 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 2150 2048 3193 3241 4596 5063 6128 6257 7289 8175 9240 10336 11400 12771 15448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1877 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	2900	272	0		4039	4100		6406	7752	7915	9221	10343			14423	16157		20808	23256
2340 2229 3475 3528 5002 5511 6669 6809 7933 8898 10056 11250 12408 13900 16813 17901 13901 16813 17901 2150 2048 3193 3241 4596 5063 6128 6257 7289 8175 9240 10336 11400 12771 15448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1827 1740 2713 2754 3905 4303 5207 5317 6194 6947 6194 6947 7852 8783 9688 10852 13127 13977	3000	253		2410		3814		5958	7211	7362	8577	9620	10873	12163	13415	15028	18178	19355	21632
2150 2048 3193 3241 4596 5063 5128 6257 7289 8175 9240 10336 11400 12771 15448 16448 16448 1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1827 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13377	3100	234		2229	3475	3528		5511	6999	6089	7933	8688	10056		12408	13900	16813	10671	20007
1960 1867 2911 2955 4190 4616 5586 5704 6644 7453 8423 9423 10393 11642 14083 14994 1827 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	3200	215		2048	3193	3241	_	5063	6128	6257	7289	8175	9240		11400	12771	15448		18383
1827 1740 2713 2754 3905 4303 5207 5317 6194 6947 7852 8783 9688 10852 13127 13977	3300	196	0	1867	2911	2955		4616	5586	5704	6644	7453	8423	9423	10393	11642	14083	14994	16758
	3370	182		1740	2713	2754	3905	4303	5207	_		6947	7852	8783	8896	10852	13127	13977	15621

Notas:

El sufijo N indica que la rosca de los pernos está incluida en el plano de corte Φ igual a 0,75

Tabla 7.2 Resistencia minorada a la tracción bajo la acción de cargas cortantes para pernos A325-X

31

Tabla 7.3
Resistencia minorada a la tracción bajo la acción de cargas cortantes para pernos A490-N

DISHIELLO	o big	7/1	2/8	MIG	5/4	M20	1717.	0//	47IN	1	/7W	1 1/8	M30	1/4	1 3/8	M36	-
nominal	l mm	12,7	15,9	91	19,1	20	22	22.2	24	25.4	27	28.6		31.8	34.9	36	38
Área	cm2	1,27	1,98	2,01	2,85	3,14	3,8	3,88	4,52	5,07	5,73	-		7,92	-		11.4
Fv	Ft			9					T. T. L.	1							
(Kg/cm2)	(Kg/cm2)			2	esistent	III IIIII	orada s	I I I I I I	ccion p	ajo la	асстоп	de carg	Keststencia minorada a la tracción bajo la acción de cargas cortantes (Rg)	antes (Kg)		
1242	7940,2	7563	11791	11970	16972		18699 22630 23106 26917 30193 34123	23106	26917	30193	34123	38173	38173 42103 47165	47165		57050 60743 6788	6788
1300	7830	7458	11628	11804	16737		18440 22316 22785	22785	26544	29774	33649	37643	37643 41519 46510 56259	46510	56259	59900 6694	6694
1400	7640	7277	11345	11517	16331	17992	21774	22232		25900 29051	32833	36729	36729 40511	45382		54893 58446 65322	6532
1500	7450	7096	11063	11231	15924	17545	21233	21680	25256	28329	32016	35816	32016 35816 39504	44253		56993 63698	6369
1600	7260	6915	10781	10944	15518	17097	20691	21127	24611	27606	31200	27606 31200 34902	38496				6207
1700	7070	6734		10499 10658	15112	16650	6650 20150 20574	20574	23967	26884	30383	33989	33989 37489	41996	50798		6044
1800	0889	6553	10217	10372	14706	16202	19608	20021	23323	26161	29567		33076 36481	40867	49433		5882
1900	0699	6372	9935	10085	14300	15755	19067 19468	19468	22679		25439 28750	32162	35474	39739	39739 48068	51179 57200	5720
2000	6500	6191	9653	6616	13894	15308	18525 18915	18915	22035	24716	27934	31249	31249 34466 38610 46703 49725 5557	38610	46703	49725	5557
2100	6310	6010	9370	9512	13488	14860	17984	17984 18362	21391	23994	27117	30335	33459	37481	45337	37481 45337 48272 5395	5395
2200	6120	5829	8806	9226	13082	14413	17442	17809 20747	20747	23271		26301 29422	32451	36353	43972	36353 43972 46818 52326	5232
2300	5930	5648	8806	8939	12675	13965	16901	17256	17256 20103		25484	28508	22549 25484 28508 31444 35224 42607 45365 50702	35224	42607	45365	5070
2400	5740	5467	8524	8653	12269	13518	16359	16703	19459	21826	24668	27595	16359 16703 19459 21826 24668 27595 30436 34096 41242 43911 4907	34096	41242	43911	4907
2500	5550	5286	8242	8367	11863	13070	3070 15818 16151 18815 21104	16151	18815	21104	23851	26682	26682 29429 32967	32967	39877	39877 42458 47453	4745
2600	5360	5105	7960	8080	11457	12623	12623 15276 15598 18170 20381	15598	18170	20381	23035	25768	25768 28421 31838	31838	38512	38512 41004 45828	4582
2700	5170	4924	7677	7794	11051	12175	14735 15045	15045		19659	22218	24855	17526 19659 22218 24855 27414 30710	30710	37146	37146 39551 44204	4420
2800	4980	4743	7395	7507	10645		11728 14193	14492 16882	16882		21402	23941	18936 21402 23941 26406 29581	29581		35781 38097 42579	4257
2900	4790	4562	7113	7221	10239	11280 13652		13939	16238	18214	20585	23028	13939 16238 18214 20585 23028 25399 28453	28453	34416	34416 36644 40955	4095
3000	4600	4382	6831	6935	9833	10833	13110	13386	15594	17492	19769	22115	13110 13386 15594 17492 19769 22115 24392 27324	27324	33051	33051 35190 39330	3933
3100	4410	4201	6549	6648	9426	10386	12569	12833	14950	16769	18952	21201	10386 12569 12833 14950 16769 18952 21201 23384 26195	26195	31686	31686 33737	37706
3200	4220	4020	6267	6362	9020	9638	12027	12280	14306	16047	18135	12280 14306 16047 18135 20288 22377	22377	25067	30321	32283 3608	3608
3300	4030	3839	5985	6075	8614	9491	11486	11727	13662	15324		17319 19374		21369 23938	28956	30830	34457
3400	3840	3658	5702	5789	8208	9043	10944	11174	13018	13018 14602	16502	16502 18461	20362	22810	27590	27590 29376 32832	3283
3500	3650	3477	5420	5502	7802	9658	10403 10622		12374	13879	13879 15686 17547		19354	21681	26225	27923	31208
3600	3460	3296	5138	5216	7396	8148	1986	10069	11729	13157	14869	16634	10069 11729 13157 14869 16634 18347 20552	20552		24860 26469 29583	2958
3700	3270	3115	4856	4930	0669	7701	9320	9516	11085	11085 12434 14053	14053	15721	17339	17339 19424	23495	25016 27959	2795
3800	3080	2934	4574	4643	6584	7253	8778	8963	10441	11712	13236	3236 14807	16332 18295		22130	23562	26334
3900	2890	2753	4292	4357	6177	9089	8237	8410	7676	10989	10989 12420	13894	15324	17167	20765	22109 2471	2471
4000	2700	2572	4010	4070	5771	6329	7695	7857	9153	10267	10267 11603		12980 14317	16038	19400	16038 19400 20655 23085	2308
4100	2510	2391	3727	3784	5365	5911	7154	7304	8509	9544	10787	12067	13309 14909 18034 19202 2146	14909	18034	19202	2146
4220	2282	2174	3389	3440	DL 5374	5374	8059	11779	7776	1901 53851 30631 33361 00161 15001 5000 5530	0000	10001	40161				

El sufijo N indica que la rosca de los pernos está incluida en el plano de corte Φ igual a 0,75

Tabla 7.4 Resistencia minorada a la tracción bajo la acción de cargas cortantes para pernos A490-X

Diámetro		Bid	1/2	2/0	MIO		-	-	4	M24	4	M27	1 1/8	MISU	1.1/4	1 3/8	M36	
nominal		E	12,7	15,9		-	-	_	22,2	24	25,4	27	28,6		31,8	000	36	38,1
Area		cm ₂	1,27	1,98	2,01	2,85	3,14	3,8	3,88	4,52	5,07	5,73	6,41	7,07	7,92	9,58	10,2	111,
Fv	Ft	П				Register	meia m	inorada	a la fr	seción	hain la	acción	de car	00 800	Recistencia minorada a la tracción baio la acción de carcas contantes (Ke)	(Ka)		
(Kg/cm2)	(Kg/cm2)	(2)									2			200	-	ì		
1573	5871		5592	8718	8850	8850 12548		13825 16731	17083		19901 22323		25228 28222 31128	31128	34871	42180	44909	50193
1600	5830		5553	8658	8789	5553 8658 8789 12462	-	16616	3730 16616 16965		22169		25054 28028 30914	30914		34630 41889 44600	44600	4984
1700	5680		5410 8435	8435	8563	12141	_	16188	13376 16188 16529 19255 21598	19255	21598	24410	24410 27307 30118	30118		33739 40811 43452	43452	48564
1800	5530		5267	8212	8336	11820		13023 15761	16092	18747	21028	23765	26585	26585 29323		32848 39733	42305	47282
1900	5380		5124	7989	8110	8110 11500		12670 15333	15656		20457	23121	-	25864 28527	-	38655	41157	45999
2000	5230		4982	7767	7884	11179	1231	14906	11179 12317 14906 15219		17730 19887	22476		25143 27732		31066 37578		4471
2100	5080		4839	7544	7658	7658 10859	1196	14478	11963 14478 14783		19317	21831		24422 26937		30175 36500 38862	38862	43434
2200	4930		4696	7321	7432	10538		11610 14051	14346	16713	18746	21187		26141		35422	37715	42152
2300	4780		4553	8604	7206	10217	11257	13623	13910	16204	18176	20542		22980 25346			36567	40869
2400	4630		4410	6876	0869	1686	10904		13196 13473		17606	15696 17606 19897		24551		33267	35420	
2500	4480		4267	6653	6754	9576	10550		12768 13037	_	17035	19253		23755	-			
2600	4330		4124	6430	6527	9255	10197	12341	12600	14679	16465	14679 16465 18608	20816	22960	25720	31111	33125	
2700	4180		3981	6207	6301	8935	9844	11913	12164		15894	14170 15894 17964	20095	22164	24829			
2800	4030		3839	5985	6075		-	-	11727		15324	17319		21369		28956	30830	
2900	3880		3696	5762	5849	8294	9137	-	11058 11291	-	14754	14754 16674	18653	20574	23047	27878	29682	3317
3000	3730	Г	3553	5539	5623	7973	8784	-	10854	12645	14183	16030	17932	19778	22156	26800	26800 28535	
3100	3580		3410	5316	5397	7652	8431	10203	10418	12136	13613	15385		18983		25722	27387	
3200	3430		3267	5094	5171	7332	8078	9176	1866	11628	13043			18188	16490 18188 20374	24645		2932
3300	3280		3124	4871	4945	7011	7724	9348	9545	_	11119 12472	14096		15769 17392	19483	23567	25092	28044
3400	3130		2981	4648	4718	0699	7371	8921	8016	11901	11902	13451	15047	16597	18592	22489	23945	26762
3500	2980		2838	4425	4492	6370	7018	8493	8672	10102	11331	12807	14326	15801	17701	21411	22797	2547
3600	2830		2696	4203	4266	6049	6665	8066	8235	9594	10761	12162	13605	15006	15006 16810	20334	21650	24197
3700	2680		2553	3980	4040	5729	6311	7638	7799	9085	_	10191 11517	12884	14211	14211 15919 19256	19256	20502	22914
3800	2530		2410	3757	3814	5408	5958	7211	7362	8577	9620	10873	12163	13415	15028	18178	19355	21632
3900	2380		2267	3534	3588	5087	5605	6783	6926	8908	9050	10228	11442	12620	12620 14137	_	17100 18207	20349
4000	2230		2124	3312	3362	4767	5252	6356	6489	7560	8480	9583	10721		11825 13246	16023	17060 19067	1906
4100	2080		1861	3089	3136	4446	4898	5928	6053	7051	7909	8939	10000	11029	12355	14945	15912	17784
4200	1930	_	1838	2866	2866 2909	4125	4545	5501	5616	6543	7339	8294	9278		10234 11464	_	13867 14765	16502
4300	1780		1695	2643	2683	3805	4192	5073	5180	6034	8919	7650	8557	9438	10573	-	12789 13617	1521
4400	1630		1553	2421	2457	3484	3839	4646	4743	5526	8619	7005	7836	8643	9682	11712	12470	1393
4500	1480		1410	2198	2231	3164	3485	4218	4307	5017	5628	6360	7115	7848	8791	10634	11322	12654
4600	1330		1267	1975	2005	2843	3132	3791	3870	4509	5057	5716	6394	7052	7900	9556	10175	1137
4700	1180		124	1752	1779	2522	2779	3363	3434	4000	4487	5071	5673	6257	7009	8478	9027	10085
4800	1030	П	186	1530	1553	2202	2426	2936	2997	3492	3917	4426	4952	5462	6118	7401	7880	8807
4900	880		838	1307	1327	1881	2072	2508	2561	2983	3346	3782	4231	4666	5227	6323	6732	7524
2000	730		695	1084	1100	1560	1719	2081	2124	2475	2776	3137	3509	3871	4336	5245	5585	6242
5100	580	_	552	861	874	1240	1366	1653	1688	1966	2205	2493	2788	3075	3445	4167	4437	4959
0265	200		444	I]												

1.12. Efecto de apalancamiento

Un aspecto importante a considerar en las conexiones a tensión es el efecto de apalancamiento. Si las almas de la conexión son bastante gruesas y rígidas o tienen rigidizadores, dicho efecto puede ignorarse, pero esto no es el caso si las almas son delgadas, flexibles y sin rigidizadores, en el cual se genera una fuerza adicional por la acción de dicho efecto, que tiende a separar la conexión. La fuerza adicional debida a la acción del apalancamiento debe sumarse a la fuerza de tensión resultante. Dicha fuerza adicional puede observarse en la Figura 11.

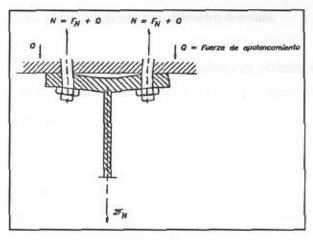


Figura 11

La resistencia minorada de los pernos requerida para soportar tracciones directas, se calculará considerando los efectos de las cargas externas mayoradas y cualquier tracción resultante del efecto de apalancamiento producido por la deformación de las partes conectadas

1.13. Requisitos adicionales para el diseño por resistencia al deslizamiento

Las conexiones del tipo deslizamiento crítico deben ser diseñadas tanto por cargas mayoradas como por cargas de servicio; a continuación se hará referencia a las diferentes verificaciones que deben cumplir dichas conexiones desde el punto de vista de cargas de servicio:

1.13.1. Diseño para el estado limite de servicio

Para las conexiones empernadas del tipo deslizamiento crítico se debe verificar que no se produzca el deslizamiento bajo la acción de cargas de servicio. La resistencia minorada al corte será mayor o igual que el corte en el perno debido a las solicitaciones de servicio, dicha resistencia será igual a:

Φ F_v A_b, en donde:

F_v es igual a la tensión teórica a corte en conexiones de deslizamiento crítico.

Φ es igual a 1,0 en agujeros estándar, agrandados de ranura corta y larga cuando el alargamiento sea perpendicular a la línea de fuerza.

es igual a 0,85 en agujeros de ranura larga cuando el alargamiento sea paralelo a la línea de fuerza.

es igual a 0,75 cuando se incluyen solicitaciones debido al viento adicional a las solicitaciones permanentes y variables.

Ah es el área del perno correspondiente a su diámetro nominal.

A continuación en la Tabla 8, se presentan los valores de resistencia minorada al corte en una conexión de deslizamiento crítico, sometida únicamente bajo cargas de servicio, tabulados de acuerdo al tipo de perno y tipo de agujero.

Tabla 8

Resistencia minorada a corte bajo cargas de servicio

	5383				Resistencia min	orada a cor	te bajo car	gas de servici	o (Kg)	
	o nominal	Area			A325				A490	
	perno	nominal				Tipo d	e agujero			
	dь	Аь	477/47/15		Ranura	larga			Ranura	larga
plg	mm	cm2	Estándar	Ranura corta	Carga Perpendicular	Carga Paralela	Estándar	Ranura corta	Carga Perpendicular	Carga Paralela
1/2	12,7	1,27	1514	1343	1069	909	1875	1602	1343	1141
5/8	15,9	1,98	2365	2098	1671	1420	2929	2504	2098	1783
	16	2,01	2403	2131	1697	1442	2976	2543	2131	1812
3/4	19,1	2,85	3406	3021	2406	2045	4218	3606	3021	2568
M	120	3,14	3754	3330	2652	2254	4650	3974	3330	2831
M	22	3,80	4543	4029	3208	2727	5626	4809	4029	3425
7/8	22,2	3,88	4636	4112	3274	2783	5742	4908	4112	3495
M	24	4,52	5406	4795	3818	3245	6695	5723	4795	4076
1	25,4	5,07	6055	5371	4277	3635	7499	6410	5371	4565
M	27	5,73	6842	6069	4832	4108	8474	7243	6069	5159
1 1/8	28,6	6,41	7664	6798	5413	4601	9491	8112	6798	5778
M	30	7,07	8447	7493	5966	5071	10462	8942	7493	6369
1 1/4	31,8	7,92	9461	8392	6682	5680	11718	10015	8392	7134
1 3/8	34,9	9,58	11448	10155	8085	6873	14178	12119	10155	8632
M	36	10,18	12164	10790	8591	7302	15065	12876	10790	9171
1 1/2	38,1	11,40	13624	12085	9622	8179	16873	14422	12085	10272
ensión te	órica de corte	e Fv (Kg/cm2)	1195	1060	844		1480	1265	108	VIII VIII VIII VIII VIII VIII VIII VII

Nota:

Φ variable dependiendo del agujero

Únicamente para superficies Clase A (μ=0,33)

Los valores de la tabla no se encuentran tabulados cuando se incluyen solicitaciones debidas al viento $(\Phi=0,75)$

La resistencia minorada a corte de un perno solicitado por una fuerza de tracción sin mayorar T_{sb} será igual a:

$$\phi F_v A_b \left(1 - \frac{T_{sb}}{0.8T_b n_b}\right)$$
, en donde:

T_b es la carga mínima de pretensión (Tabla 9).

n_b es el número de pernos que soporta la tracción de servicio.

Tabla 9 Pretensión mínima

	nominal perno	Pernos A325	Pernos A490
	d	T _b	T _b
plg	mm	Kgf	Kgf
1/2	12,7	5440	6800
5/8	15,9	8620	10900
М	16	9280	11600
3/4	19,1	12700	15900
М	20	14500	18250
М	22	18000	22500
7/8	22,2	17700	22200
М	24	21000	26200
1	25,4	23100	29000
М	27	27200	34000
1 1/8	28,6	25400	36300
M	30	33200	41600
1 1/4	31,8	32200	46300
1 3/8	34,9	38600	54900
M.	36	48400	60700
1 1/2	38,1	46700	67100

Nota:

(*) Corresponden al 70% de la mínima resistencia a tracción de los pernos, redondeados de acuerdo a la Norma ASTM.

Para hallar la resistencia minorada a corte de un perno cuando se tiene una fuerza a tracción sin mayoral, se multiplica los valores de la resistencia de la Tabla 8 por el factor $\left(1 - \frac{T_{sh}}{0.8T_b n_b}\right)$.

1.13.2. Diseño para el estado límite del agotamiento resistente

En el estado límite de agotamiento resistente la resistencia minorada al deslizamiento de un perno será mayor o igual que las solicitaciones mayoradas, está se calcula con la siguiente expresión:

$$\phi R_{str} = 1.13 \mu T_b n_s$$
, en donde

T_b es la tracción mínima de conector especificada en la Tabla 9.
 n_s es el número de planos de deslizamiento.
 μ es el coeficiente medio de deslizamiento para superficies clase A, B o C.

Las superficies A, B o C son las siguientes:

- Superficie Clase A: superficies libres de cascarillas de laminación, no pintadas o superficies limpiadas por medio de chorro de arena y protegidas con un protector Clase A, el valor del coeficiente de deslizamiento 0,33.
- Superficies Clase B: superficies limpiadas con chorro de arena y no pintadas o superficies limpiadas con chorro de arena y protegidas con un protector Clase B, valor del coeficiente de deslizamiento 0,50.
- Superficies Clase C: superficies galvanizadas en caliente y superficies rugosas, valor del coeficiente de deslizamiento 0,35.

En cuanto a los factores de minoración de la resistencia, Φ, se usarán los siguientes valores:

- $\Phi = 1,0$. Para agujeros estándar.
- $\Phi = 0.85$. Para agujeros de ranura corta.
- Φ = 0,70. Para agujeros de ranura larga perpendiculares a la dirección de la carga.
- Φ = 0,60. Para agujeros de ranura larga paralelos a la dirección de la carga.

A continuación en la Tabla 10 se presentan los valores de resistencia minorada al corte en una conexión de deslizamiento crítico, sometida únicamente a fuerzas cortantes, tabulados de acuerdo al tipo de perno, tipo de agujero y en función al número de planos de deslizamiento.

Tabla 10

Resistencia minorada al deslizamiento bajo cargas mayoradas

Dián	netro	Área			Resistenci A325	a minorada al	deslizam	iento bajo c	argas ma	yoradas (Kg) A490		
200	inal	nominal	Pretensión		7.70.00	agujero		Pretensión			agujero	
	erno	Ab	minima		1,900	Ranura I	arga	minima		1,400	Ranura	arga
d	ь	1,020	Ть	Estándar	Ranura corta	Carga	Carga	Tb	Estándar	Ranura corta	Carga	Carga
plg	mm	cm2	Kgf			Perpendicular	Paralela	Kgf			Perpendicular	Paralel
1/2	12,7	1,27	5440	2029	1724	1420	1217	6800	2536	2155	1775	1521
5/8	15,9	1,98	8620	3214	2732	2250	1929	10900	4065	3455	2845	2439
M	16	2,01	9280	3461	2941	2422	2076	11600	4326	3677	3028	2595
3/4	19,1	2,85	12700	4736	4025	3315	2841	15900	5929	5040	4150	3557
M	20	3,14	14500	5407	4598	3785	3244	18250	6805	5785	4764	4083
M.	22	3,80	18000	6712	5705	4699	4027	22500	8390	7132	5873	5034
7/8	22.2	3,88	17700	6600	5610	4620	3960	22200	8278	7037	5795	4967
M:	24	4,52	21000	7831	6656	5482	4699	26200	9770	8304	6839	5862
1	25.4	5,07	23100	8614	7322	6030	5168	29000	10814	9192	7570	6488
M:	27	5,73	27200	10143	8621	7100	6086	34000	12679	10777	8875	7607
1/8	28,6	6,41	25400	9472	8051	6630	5683	36300	13536	11506	9475	8122
M	30	7.07	33200	12380	10523	8666	7428	41600	15513	13186	10859	9308
1/4	31,8	7,92	32200	12007	10206	8405	7204	46300	17265	14675	12088	10359
3/8	34.9	9,58	38600	14394	12235	10076	8636	54900	20472	17401	14331	12283
M	36	10,18	48400	18048	15341	12634	10829	60700	22635	19240	15845	13581
1/2	38.1	11,40	46700	17414	14802	12190	10449	67100	25022	21268	17515	15013

Nota:

Los valores de las resistencias están en función de n_s (número de planos de deslizamiento)

Φ variable dependiendo del agujero

Únicamente para superficies Clase A (μ=0,33)

La resistencia minorada al deslizamiento de un perno solicitado por una fuerza de tracción mayorada T_{ub} será igual a:

$$\phi R_{sir} = 1.13 \mu T_b n_s \left(1 - \frac{T_{ub}}{1.13 T_b n_b} \right)$$
, donde:

 T_b es la carga mínima de pretensión especificada en la Tabla 10. n_b es el número de pernos que soportan la tracción mayorada T_{ub} .

Para hallar la resistencia minorada al deslizamiento de un perno cuando se tiene una fuerza a tracción mayorada, se multiplica los valores de la resistencia de la Tabla 10 por los planos de deslizamiento y por el factor $\left(1-\frac{T_{ub}}{1,13\,T_b\,n_b}\right)$.

IV.2. SOLDADURAS

2.1. Reseña histórica de las soldaduras

La práctica de la soldadura data de hace miles de años, se sabe que en la antigua Grecia se lograba la unión de piezas metálicas a través del calor y golpes (forja) para obtener piezas compuestas con cierta resistencia mecánica.

Se define a la soldadura como un proceso en el cual se realiza la unión de partes metálicas mediante calentamiento para alcanzar un estado plástico con o sin el aporte de un material adicional de refuerzo.

2.2. Ventajas y desventajas de las soldaduras

Ventajas

- 1. El empleo de conexiones soldadas en vez de empernadas o remachadas permite un ahorro de material (hasta de un 15% en peso), debido a que las estructuras soldadas permiten eliminar una gran cantidad de planchas de unión y de empalmes tan necesarias en las estructuras empernadas, así como la eliminación de área por agujeros de remaches y pernos en los miembros principales a tensión.
- La soldadura requiere menos trabajo y por lo tanto menos personal que en la colocación de remaches o pernos.
- La soldadura permite una gran variedad de conexiones, cosa que no se puede con remaches o pernos.
- Las conexiones soldadas son más rígidas que las demás, lo cual permite una verdadera continuidad en la transmisión de elementos mecánicos entre miembros.
- Debido a la mayor resistencia del metal de aporte, las conexiones soldadas permiten una gran resistencia a la fatiga.
- Las estructuras soldadas pueden repararse muy fácilmente, así como realizar cambios en el diseño durante el montaje que en otro tipo de conexiones.
- 7. El trabajo de soldadura es silencioso comparado con el remachado.
- Hay un ahorro considerable en el cálculo, detallado y montaje de las estructuras.
- Se logra la simplicidad en los detalles de diseño, eficiencia y peso mínimo ya que la soldadura proporciona la transferencia más directa del esfuerzo de un miembro a otro.

Desventajas

- 1. Las conexiones rígidas soldadas pueden no ser óptimas en el diseño.
- 2. La revisión de las conexiones soldadas no es muy sencillo con respecto al resto.
- 3. La creencia de la baja resistencia a la fatiga en conexiones soldadas.

2.3. Tipos de juntas

Las conexiones con soldaduras pueden clasificarse debido al tipo de junta usada en: a tope, traslapada, en T, de canto (de borde) y en esquina como se muestran a continuación en la Figura 12:

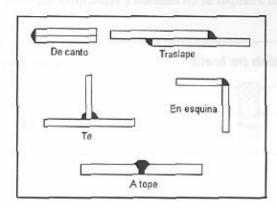


Figura 12

2.4. Tipos de soldaduras

Los dos tipos principales de soldadura son la de filete y la de ranura; existe además la soldadura de tapón o canal que no es muy común en trabajo estructural. En la Figura 13 se observan los diferentes tipos de soldaduras anteriormente nombrados.

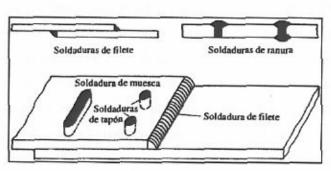


Figura 13

La soldadura de ranura requiere de una preparación especial en los bordes y un cuidadoso ensamble y cuando se suelda de ambos lados, o desde un lado con una plancha de respaldo en el lado alejado, se puede decir que se logra con ello una penetración completa y puede entonces someterse a esfuerzos tan grandes como los presentes en la pieza más débil que ha sido conectada. En este tipo de soldadura, los miembros se biselan o preparan antes de soldarse, para permitir la penetración total de la soldadura, cuando el material es más grueso (mayor de 8 mm de espesor) es necesario usar soldadura de ranura en V, o de soldadura de ranura en doble V (como se observa en la Figura 14). La soldadura de ranura de penetración incompleta se usa sólo cuando no se requiere que las planchas queden totalmente esforzadas y además no se requiere una continuidad plena.

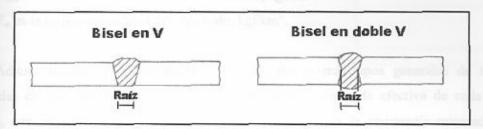


Figura 14

Las soldaduras de filete se usan para unir una plancha a otra plancha o miembro en posición paralela (traslapada) o proyectante (T). Las soldaduras de filete han demostrado ser más débiles que las soldaduras de ranura; sin embargo la mayoría de las conexiones estructurales se realizan con soldaduras de filete. Las soldaduras de filete son más resistentes a la tensión y a la compresión que al corte, de manera que los esfuerzos determinantes en este tipo de soldadura son los esfuerzos por corte, por tanto es conveniente arreglar las conexiones de modo que estén sujetas únicamente a esfuerzos de corte, y no a la combinación de corte y tensión, o corte y compresión. A simple vista el acabado cóncavo en este tipo de soldadura podría parecer la forma ideal porque aparentemente los esfuerzos podrían fluir uniformemente alrededor de las esquinas con poca concentración de esfuerzo, pero la experiencia ha demostrado que dicho acabado tiene gran tendencia a contraerse, generando grandes tensiones y agrietamientos por efecto del enfriamiento; debido a este efecto se ha optado por la selección del acabado con superficie convexa en donde no se provoca la tensión en la superficie exterior, sino por el contrario, como la cara se acorta por el efecto de enfriamiento se produce una compresión, eliminándose el desfavorable efecto del agrietamiento.

2.5. Resistencia de las soldaduras

La resistencia minorada de las soldaduras será el menor valor entre Φ F_{BM} A_{BM} y Φ F_w A_w. Los valores del factor de minoración de la resistencia teórica (Φ) y las resistencias teóricas F_{BM} y F_w, se encuentran en la Tabla 11, los cuales se indican de acuerdo al tipo de soldadura, tensión y requisitos de metal de aporte. El significado de las variables usadas en las ecuaciones anteriores son las siguientes:

ABM es el área de las sección transversal del material base.

Aw es el área de la sección transversal efectiva de la soldadura.

F_{BM} es la resistencia teórica del material base, kgf/cm².

Fw es la resistencia teórica del electrodo, kgf/cm2.

Adicionalmente si se requiriera el uso de dos o más tipos generales de soldadura combinadas en una sola unión, se calculará la resistencia minorada efectiva de cada una por separado, con referencia al eje del grupo, a fin de determinar la resistencia minorada de las conexiones.

A continuación se presenta la Tabla 11 que dependiendo del tipo de soldadura, de las tensiones y del material (base y soldadura) se presentan tabulados los valores de factor de minoración y resistencia teórica al igual que los requisitos del metal de aporte.

Tabla 11 Resistencias de las Soldaduras

Tipo de soldadura y tensiones (a)	Material	Factor de minoración de la resistencia teórica (Φ)	Resistencia teórica F _{BM} o Fw	Metal de aporte Requisitos (b,c)
SOLD	ADURAS A	CANALADAS DE P	ENETRACION	COMPLETA
Tracción normal al área efectiva	Base	0,9	F _y	Se debe usar soldadura "compatible".Véase la nota (d) para requisitos de tenacidad.
Compresión normal al área efectiva	Base	0,9	F _y	Se puede utilizar soldadura con nivel
Tracción o compresión paralela al eje de la soldadura		annualitie par ci		de resistencia igual o menor al del metal de aporte compatible.
Cortante sobre el área	Base	0,9	0,60 F _v	1
efectiva	Soldadura	0,8	0,60 F _{EXX}	The same of 170 and
SOL	DADURAS .	ACANALADAS DE		NPARCIAL
Compresión normal al área efectiva				
Tracción o compresión paralela al eje de la soldadura (e)	Base	0,9	F _y	Se puede utilizar soldadura con nive de resistencia igual o menor al del
Cortante paralelo al eje de soldadura	Base Soldadura	0,75	0,60 F _{EXX} (f)	metal de aporte compatible.
Tracción normal al área	Base	0,9	F_{v}	1
efectiva	Soldadura	0,8	0,60 F _{EXX}	
STEEL ST		SOLDADURAS D	E FILETE	
Cortante sobre el área efectiva	Base Soldadura	0,75 0,75	0,60F _{EXX} 0,45 F _{EXX} (h)	Se puede utilizar nivel de resistencia
Traccion o compresión paralelas al eje de soldadura	Base	0,9	F _y	 igual o menor al del metal de aporte compatible. Véase la nota (h) para requisitos de tenacidad.
	SOLD	ADURAS DE TAPO	N O DE RANUR	Ā
Cortante paralelo a las superficies de contacto (sobre el área efectiva)	Base Soldadura	0,75	0,60 F _{EXX}	Se puede utilizar nivel de resistencia igual o menor que el del metal de aporte compatible.

Notas:

- (a) Se permite soldadura con una resistencia superior en un nivel a la de la soldadura "compatible".
- (b) En las juntas en T o esquina donde se deje permanentemente el material de respaldo, se usará material de respaldo que cumpla con los requisitos mínimos de tenacidad, exigidos a las probetas de ensayos Charpy con entalla en V, de J = 2,75 kgf.m a la temperatura T_{ev} = 4 °C. Cuando el material de respaldo no cumpla con los requisitos mínimos de tenacidad y se deja permanentemente el material de respaldo, la junta se dimensionará utilizando la resistencia teórica y el factor de minoración de la resistencia teórica correspondientes a soldadurads de penetración parcial.

(c) Las soldaduras de filete y las acanaladas de penetración parcial que unen los componentes de miembros ensamblados, como por ejemplo las conexiones entre aleta y alma, pueden diseñarse sin considerar los tensiones a tensión o a compresión en estos elementos paralelos al eje de las soldaduras.

(d) Cuando se utilice metal de aporte que no cumple los requisitos de tenacidad en combinación con filetes de soldaduras solicitados transversalmente, se usará la menor resistencia teórica F_w.

2.6. Soldadura de filete

Las soldaduras de filete al ser sometidas a esfuerzos, tienden a fallar por corte en ángulos de aproximadamente 45° a través de lo que se denomina garganta, por consiguiente su resistencia se supone igual al esfuerzo de corte permisible por el área efectiva de la garganta de la soldadura, siendo ésta igual a la distancia desde la raíz del cordón a la hipotenusa del mayor triángulo rectángulo inscrito en la sección transversal de la soldadura, el cual tiene un valor de 0,707 D, multiplicada por la distancia longitudinal del cordón.

Cuando se aplica el proceso de arco metálico sumergido, el calor generado produce una penetración mayor y se permite entonces una dimensión mayor para la garganta efectiva, por este motivo el espesor efectivo de la garganta se tomará igual a:

- Si el diámetro nominal es menor o igual a 10 mm la garganta será igual a dicho diámetro.
- Si el diámetro nominal es mayor a 10 mm la garganta será igual a la garganta teórica (0,707
 D) más 3 mm.

En la Figura 15 se observan los casos cuando la soldadura de filete es realizada con arco metálico protegido y con arco metálico sumergido.

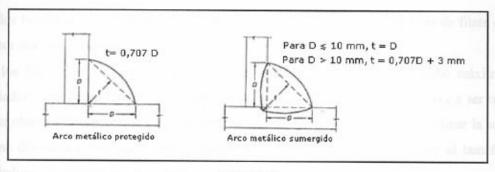


Figura 15

El área efectiva de las soldaduras de filete depositadas en agujeros o canales se calculará como se especificó para las soldaduras de filete, empleando como longitud efectiva, la longitud de

la línea central de la soldadura a través del centro del plano que pasa por la garganta. Sin embargo, cuando los filetes se solapan, el área efectiva debe ser menor que el área nominal de la sección transversal del agujero o canal en el plano de la superficie en contacto.

2.6.1. Tamaño mínimo de las soldaduras de filete

Los tamaños mínimos deben ser mayores que el tamaño requerido para transmitir las fuerzas calculadas y mayores que el tamaño especificado en la Tabla 12, de acuerdo al espesor del material de la parte más gruesa a unir, los cuales se basan en algunas previsiones para las tensiones no calculadas durante la fabricación, manejo, transporte y montaje. Estos criterios no se aplicarán a las soldaduras de filete que se usen como refuerzos en las soldaduras de ranura de penetración parcial o completa.

Tabla 12
Tamaño mínimo de soldaduras de filete

Espesor del material De la parte más gruesa a unir mm (plg.)	Tamaño mínimo de la soldadura de filete d mm
Hasta 6,4 (¼") inclusive	3
De 6,4 a 12,7 (1/4" - 1/2")	5
De 12,7 a 19 (1/2" - 3/4")	6
Mayor de 19 (3/4")	8

2.6.2. Tamaños máximos efectivos de las soldaduras de filete

- En los bordes de los materiales de menos de 6 mm de espesor, la soldadura de filete debe ser menor que dicho espesor.
- En los bordes de los materiales con espesores de 6 mm o más, el tamaño máximo de la soldadura será 2 mm menos que el espesor del material, a menos que ésta vaya a ser reforzada hasta obtener un espesor de garganta determinado. En este caso, se puede terminar la soldadura a una distancia menor de 2 mm al borde de la plancha base, siempre que el tamaño de la soldadura sea claramente verificable.

En la Figura 16 se observa de forma más detallada lo especificado anteriormente.

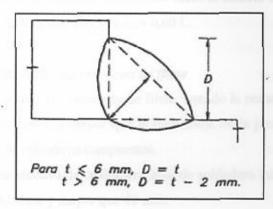


Figura 16

En las soldaduras entre ala y alma y conexiones similares, el tamaño de la soldadura no necesita ser mayor que el requerido para desarrollar la capacidad resistente del alma, ni satisfacer los requisitos de los tamaños mínimos de soldaduras de filetes.

2.6.3. Longitudes mínimas de las soldaduras de filete

La longitud mínima efectiva de una soldadura de filete debe ser mayor que 4 veces su tamaño nominal. En caso de ser mayor, se debe cumplir que el tamaño nominal no supere una cuarta parte de la longitud efectiva.

2.6.4. Longitudes máximas de las soldaduras de filete

- La longitud efectiva del filete será igual a la longitud real de la soldadura (L), cuando no supere
 100 veces el tamaño del filete (D).
- La longitud efectiva del filete será igual a Φ L_w L, cuando la longitud real de la soldadura supere a 100 veces el tamaño del filete. El factor de reducción se calculará según la siguiente fórmula:

$$\Phi L_w = 1.2 - 0.2 (L/100 D) \le 1.0$$
, donde:

Φ Lw es el coeficiente de reducción

L es la longitud real de la soldadura solicitada.

D es el tamaño del filete de soldadura

Cuando la longitud real de la soldadura supere 300 veces el tamaño del filete, el valor de Φ L_w se tomará como 0,60 y la longitud efectiva será 0,60 L.

2.6.5. Soldaduras intermitentes de filete

Se podrá usar soldaduras intermitentes de filete, cuando la resistencia de un filete continuo de soldadura de tamaño mínimo sea mayor que la resistencia de la junta; también se pueden usar para unir los componentes de miembros compuestos.

La longitud mínima efectiva de cualquier tramo de soldadura intermitente de filete debe ser 4 veces el tamaño de la soldadura y mayor que 40 mm.

2.6.6. Juntas solapadas

El solape mínimo de las juntas es el menor valor entre 5 veces el espesor de la pieza más delgada y 25 mm. En las juntas solapadas de planchas sometidas a tensiones normales que se coloquen sólo cordones de soldadura transversal, deberán soldarse dichas planchas con filetes a lo largo de los extremos de las dos piezas, para evitar así, la posible separación entre las planchas; pero si la flexión actuante está lo bastante restringida como para evitar la separación de la junta bajo condiciones de carga máxima, el cordón de la soldadura de filete se podrá utilizar sólo en uno de los extremos de las piezas.

2.6.7. Remates de las soldaduras de filete

El remate de las soldaduras de filete se debe realizar extendiendo continuamente los cordones alrededor de las esquinas, excepto en los casos que se indican a continuación:

- a) En las juntas solapadas que se extienden más allá del límite necesario para resistir la tracción, los remates deben extenderse como mínimo el tamaño nominal de la soldadura.
- b) En las conexiones y elementos estructurales, en las que actúan fuerzas cíclicas y/o momentos fuera de su plano de gran magnitud y que tienden a iniciar la falla de la soldadura, los remates de dicha soldadura se deben extender de forma continua una distancia mayor que dos veces el tamaño nominal de la soldadura o el ancho de la parte conectada
- c) En las conexiones con ángulos y planchas extremas, cuya flexibilidad depende a su vez de la flexibilidad de los lados conectados, los remates de las esquinas no deben exceder de 4 veces el tamaño nominal de la soldadura.

d) Cuando la soldadura de los rigidizadores sólo se realiza a través del alma de la columna, la soldadura de filete se debe interrumpir a una distancia mayor o igual a 4 veces el espesor del alma de la columna, pero no más de 6 veces el espesor de dicha alma, para así evitar que se encuentre con la soldadura alma-alas del perfil.

2.6.8. Capacidad de diseño en soldaduras de filete

A continuación se presentan en las Tabla 13.1 y 13.2, para F_y de las planchas igual a 2500 y 3500 Kg/cm² respectivamente, las fuerzas admisibles en soldaduras de filete correspondientes a diversos tamaños nominales especificados y a los diferentes tipos de electrodos, con sus respectivos espesores mínimos de planchas.

Tabla 13.1

Capacidad de diseño en soldaduras de filete para un F_y de plancha igual a 2500 Kg/cm²

Tamaño	E602	XX	E702	XX	E802	XX	E902	XX
Nominal (mm)	ΦRt/L	t	ΦRt/L	t	ΦRt/L	t	ΦRt/L	t
4	53,4	4	62,3	5	71,2	6	80,1	6
5	66,8	5	77,9	6	89,0	7	100,2	8
6	80,1	6	93,5	7	106,8	8	120,2	9
7	93,5	7	109,1	9	124,7	10	140,2	11
8	106,8	8	124,7	10	142,5	11	160,3	12
9	120,2	9	140,2	11	160,3	12	180,3	14
10	133,6	10	155,8	12	178,1	14	200,3	15
11	146,9	11	171,4	13	195,9	15	220,4	17
12	160,3	12	187,0	14	213,7	16	240,4	18
13	173,6	13	202,6	16	231,5	18	260,4	20
14	187,0	14	218,1	17	249,3	19	280,5	21
15	200,3	15	233,7	18	267,1	20	300,5	23

Nota:

t es el espesor mínimo de la plancha (en mm) por debajo del cual la fuerza resistente en la soldadura queda controlada por el esfuerzo cortante en la plancha (soldadura de un solo lado).

Φ igual a 0,75

ΦR/L se halla multiplicando el Φ por 0,60Fu y por el área efectiva, viene expresado en Ton/m.

Tabla 13.2

Capacidad de diseño en soldaduras de filete para un F_y de plancha igual a 3500 Kg/cm²

Tamaño	E60XX		E70XX		E80XX		E90XX	
Nominal (mm)	ΦRt/L	t	ΦRt/L	t	ΦRt/L	t	ΦRt/L	t
4	53,4	4	62,3	4	71,2	- 4	80,1	5
5	66,8	4	77,9	5	89,0	5	100,2	6
6	80,1	5	93,5	5	106,8	6	120,2	7
7	93,5	5	109,1	6	124,7	7	140,2	8
8	106,8	6	124,7	7	142,5	8	160,3	9
9	120,2	7	140,2	8	160,3	9	180,3	10
10	133,6	8	155,8	9	178,1	10	200,3	11
11	146,9	8	171,4	10	195,9	11	220,4	12
12	160,3	9	187,0	10	213,7	12	240,4	13
13	173,6	10	202,6	11	231,5	13	260,4	14
14	187,0	10	218,1	12	249,3	14	280,5	15
15	200,3	11	233,7	13	267,1	15	300,5	16

Nota:

t es el espesor mínimo de la plancha (en mm) por debajo del cual la fuerza resistente en la soldadura queda controlada por el esfuerzo cortante en la plancha (soldadura de un solo lado).

Φ igual a 0,75

ΦR_t/L se halla multiplicando el Φ por 0,60Fu y por el área efectiva, viene expresado en Ton/m.

2.7. Soldadura de ranura

El área efectiva de cualquier soldadura de ranura será igual al producto de la longitud efectiva de la soldadura, multiplicada por el espesor efectivo de la garganta. Definiéndose como la longitud efectiva de una soldadura de ranura, al ancho de la parte unida y al espesor efectivo de la garganta de una soldadura de ranura como:

- Para soldadura de ranura de penetración completa será el espesor correspondiente a la parte unida más delgada.
- Para soldaduras de ranuras de penetración parcial con juntas en U, J o V ≥ 60° será la profundidad del bisel.
- Para soldaduras de ranuras de penetración parcial con juntas en V con ángulos 45°≤ V ≤ 60° será la profundidad del bisel menos 3 mm.

2.7.1. Espesores mínimos de las soldaduras de ranura de penetración parcial

Los espesores mínimos de la garganta efectiva de las soldaduras de ranura de penetración parcial serán las especificadas en la Tabla 14. El tamaño de las soldaduras se determina tomando

como base el espesor de la parte más gruesa de las dos piezas a unir, pero el tamaño requerido por la soldadura no necesita ser mayor que el espesor de la pieza más delgada, a menos que por cálculo se requiera un tamaño más grande que dicha pieza, en cuyo caso, se pondrá cuidado en suministrar el suficiente precalentamiento para una buena calidad de la soldadura.

A continuación en la Tabla 14 se presentan los espesores mínimos de la garganta efectiva de las soldaduras de penetración parcial para rangos de espesores de la parte más gruesa a unir.

Tabla 14
Espesores mínimos de la garganta efectiva de soldaduras de ranura de penetración parcial

Espesor del material de la parte mas gruesa a unir mm (plg.)	Espesor mínimo de la garganta efectiva t _e mm			
Hasta 6,4 (1/4") inclusive	3			
De 6,4 a 12,7 (1/4" - 1/2")	5			
De 12,7 a 19 (1/2" - 3/4")	6			
De 19 a 38 (3/4" - 1 1/2")	8			
De 38 a 57 (1 1/2 " - 2 1/4 ")	10			
De 57 a 152 (2 1/4 " - 6")	13			
Mayor de 152 (6")	16			

2.7.2. Requisitos para el diseño de soldaduras de ranura de penetración completa

La resistencia de este tipo de soldadura puede considerarse igual a la resistencia de los miembros conectados, en dichas soldaduras se debe cumplir con una dimensión de raíz igual a 6 mm. y un ángulo de bisel de 45°.

2.8. Soldaduras de tapón y de canal

Estos tipos de soldaduras se utilizan para transmitir la fuerza cortante en las juntas solapadas, para impedir el pandeo de piezas solapadas, o para unir los miembros compuestos ensamblados.

Para el cálculo de la resistencia a fuerza cortante de este tipo de soldadura se utiliza como área efectiva, el área nominal de la sección transversal del agujero o canal en el plano de contacto entre las piezas.

En la Figura 17 se puede detallar para las soldaduras de tapón y canal, las diferentes especificaciones de las distancias, separaciones y diámetros requeridos.

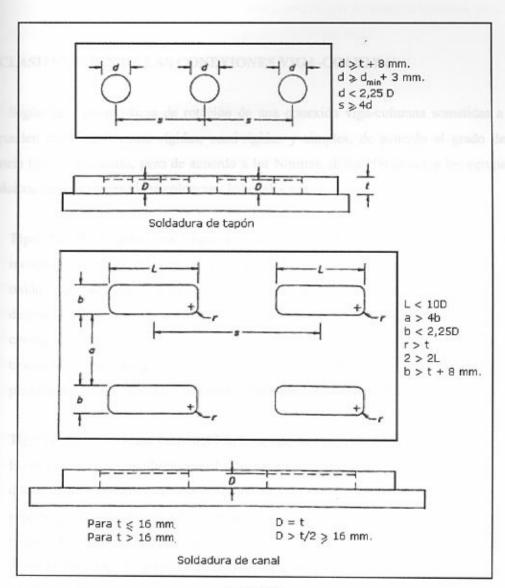


Figura 17

CAPÍTULO V

CONEXIONES VIGA-COLUMNA RESISTENTES A CORTE Y MOMENTO

V.1. CLASIFICACIÓN DE LAS CONEXIONES VIGA-COLUMNA

Según las características de rotación de una conexión viga-columna sometidas a cargas, estas pueden clasificarse como rígidas, semi-rígidas y simples, de acuerdo al grado de giro o resistencia total al momento, pero de acuerdo a las Normas, dicha clasificación las agrupa en dos tipos básicos de conexiones vigas-columnas, los cuales son:

- 1. Tipo TR (totalmente restringido): Este tipo de conexión es capaz de transmitir el momento y cortante del marco, sin la rotación relativa de los miembros que se encuentran unidos. Esto significa que el ángulo original entre los miembros conectados se mantendrá después de aplicar las cargas debido a la suficiente rigidez que dicha conexión aporta. Las conexiones rígidas se usan en construcciones continuas que resisten fuerzas laterales causadas o inducidas por viento o sismo, las cuales deben ser lo suficientemente fuertes para desarrollar un momento de cedencia completo en las articulaciones plásticas.
- 2. Tipo PR (parcialmente restringido): Este tipo de conexión posee una restricción parcial a la rotación de los miembros conectados. Cuando se ignora dicha restricción se puede decir que se esta en presencia de una conexión de tipo simple, las cuales son muy flexibles y se supone que permiten girar a los extremos de las vigas, transmitiendo de esta forma la fuerza cortante y un porcentaje muy bajo de momento (el cual es despreciable a la hora de calcular dicha conexión). Las conexiones simples se diseñan con el fin de resistir únicamente las cargas muertas y vivas (cargas de gravedad). Cuando la junta se diseña en base a una cantidad conocida de restricción intermedia a la rotación entre la simple y rígida se está en presencia de una conexión de tipo semi-rígida, las cuales poseen una apreciable resistencia al momento de los extremos. La principal desventaja de este tipo de conexión es el requisito de un análisis estructural riguroso que tome en cuenta esta restricción parcial, en el que se considere el porcentaje de momento resistente y el grado de rotación. Las conexiones semi-rígidas se usan en las construcciones semi-continuas, principalmente en edificios de

oficinas o habitacionales de altura moderada; este concepto pretende proporcionar un equilibrio económico entre el diseño de una viga simple en el cual el momento flexionante máximo está en el centro de la viga y una construcción totalmente continua en el cual el momento máximo está en los extremos de los empotramientos:

V.2. CONEXIONES RESISTENTES A MOMENTOS

Los dos tipos de conexiones resistentes a momentos son las de tipo rígida (TR, totalmente restringida) y las semi-rígidas (PR, parcialmente restringida).

En una conexión típica resistente a momento, como se muestra en la Figura 18-a, la mayor parte del momento se transmite al ala de la columna por medio de dos tes sobre las alas superiores e inferiores de la viga por cargas de tensión y compresión respectivamente y la carga cortante es transmitida a la columna por medio de un elemento (plancha, ángulo, etc.) que conecta su ala con el alma de la viga. En este sentido la máxima capacidad de momento que es capaz de resistir es aquella que posee las alas de la columna y la fuerza cortante máxima que es capaz de resistir es la que poseen los pernos o la(s) soldadura(s) según sea el caso de conexión.

El momento actuante en la conexión se sustituye por un par de fuerzas, el cual una actúa a tracción y la otra a compresión en las alas de la viga, dichas fuerzas se calculan por medio de la siguiente expresión:

$$P_{uf} = \frac{M}{h}$$
, en donde:

Puf es la fuerza a tracción o compresión,

M es el momento actuante en la conexión y

 $h es (d - t_f)$.

Debe notarse que la capacidad de momento de esta conexión puede incrementarse aumentando la distancia entre las tes debido a la disminución de la magnitud de la fuerza P_{uf}, esto se logra colocando planchas de relleno que no son más que planchas delgadas de acero que son colocadas entre el ala de la viga y la te, dichas planchas son de dos tipos, convencionales o de dedos, como se muestra en la Figura 18-b.

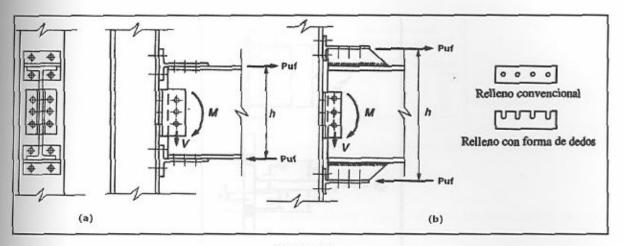


Figura 18

2.1. Plancha extrema: caso particular de conexiones resistentes a momentos

La conexión con plancha extrema se emplea con mucha frecuencia como conexión de viga a columna, dicha conexión ha estado en uso desde mediado de la década de los cincuenta. La base de este tipo de conexión es una plancha que se suelda en taller al extremo de una viga y se emperna en campo a una columna, siendo esta una de las ventajas principales de este tipo de conexión; otra es que por lo común se requieren menos pernos que otro tipo de conexión, lo que hace más rápido su montaje. Las conexiones de planchas extremas presenta la desventaja de un posible error en la longitud de la viga cuando es cortada y soldada a la plancha extrema, debido a que puede darse el caso de que su longitud no sea la adecuada, dicha desventaja se acentúa con el uso de la contraflecha; esto puede ser resuelto proporcionando alguna tolerancia en la longitud de la viga al fabricar ésta un poco más corta y logrando el ajuste final con planchas de relleno.

El diseño de este tipo de conexión se basa principalmente en considerar una porción del ala de la viga y la plancha adyacente para que se comporte como un perfil "T", como se muestra en la Figura 19, a partir del cual se calculará el momento (M_t), la fuerza cortarte (F₁) que actúa en la plancha y el espesor requerido para dicha plancha.

La determinación de dicho espesor está basado en los resultados de investigaciones experimentales y estadísticas, así como del tamaño o tamaños de la soldadura y de los detalles de los pernos, los cuales siguen la aplicación directa de los procedimientos tradicionales de análisis.

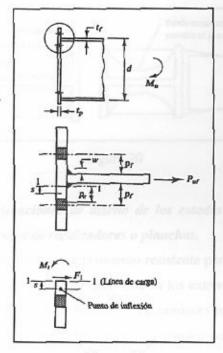


Figura 19

2.2. Uso de rigidizadores en conexiones resistentes a momento

La consecuencia del par de fuerzas producto de la sustitución del momento actuante de la Figura 18-a, es que puede generar grandes concentraciones de fuerzas en las alas de la columna, la tensión actuante en el ala superior de la viga tiende a distorsionar el ala de la columna. Dichos efectos pueden contrarrestarse con algún tipo particular de refuerzo, tal es el caso de los rigidizadores transversales o planchas, los cuales permiten un anclaje entre el ala y el alma de la columna.

Estas planchas rigidizadoras colocadas en las columnas, presentan la dificultad de no dejar paso libre a las tuberías y conductos por la parte interior de estas, dicho problema puede solucionarse colocando simplemente una columna más pesada (en el caso de no querer colocar rigidizadores) o si la conexión es sólo a un lado de la columna el rigidizador no necesariamente tiene que extenderse más allá de la mitad y si la conexión es a ambos lados puede tomarse la opción de cortar el rigidizador de forma semí-circular. En la Figura 20 se observan estos dos casos en particular.

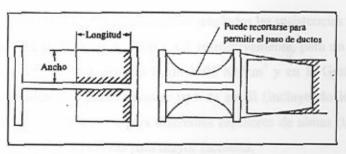


Figura 20

Consideraciones de diseño de los estados límites de agotamiento en la resistencia de rigidizadores o planchas.

Para controlar el estado límite de agotamiento resistente por flexión local, se deben colocar rigidizadores transversales, en la columna al igual que en los extremos no conectados de las vigas. De igual forma para controlar los estados límites de agotamiento resistente del alma por cedencia, aplastamiento local, desplazamiento lateral por pandeo y pandeo por compresión, se deben colocar rigidizadores transversales o planchas.

Si la fuerza concentrada, que es transmitida por el ala de la viga o por algún elemento de conexión, excede la resistencia Φ R_t para cualquiera de los estados límites considerados, deberán usarse rigidizadores.

Los diferentes estados límites que deben ser considerados para el análisis de su resistencia de diseño Φ R_t , son los siguientes:

a) Falla por flexión local del ala de la columna

Las cargas de tracción mayoradas, tanto individuales como la componente del par transmitido por el ala de la viga o del elemento conectado a dicha ala, no debe exceder de la resistencia Φ R_t, en caso de que esto suceda, se dispondrá de un par de rigidizadores transversales con longitud de por lo menos la mitad de la altura del alma. La resistencia Φ R_t viene expresada como:

$$\Phi R_t = \Phi (6.25 t_f^2 F_{vf})$$
, donde:

Φ es igual a 0,90.

t_f es el espesor del ala de la columna.

F_{yf} es la tensión de cedencia mínima del ala de la columna.

En las Tablas 15.1, 15.2 y 15.3 se encuentran tabuladas las resistencias a la flexión local del ala de la columna para perfiles HEA, HEB y CP respectivamente, para un F_y de 2500 Kg/cm², en las Tablas 15.4, 15.5 y 15.6 para un F_y de 3500 Kg/cm² y en la Gráfica 1 se encuentran tabuladas dichas resistencias, para cualquier tipo de perfil (incluyendo los W) mediante dos curvas (F_y de 2500 y 3500 Kg/cm²), para diferentes espesores de almas (t_f), de igual forma se presentan las ecuaciones de las curvas para mayor facilidad.

Cuando la fuerza concentrada esté aplicada a una distancia del extremo del miembro menor que 10 t_{f.} la resistencia teórica R_t se reducirá en un cincuenta por ciento (50%).

No será necesario verificar la fórmula anterior cuando la longitud de la zona solicitada del ala de la columna, medida a lo ancho del ala, sea menor que 0,15 b_f, siendo b_f el ancho del ala del miembro.

b) Falla por cedencia local del alma

Cuando la resistencia teórica minorada Φ R_t, sea menor que las solicitaciones mayoradas tanto para fuerzas concentradas individuales como las dos componentes del par de fuerzas concentradas, sobre el borde de los filete del alma, se debe disponer de un par de rigidizadores transversales o una plancha adosada al alma de la columna con longitud de por lo menos la mitad de la altura del alma. Dicha resistencia teórica se determinará de la siguiente manera:

 Cuando la fuerza concentrada, esté aplicada a una distancia del extremo del miembro mayor que la altura de éste.

$$\Phi R_t = \Phi [(5 d_f + d_R) F_{vw} t_w]$$

En la Gráfica 2-a (para F_y de 2500 Kg/cm²) y en la Gráfica 2-b (para F_y de 3500 Kg/cm²) se encuentra tabulada, para esta condición, la resistencia a la cedencia local del alma por unidad de espesor en función de diferentes longitudes de contacto y anchos de las alas.

 Cuando la fuerza concentrada está aplicada a una distancia del extremo del miembro que es menor o igual a la altura de éste.

$$\Phi R_t = \Phi [(2.5 d_f + d_R) F_{yw} t_w]$$

En la Gráfica 3-a (para F_y de 2500 Kg/cm²) y en la Gráfica 3-b (para F_y de 3500 Kg/cm²) se encuentra tabulada, para esta condición, la resistencia a la cedencia local del alma por unidad de espesor en función de diferentes longitudes de contacto y anchos de las alas.

Donde:

Φ es igual a 1.

Fyw es la tensión mínima de cedencia del alma de la columna.

tw es el espesor del alma de la columna.

d_f es la distancia de la superficie exterior del ala de la columna a la punta del filete en el alma (Ver Figura 21).

 d_R es la longitud de contacto. No deberá ser menor que d_f para las reacciones en los extremos de la viga.

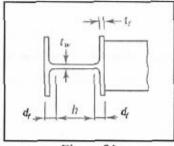


Figura 21

c) Falla por aplastamiento local del alma

Se hará necesario el uso de un rigidizador transversal, o un par de rigidizadores transversales o una plancha adosada al alma, con longitud de por lo menos la mitad de la altura del alma de la columna, cuando las solicitaciones mayoradas de compresión, tanto para fuerzas concentradas individuales como las dos componentes del par de fuerzas concentradas, sobre el borde de los filete del alma, exceda su resistencia teórica minorada Φ R_t. Dicha resistencia teórica se determinará como se indica a continuación:

 Cuando la carga concentrada de compresión está aplicada a una distancia mayor o igual a d/2 del extremo de la columna.

$$\Phi R_i = \Phi \ 0.8 \ t_w^2 \left[1 + 3 \left(\frac{d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{E F_{yw} t_f}{t_w}}$$

 Si la carga concentrada de compresión está aplicada a una distancia menor a d/2 del extremo de la columna.

Cuando $d_R/d \le 0.2$

$$\Phi R_t = \Phi \ 0.4 \ t_w^2 \left[1 + 3 \left(\frac{d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

Cuando $d_R/d > 0.2$

$$\Phi R_t = \Phi \ 0.4 \ t_w^2 \left[1 + \left(\frac{4d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

Donde:

Φ es igual a 0,75.

d es la altura total de la columna.

E es el módulo de elasticidad del acero.

d) Falla por pandeo lateral del alma

Cuando las fuerzas de compresión individuales aplicada a los miembros excedan su resistencia minorada Φ R_t, se dispondrá de arriostramiento lateral local en el ala traccionada de la columna, o bien un par de rigidizadores transversales, una plancha adosada al alma de la columna con longitud de por lo menos la mitad de la altura del alma. Es necesario verificar la rotación del ala cargada, debido a que si esto sucede, ni los rigidizadores ni las planchas adosadas serán efectivas.

La resistencia minorada a pandeo lateral se calculará solamente para las fuerzas de compresión individuales aplicada a los miembros, cuando se pueda producir un movimiento lateral relativo entre el ala comprimida y el ala traccionada no restringida en el punto de aplicación de la fuerza concentrada. La resistencia teórica Φ R_t se determinará como se indica a continuación:

- Si el ala comprimida está impedida de rotar:
 - Cuando (h/t_w) / (L/b_f) ≤ 2,3

$$\Phi R_{t} = \Phi \frac{C_{r} t_{w}^{3} t_{f}}{h^{2}} \left[1 + 0.4 \left(\frac{h/t_{w}}{L/b_{f}} \right)^{3} \right]$$

- Cuando $(h/t_w)/(L/b_t) > 2.3$

No será necesario verificar el estado límite de agotamiento resistente por pandeo lateral del alma.

- Si el ala cargada no está restringida contra rotación:
 - Cuando $(h/t_w) / (L/b_f) \le 1.7$

$$\Phi R_t = \Phi \frac{C_r t_w^3 t_f}{h^2} \left[0.4 \left(\frac{h/t_w}{L/b_f} \right)^3 \right]$$

- Cuando $(h/t_w) / (L/b_f) > 1,7$

No se necesitará verificar el estado límite de pandeo del alma.

En las expresiones anteriores cada una de las variables tiene el siguiente significado:

Φ es igual a 0,85.

Cres igual a:

 $67,5x10^6 \text{ kgf/cm}^2$, cuando en el punto de aplicación de la fuerza, M_u sea menor a M_y .

 $33,75 \times 10^6 \text{ kgf/cm}^2$, cuando en el punto de aplicación de la fuerza, M_u sea mayor o igual M_y .

L es la mayor longitud sin soporte lateral a lo largo de cualquier ala en el punto de aplicación de la carga concentrada.

b_f es el ancho del ala.

h es la altura libre del alma, comprendida entre las alas, descontando el filete o radio de transición para perfiles laminados; la distancia entre líneas de conectores o la distancia libre entre las alas de perfiles soldados o secciones armadas.

tw es el espesor del alma.

Como las fórmulas de este punto (d) fueron desarrolladas para conexiones de aplastamiento, no son aplicables a las conexiones resistentes a momento.

e) Falla por pandeo del alma comprimida.

Se dispondrá o bien un rigidizador transversal o un par de rigidizadores transversales o una plancha adosada al alma con longitud igual a toda la altura del alma, cuando las fuerzas individuales concentradas de compresión o las componentes de compresión de pares de fuerzas concentradas, aplicadas en el mismo sitio de ambos lados de las alas de un miembro, exceda su resistencia teórica minorada Φ R_t. La resistencia teórica se calculará con la siguiente fórmula:

$$\Phi R_n = \Phi \left[\frac{24 t_w^3 \sqrt{EF_{yw}}}{h} \right], \text{ donde:}$$

Φ es igual a 0,90.

h es la longitud del alma de la columna entre las puntas de los filetes (Ver Figura 21).

En las Tablas 16.1, 16.2 y 16.3 se encuentran tabuladas las resistencias al pandeo del alma comprimida de la columna, para perfiles HEA, HEB y CP respectivamente, para un F_y de 2500 Kg/cm², en las Tablas 16.4, 16.5 y 16.6 para un F_y de 3500 Kg/cm² y en la Gráfica 4 se encuentran tabuladas dichas resistencias por unidad de espesor elevado al cubo, para cualquier tipo de perfil (incluyendo los W), mediante dos curvas (F_y de 2500 y 3500 Kg/cm²), para diferentes longitudes de almas de columnas entre filetes (h), de igual forma se presentan las ecuaciones de las curvas para mayor facilidad.

El valor de la resistencia teórica R₁ podrá reducirse en un cincuenta por ciento cuando el par de fuerzas de compresión concentradas esté aplicado a una distancia medida desde el extremo del miembro menor que d/2.

Consideraciones adicionales de diseño en la resistencia de rigidizadores y planchas.

- a) Rigidizadores transversales:
 - La suma del ancho de cada rigidizador más la mitad del espesor del alma de la columna no será menor que un tercio del ancho del ala o de la plancha de conexión de momento que entrega la fuerza concentrada.
 - El espesor del rigidizador debe ser mayor o igual que la mitad del espesor del ala de la columna o de la plancha que transmite la carga concentrada, ni menor que su ancho multiplicado por $1.82\sqrt{F_v/E}$.
- b) Planchas adosadas:
 - El espesor y la extensión de las planchas adosadas suministrará el material necesario para igualar o exceder las solicitaciones mayoradas.
 - La soldadura de las planchas adosadas deben ser diseñadas a fin de desarrollar la proporción del total de las fuerzas transmitidas a éstas.

2.3. Consideraciones de diseño para el efecto cortante en el panel de la conexión vigacolumna en la resistencia de las planchas.

Se dispondrán planchas adosadas en la zona del panel de las conexiones viga-columna, cuando los cortantes mayorados excedan la resistencia minorada Φ R_v. La fuerza cortante mayorada en el panel se calculará por medio de la siguiente expresión:

$$\Sigma F_{u} = \frac{M_{u1}}{d_{m1}} + \frac{M_{u2}}{d_{m2}} - V_{u}$$

Donde:

 $M_{ul} = M_{ulL} + M_{ulG}$ es la suma de los momentos debido a las cargas laterales mayoradas M_{ulL} y los momentos debidos a las cargas gravitacionales mayoradas M_{ulG} del lado derecho de la conexión.

 $\mathbf{M}_{u2} = \mathbf{M}_{u2L} - \mathbf{M}_{u2G}$ es la diferencia entre los momentos debidos a las cargas laterales mayoradas \mathbf{M}_{u2L} y los momentos debidos a las cargas gravitacionales mayoradas \mathbf{M}_{u2G} en el lado izquierdo de la conexión.

 d_{m1} , d_{m2} son las distancias entre las alas que resisten las fuerzas en la conexión.

A continuación en la Figura 22 se muestran los parámetros antes mencionados.

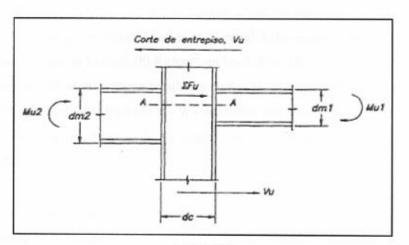


Figura 22

La resistencia teórica Φ R_v en pórticos de acero no arriostrados con diagonales y bajo los requisitos del Nivel de Diseño 1 (ND1), se calculará de la siguiente manera:

 Si en el análisis no se consideren los efectos de la deformación del panel en la estabilidad del pórtico.

- Cuando
$$N_u \le 0,40 N_y$$
, siendo $(N_y = A F_y)$
. $\Phi R_v = \Phi 0,7 F_y d_c t_w$

En las Tablas 17.1, 17.2 y 17.3 se encuentran tabuladas para esta condición las resistencias minorada a corte sin considerar deformaciones en el panel de la conexión para perfiles HEA, HEB y CP respectivamente, para un F_y de 2500 Kg/cm², en las Tablas 17.4, 17.5 y 17.6 para un F_y de 3500 Kg/cm² y en la Gráfica 5 se encuentran tabuladas dichas resistencias por unidad de ancho del alma, para cualquier tipo de perfil (incluyendo los W), mediante dos curvas (F_y de 2500 y 3500 Kg/cm²), en función de alturas de columnas (d_c), de igual forma se presentan las ecuaciones de las curvas para mayor facilidad.

- Cuando $N_u > 0,40 N_v$

$$\Phi R_v = \Phi 0.6 F_y d_c t_w \left[1.4 - \frac{N_u}{N_y} \right]$$

En las Tablas 18.1, 18.2 y 18.3 se encuentran tabuladas para esta condición las resistencias minorada a corte sin considerar deformaciones en el panel de la conexión para perfiles HEA, HEB y CP respectivamente, para un F_y de 2500 Kg/cm², en las Tablas 18.4, 18.5 y 18.6 para un F_y de 3500 Kg/cm² y en la Gráfica 6 se encuentran tabuladas dichas resistencias por unidad de ancho del alma, para cualquier tipo de perfil (incluyendo los W), mediante dos curvas (F_y de 2500 y 3500 Kg/cm²), en función de alturas de columnas (d_c), de igual forma se presentan las ecuaciones de las curvas para mayor facilidad.

- Si en el análisis se consideren los efectos de la deformación plástica del panel en la estabilidad del pórtico.
 - Cuando $N_u \le 0.75 N_v$

$$\Phi R_v = \Phi 0.6 F_y d_c t_w \left[1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_w} \right]$$

- Cuando N_u > 0,75 N_y

$$\Phi R_{v} = \Phi 0.6 F_{y} d_{c} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{w}} \right] \left(1.9 - \frac{1.2 N_{v}}{N_{y}} \right)$$

En las expresiones anteriores cada una de las variables tiene el siguiente significado:

Φ es igual a 0,90.

A es el área de la sección transversal de la columna.

F_y es la tensión de cedencia del alma de la columna.

Ny es la resistencia cedente a fuerzas normales de la columna, igual a Fy A.

bef es el ancho del ala de la columna.

db es la altura de la viga.

de es la altura de la columna.

ter es el espesor del ala de la columna.

tw es el espesor del alma de la columna.

A continuación se presentan una serie de tablas y gráficas que facilitan la obtención de las resistencias minoradas de los diferentes estados límites de agotamiento resistente presentados anteriormente, a fin de verificar la necesidad de rigidizadores y planchas adosadas en la columna de la conexión.

Resistencia minorada a flexión local del ala para $F_y = 2500 \text{ Kg/cm}^2$

Tabla 15.1

Perfil (HEA)	Resistencia minorada a flexión local del ala (Kg)
100	9000
120	9000
140	10160
160	11391
180	12691
200	14063
220	17016
240	20250
260	21973
280	23766
300	27563
320	33785
340	38285
360	38285
400	50766
450	62016
500	74391
550	81000
600	87891

Tabla 15.2

Perfil (HEB)	Resistencia minorada a flexión local del ala (Kg)
100	14063
120	17016
140	20250
160	23766
180	27563
200	31641
220	36000
240	40641
260	43066
280	45563
300	50766
320	59098
340	65004
360	71191
400	81000
450	95063
500	110250
550	118266
600	126563

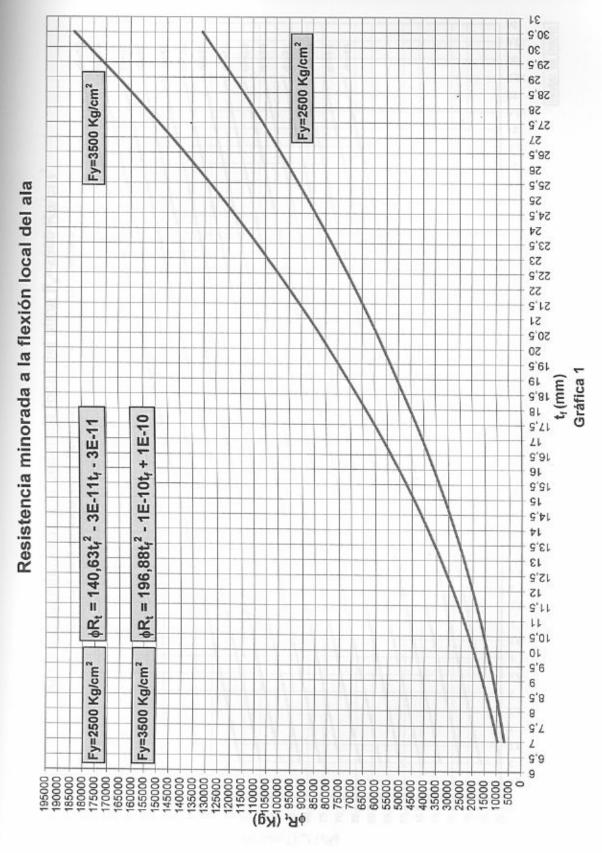
Table 153

Perfil (CP)	Resistencia minorada a flexión local del ala (Kg	
140 x 25,5	11391	
160 x 29,3	11391	
180 x 33,1	11391	
200 x 50,1	20250	
220 x 55,3	20250	
240 x 60,4	20250	
260 x 65,7	20250	

Resistencia minorada a flexión local del ala para $F_y = 3500 \text{ Kg/cm}^2$

Tabla 15.4

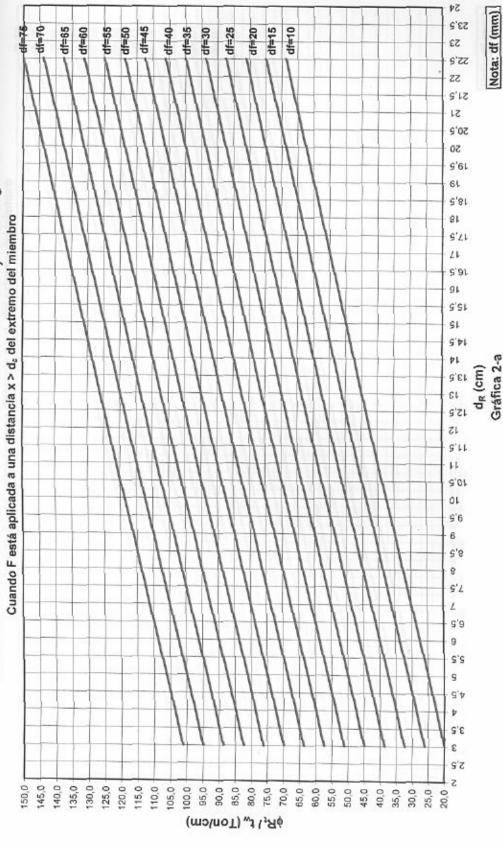
Perfil (HEA)	Resistencia minorada a flexión local del ala (Kg)			
100	12600			
120	12600			
140	14224			
160	15947			
180	17768			
200	19688			
220	23822			
240	28350			
260	30762			
280	33272			
300	38588			
320	47299			
340	53599			
360	53599			
400	71072			
450	86822			
500	104147			
550	113400			
600	123047			

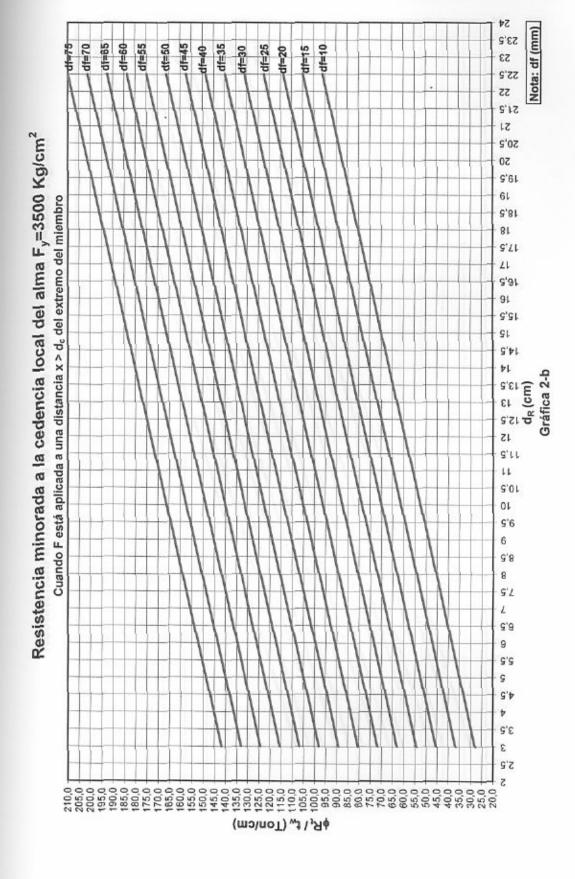

Tabla 15.5

Perfil (HEB)	Resistencia minorada a flèxión local del ala (Kg)
100	19688
120	23822
140	28350
160	33272
180	38588
200	44297
220	50400
240	56897
260	60293
280	63788
300	71072
320	82737
340	91005
360	99668
400	113400
450	133088
500	154350
550	165572
600	177188

Tabla 15.6

Perfil (CP)	Resistencia minorada a flexión local del ala (Kg)
140 x 25,5	15947
160 x 29,3	15947
180 x 33,1	15947
200 x 50,1	28350
220 x 55,3	28350
240 x 60,4	28350
260 x 65,7	28350

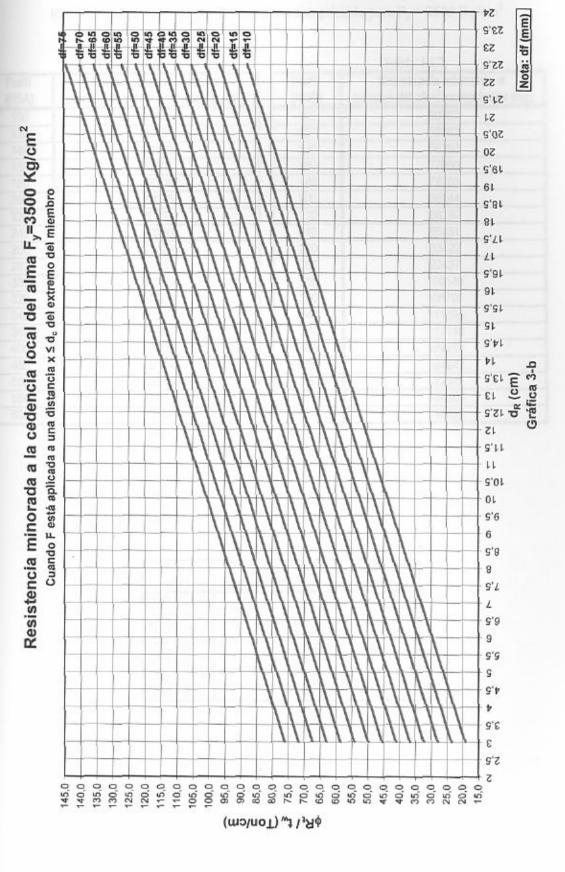



67

Resistencia minorada a la cedencia local del alma Fy=2500 Kg/cm²

54

23'9


Gráfica 3-a

Nota: df (mm) df=55 df=55 df=55 df=55 of=45 df=40 df=35 df=30 df=25 df=20 df=15 df=10 53 22,5 55 51'2 51 Resistencia minorada a la cedencia local del alma Fy=2500 Kg/cm² 20,5 50 9'61 46 Cuando F está aplicada a una distancia x ≤ d_c del extremo del miembro 3,81 18 9.71 11 16,5 91 16,5 42 9'11 d_R (cm) 13'2 13 15,5 15 9'11 11 g'QL 10 9'6 6 6,8 8 g'L L 9'9 9 9'9 S 9'4 4 3,5 3 5,5 2 100,0 95,0 85,0 70,0 65,0 0'09 55,0 50,0 0,08 75,0 35,0 45,0 40.0 30,0 25,0 15,0

φRt (Ton/cm)

Resistencia minorada al pandeo del alma comprimida para Fy = 2500 Kg/cm²

Tabla 16.1

Perfil Resistencia minorada al pandeo del alma comprimida (Kg) (HEA)

Tabla 16.2

Perfil (HEB)	Resistencia minorada al pandeo del alma comprimida (Kg)
100	60367
120	58082
140	58350
160	77050
180	78783
200	85144
220	88280
240	95431
260	88422
280	92437
300	100149
320	105790
340	111294
360	117118
400	129217
450	124842
500	122341
550	120596
600	119920

Tabla 163

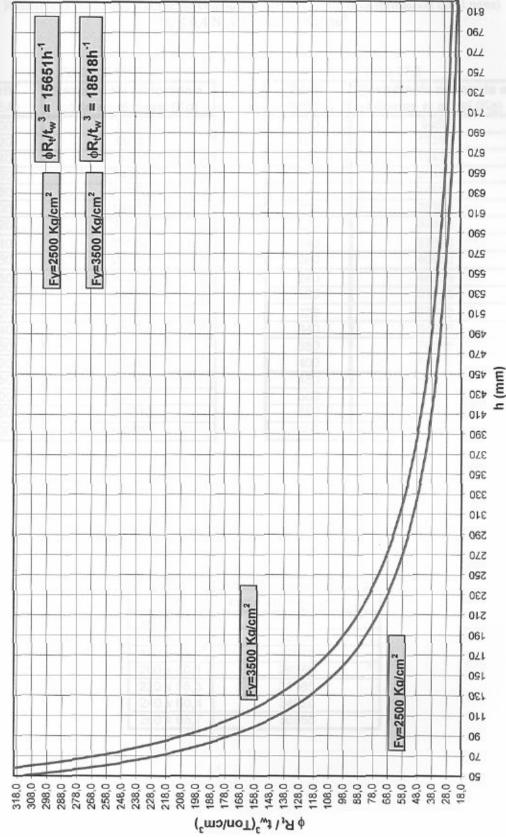
Perfil (CP)	Resistencia minorada al pandeo del alma comprimida (Kg)	
140 x 25,5	27709	
160 x 29,3	23807	
180 x 33,1	20868	
200 x 50,1	64826	
220 x 55,3	58211	
240 x 60,4	52821	
260 x 65,7	48345	

Resistencia minorada al pandeo del alma comprimida para $F_y = 3500 \text{ Kg/cm}^2$

Tabla 16.4

Tabla 16.5

Tabla 16.4		Tabla 16.5	
Perfil (HEA)	Resistencia minorada al pandeo del alma comprimida (Kg)	Perfil (HEB)	Resistencia minorada al pandeo del alma comprimida (Kg)
100	41335	100	71427
120	31281	120	68724
140	33489	140	69040
160	38461	160	91166
180	32786	180	93217
200	37952	200	100744
220	41788	220	104454
240	47636	240	112916
260	44138	260	104622
280	48374	280	109373
300	54675	300	118498
320	59999	320	125172
340	65337	340	131685
360	70951	360	138576
400	82710	400	152891
450	81871	450	147714
500	82050	500	144756
550	82576	550	142691
600	83713	600	141891


Tabla 16.6

Perfil (CP)	Resistencia minorada al pandeo del alma comprimida (Kg)
140 x 25,5	32786
160 x 29,3	28168
180 x 33,1	24691
200 x 50,1	76703
220 x 55,3	68876
240 x 60,4	62499
260 x 65,7	57202

Gráfica 4

Resistencia minorada a corte sin considerar los efectos de la deformación en el panel $N_u \le 0,4~N_y~y~F_y = 2500~Kg/cm^2$

Tabla 17.1

Perfil (HEA)	Resistencia minorada a corte en el panel (Kg)	
100	7560	
120	8978	
140	11521	
160	14364	
180	16160	
200	19451	
220	23153	
240	27169	
260	29531	
280	34020	
300	38824	
320	43943	
340	49376	
360	55125	
400	67568	
450	79695	
500	92610	
550	106313	
600	120803	

Taba 17.2

Perfil (HEB)	Resistencia minorada a corte en el panel (Kg)
100	9450
120	12285
140	15435
160	20160
180	24098
200	28350
220	32918
240	37800
260	40950
280	46305
300	51975
320	57960
340	64260
360	70875
400	85050
450	99225
500	114188
550	129938
600	146475

Tabla 173

Perfil (CP)	Resistencia minorada a corte en el panel (Kg)			
140 x 25,5	13230			
160 x 29,3	15120			
180 x 33,1	17010			
200 x 50,1	28350			
220 x 55,3	31185			
240 x 60,4	34020			
260 x 65,7	36855			

Resistencia minorada a corte sin considerar los efectos de la deformación en el panel $N_u \le 0,4~N_y~y~F_y = 3500~Kg/cm^2$

Tabla 17.4

Perfil (HEA)	Resistencia minorada a corte en el panel (Kg)			
100	10584			
120	12569			
140	16130			
160	20110			
180	22623			
200	27232			
220	32414			
240	38036			
260	41344			
280	47628			
300	54353			
320	61520			
340	69127			
360	77175			
400	94595			
450	111573			
500	129654			
550	148838			
600	169124			

Taba 17.5

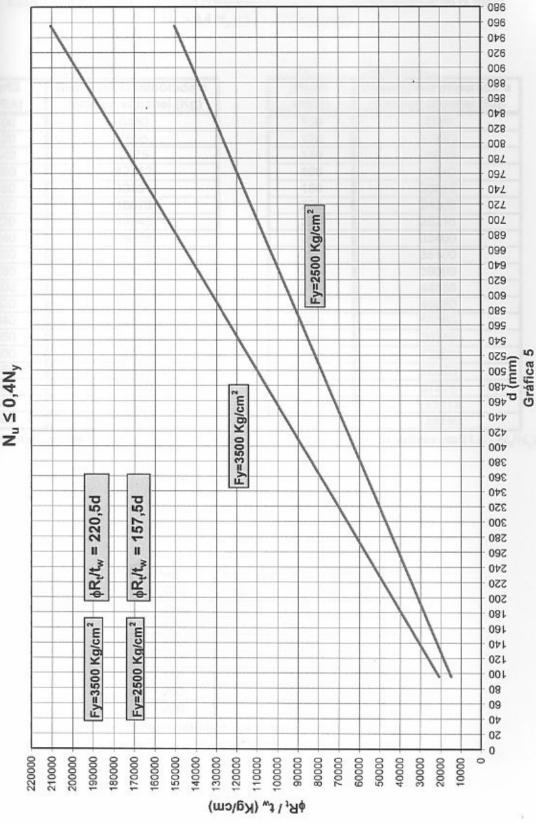

Perfil (HEB)	Resistencia minorada a corte en el panel (Kg)			
100	13230			
120	17199			
140	21609			
160	28224			
180	33737			
200	39690			
220	46085			
240	52920			
260	57330			
280	64827			
300	72765			
320	81144			
340	89964			
360	99225			
400	119070			
450	138915			
500	159863			
550	181913			
600	205065			

Tabla 17.6

Perfil (CP)	Resistencia minorada a corte en el panel (Kg)	
140 x 25,5	18522	
160 x 29,3	21168	
180 x 33,1	23814	
200 x 50,1	39690	
220 x 55,3	43659	
240 x 60,4	47628	
260 x 65,7	51597	

Resistencia minorada a corte sin considerar deformaciones en el panel

Resistencia minorada a corte sin considerar los efectos de la deformación en el panel $N_u > 0.4 \ N_y \ y \ F_y = 2500 \ Kg/cm^2$

Tabla 18.1

Perfil (HEA)	Resistencia minorada a corte en el panel (Kg)			
100	6480			
120	7695			
140	9875			
160	12312			
180	13851			
200	16673			
220	19845			
240	23288			
260	25313			
280	29160			
300	33278			
320	37665			
340	42323			
360	47250			
400	57915			
450	68310			
500	79380			
550	91125			
600	103545			

Nota: multiplicar los valores por (1,4 - N_u/N_y)

Tabla 18.2

Perfil (HEB)	Resistencia minorada a corte en el panel (Kg)			
100	8100			
120	10530			
140	13230			
160	17280			
180	20655			
200	24300			
220	28215			
240	32400			
260	35100			
280	39690			
300	44550			
320	49680			
340	55080			
360	60750			
400	72900			
450	85050			
500	97875			
550	111375			
600	125550			

Nota: multiplicar los valores por (1,4 - N_u/N_y)

Tabla 18.3

Perfil (CP)	Resistencia minorada a corte en el panel (Kg)			
100	11340			
120	14040			
140	17010			
160	21600			
180	25245			
200	29160			
220	33345			

Nota: multiplicar los valores por (1,4 - N_u/N_y)

Resistencia minorada a corte sin considerar los efectos de la deformación en el panel $N_u > 0.4 N_y y F_y = 3500 \text{ Kg/cm}^2$

Tabla 18.4

Perfil (HEA)	Resistencia minorada a corte en el panel (Kg)			
100	9072			
120	10773			
140	13825			
160	17237			
180	19391			
200	23342			
220	27783			
240	32603			
260	35438			
280	40824			
300	46589			
320	52731			
340	59252			
360	66150			
400	81081			
450	95634			
500	111132			
550	127575			
600	144963			

Nota: multiplicar los valores por (1,4 - N₁₁/N_y)

Tabla 18.5

Perfil (HEB)	Resistencia minorada a corte en el panel (Kg)	
100	11340	
120	14742	
140	18522	
160	24192	
180	28917	
200	34020	
220	39501	
240	45360	
260	49140	
280	55566	
300	62370	
320	69552	
340	77112	
360	85050	
400	102060	
450	119070	
500	137025	
550	155925	
600	175770	

Nota: multiplicar los valores por (1,4 - Nu/Nv)

Tabla 18.6

Perfil (CP)	Resistencia minorada a corte en el panel (Kg)			
100	15876			
120	19656			
140	23814			
160	30240			
180	35343			
200	40824			
220	46683			

Nota: multiplicar los valores por (1,4 - N_u/N_y)

> d (mm) Gráfica 6

Nota: los valores de la resistencia minorada deben multiplicarse

por (1,4 - Nu/Ny)

Fy=2500 Kg/cm² Resistencia minorada a corte sin considerar deformaciones en el panel Fy=3500 Kg/cm² 01/2 200 480 460 Nu > 0,4Ny φR_t/t_w = 189d + 7E-11 φR_t/t_w = 135d Fy=3500 Kg/cm² Fy=2500 Kg/cm² $\phi R_t \setminus t_w (Kg/cm)$

Tabla 19.1 Relaciones A_f/A_w para perfiles W

	Valores de A/A _w para perfiles W						
Sección	A _f /A _w	Sección	A/A	Sección	A _l /A _w	Sección	A/A
W36x359	0,899	W27x217	1,003	W18x143	1,204	W12x 87	1,748
x328	0,903	x194	0,986	x130	1,186	x 79	1,732
×300	0,887	x178	0,909	x119	1,082	x 72	1,720
x280	0,882	x161	0,902	x106	1,059	x 65	1,706
x260	0,850	x146	0,885	x 97	1,076	x 58	1,631
x245	0,835	x129	0,710	x 86	1,056	x 53	1,527
x230	0.818	x114	0,646	x 76	1.048	x 50	1,281
x256	0,648	x102	0,635	x 71	0,741	x 45	1,266
x232	0,644	x 94	0,597	x 65	0,751	x 40	1,281
x210	0,588	x 84	0,545	x 60	0,751	x 35	0,992
x194	0,587			x 55	0,722	x 30	0,963
x182	0,579	W24x176	1,021	x 50	0,714	x 26	0,936
x170	0,573	x162	0,994	x 46	0,604	x 22	0,575
x160	0,554	x146	0,959	x 40	0,595	x 19	0,520
x150	0,530	x131	0,904	x 35	0,504	x 16	0,419
x135	0,463	x117	0,877	, ,,,,	0,001	x 14	0,39
A100	0,400	x104	0,848	W16x100	1,170	~ 17	0,00
W33x354	0,925	x103	0,711	x 89	1,152	W10x 60	1,842
x318	0,926	x 94	0,683	x 77	1,146	x 54	1,882
x291	0,913	x 84	0,655	x 67	1,149	x 49	1,859
x263	0,909	x 76	0,616	x 57	0.789	x 45	1,603
x241	0,853	x 68	0,560	x 50	0,781	x 39	1,516
x221	0,833	x 62	0,428	x 45	0,768		1,348
x201	0,807	x 55	0,397	x 40	0,772	x 33 x 30	1,045
	0,667	X 55	0,557	100000		x 26	
x169 x152	0,612	W21x166	1,140	0.5023	0,679	08.180	1,033
		34249330		100000000	0,589	x 22	0,913
x141	0,583	x147	1,011	x 26	0,506	x 19	0,672
x130	0,541	x132	1,002	10444420	4 055	x 17	0,583
x118	0,492	x122	1,003	W14x120	1,855	x 15	0,497
W30x235	0.004	x111	0,994	x109	1,899	x 12	0,463
	0,961	x101	0,995	x 99	1,859	14/ 0 25	4 700
x211	0,905	x 93	0,683	x 90	1,860	W 8x 35	1,796
x191	0,887	x 83	0,686	x 82	1,348	x 31	1,711
x173	0,861	x 73	0,683	x 74	1,394	x 28	1,495
x148	0,672	x 68	0,667	x 68	1,382	x 24	1,487
x132	0,606	x 62	0,641	x 61	1,364	x 21	1,127
x124	0,590	x 57	0,532	x 53	1,141	x 18	1,007
x116	0,558	x 50	0,465	x 48	1,115	x 15	0,690
x108	0,516	x 44	0,423	x 43	1,103	x 13	0,593
x 99	0,476			x 38	0,861	x 10	0,635
				x 34	0,824		2022
				x 30	0,734	W 6x 25	1,580
				x 26	0,633	x 20	1,545
				x 22	0,557	x 15	1,238
						x 16	1,148
						x 12	0,890
						x 9	0,911
						W 5x 19	1,867
						x 16	1,748
						W 4x 13	1,442

Tabla 19.2 Relaciones A_l/A_w para perfiles HEA

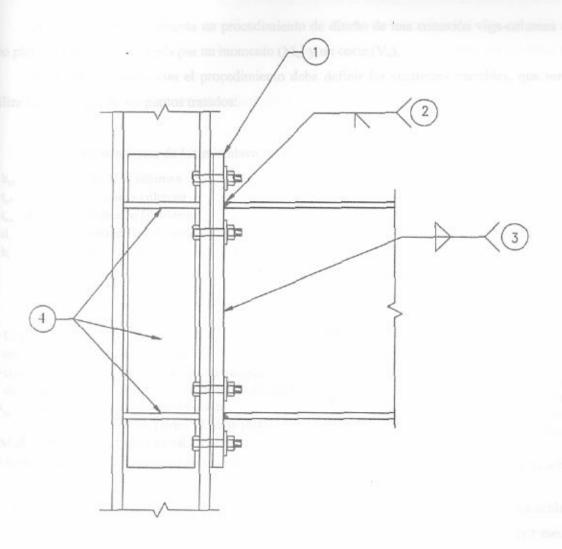
Sección	A_f/A_w
HEA 100	2,000
HEA 120	1,959
HEA 140	1,865
HEA 160	1,791
HEA 180	1,875
HEA 200	1,810
HEA 220	1,839
HEA 240	1,864
HEA 260	1,926
HEA 280	1,865
HEA 300	1,886
HEA 320	1,852
HEA 340	1,754
HEA 360	1,667
HEA 400	1,472
HEA 450	1,376
HEA 500	1,295
HEA 550	1,171
HEA 600	1,068

Tabla 19.3 Relaciones A_f/A_w para perfiles HEB

Sección	'A ₄ /A _w
HEB 100	2,083
HEB 120	2,072
HEB 140	2,069
HEB 160	1,940
HEB 180	1,950
HEB 200	1,961
HEB 220	1,971
HEB 240	1,981
HEB 260	2,022
HEB 280	1,967
HEB 300	1,978
HEB 320	1,917
HEB 340	1,810
HEB 360	1,714
HEB 400	1,515
HEB 450	1,400
HEB 500	1,305
HEB 550	1,179
HEB 600	1,075

Tabla 19.4
Relaciones A_f/A_w para perfiles CP

Sección	A _f /A _w
CP 140X25,5	1,721
CP 160X29,3	1,690
CP 180X33,1	1,667
CP 200X50,1	1,515
CP 220X55,3	1,497
CP 240X60,4	1,481
CP 260X65,7	1,469


Tabla 20.1 Valores de C_a para pernos A325

Valores de Ca	para pernos /	A325 (LRFD)
Material de la placa extremo	Material de la Viga F _y (Kg/cm²)	
F _y (Kg/cm ²⁾	2500	3500
2500	1,36	1,45
3500	1,23	1,31

Tabla 20.2 Valores de C_a para pernos A490

Valores de Ca	para pernos /	A490 (LRFD)
Material de la placa extremo	Material de la Viga F _y (Kg/cm²)	
F _y (Kg/cm ²⁾	2500	3500
2500	1,38	1,48
3500	1,25	1,33

PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE PLANCHA DE EXTREMO

- 1.- Plancha de extremo empernada al alma de la columna.
- 2.- Soldadura de penetración completa.
- 3.- Soldadura de filete.
- 4.- Rigidizadores transversales y planchas adosadas en la zona del panel.

V.3. PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE PLANCHA EXTREMA

A continuación se presenta un procedimiento de diseño de una conexión viga-columna de tipo plancha extrema, solicitada por un momento (Mu) y un corte (Vu).

Antes de comenzar con el procedimiento debe definir las siguientes variables, que serán utilizadas a lo largo de los puntos tratados:

Dimensiones de los miembros de la conexión:

bet = Ancho del ala de la columna

tcf = Espesor del ala de la columna

tcw = Espesor del alma de la columna

d_c = Altura del perfil de la columna

he = altura libre del alma de la columna sin los filetes

bbf = Ancho del ala de la viga

the Espesor del ala de la viga

t_{low} = Espesor del alma de la viga

d_b = Altura del perfil de la viga

hb = altura libre del alma de la viga sin los filete

· Tensiones, propiedades y solicitaciones:

F_v= La tensión de cedencia de los materiales.

F_n = tensión última de la placa de extremo.

Ca = constante que relaciona la propiedad del material de la viga y la placa, obtener de las Tablas 20.1 o 20.2.

A/A_w= Relación entre áreas del alma y ala de

la viga, se obtiene de las Tablas 19.1 a la 19.4.

E = Módulo de elasticidad del material.

N_v = Resistencia cedente a fuerzas normales de la columna.

Mu1 = Suma de los momentos debido a las cargas laterales mayoradas Mu1L y los momentos debidos a las cargas gravitacionales mayoradas Mu1G del lado derecho de la conexión.

Mu2 = Diferencia entre los momentos debidos a las carg laterales mayoradas Mu2L y los momentos debi a las cargas gravitacionales mayoradas Mu2G en el lado izquierdo de la conexión.

Nu = Fuerza axial mayorada actuante en la columna.

 El momento actuante en la conexión se sustituye por un par de fuerzas, el cual una actúa a tracción y la otra a compresión en las alas de la viga, dichas fuerzas se calculan por medio de la siguiente expresión:

$$P_{uf} = \frac{Mu}{d_b - t_{bf}}$$

- Se dispondrán de 8 pernos en total, 4 para la zona donde actúa la fuerza a tracción y los restantes para la zona a compresión.
- La fuerza P_{uf} debe ser dividida entre los 4 pernos correspondientes a la zona a tracción, a fin de determinar la fuerza a tracción que le corresponde a cada perno. Se selecciona de la

Tabla 5 del Capítulo IV, el diámetro del tipo de perno a utilizar, bien sea A325 ó A490, que posea un valor de resistencia superior a la fuerza hallada.

- 4) En la zona de compresión por lo general se colocan el mismo número de pernos que en la zona de tracción como se especificó en el punto dos; pero cuando se diseña en ND1 se puede tomar la opción de colocar sólo dos pernos en lugar de cuatro, en la zona de compresión.
- Se selecciona de la Tabla 1 del Capítulo IV el diámetro del agujero estándar adecuado al diámetro del perno.
- 6) Se procede al calculo de la resistencia al corte bajo cargas de servicio, para esto se puede obtener el valor de dicha resistencia utilizando la Tabla 8 del Capítulo IV, de acuerdo al tipo de perno y agujero, este valor debe ser multiplicado por el total de pernos utilizados en la conexión y compararlo con el corte actuante sin mayorar, puede darse el caso que el corte sin mayorar exceda a dicha resistencia, si esto sucediera se debe aumentar el diámetro nominal de los pernos.
- 7) De igual forma se debe calcular la resistencia al deslizamiento bajo cargas mayoradas, haciendo uso de la Tabla 10 del Capítulo IV, de acuerdo al tipo de perno y agujero, este valor debe ser multiplicado por el total de pernos utilizados en la conexión y compararlo con el corte actuante mayorado V_u, puede darse el caso que el corte mayorado exceda a dicha resistencia, si esto sucediera se debe aumentar el diámetro nominal de los pernos.
- 8) Se calcula la resistencia al corte utilizando la Tabla 4 del Capítulo IV, de acuerdo al tipo de perno y sabiendo si su rosca está incluida o excluida en el plano de corte (por lo general es más conveniente tomar en este tipo de conexiones roscas incluidas), este valor se multiplica por el total de pernos de la conexión y se compara con el corte actuante V_u, puede darse el caso que el corte mayorado exceda a dicha resistencia, si esto sucediera se debe aumentar el diámetro nominal de los pernos.
- Se recomienda tomar como ancho para la plancha extrema un valor igual al ancho de la viga incrementado en 2,54 cm. (1 plg.). b_p = b_{bf} + 2,54.
- 10) Se procede a diseñar la soldadura de penetración completa entre el ala de la viga y la plancha, para esto se debe cumplir con un biselado a 45° y una raíz de 6 mm.
- 11) Después de determinada la fuerza a compresión y tracción P_{uf} y de haber verificado las resistencias anteriores, se procede a considerar una porción del ala de la viga y la plancha adyacente para que se comporte como un perfil "T", observada en la Figura 19 del presente

Capítulo, a partir del cual se calcula el momento (M_t) y la fuerza cortarte (F₁) que actúa en la plancha, como se muestra a continuación:

11.1) Calcular los valores de p_f, p_e y M_t con las siguientes fórmulas:

$$p_f = d_b + 1,27$$

$$p_c = p_f - 0.25d_b$$

$$F_1 = \frac{P_{nf}}{2}$$

$$M_{I} = F_{1}s = \left(\frac{P_{uf}}{2}\right)\left(\frac{p_{e}}{2}\right)$$

11.2) Hallar el momento efectivo M_{eu} que es igual a α_m multiplicado por M_t , siendo

$$\alpha_{\scriptscriptstyle m} = C_a C_b \left(\frac{A_f}{A_{\scriptscriptstyle W}} \right)^{\frac{1}{3}} \left(\frac{p_e}{d_b} \right)^{\frac{1}{4}}$$
, en donde:

C_a se obtiene de la Tabla 20.1 ó 20.2 del Capítulo V de acuerdo al tipo de perno, la tensión de cedencia (F_y) de la viga y la tensión de cedencia (F_y) de la plancha extrema.

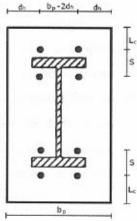
$$C_b = \sqrt{\frac{b_f}{b_p}}$$

 $\left(\frac{A_f}{A_w}\right)$ se obtiene de las Tablas 19.1, 19.2, 19.3 ó 19.4 del Capítulo V de acuerdo al

tipo de perfil que se esté utilizando en la columna.

11.3) Se procede a calcular el espesor requerido de la plancha extrema:

$$t_{preq} = \sqrt{\frac{4M_{eu}}{0.90b_p F_y}}$$
, el valor obtenido de esta fórmula debe ser llevado al espesor


comercial superior.

- 12) Se calcula la resistencia minorada a la cedencia por corte en la plancha extrema:
 - Φ R_t = (0,90)0,60 A F_y, siendo A el área transversal de la plancha. El valor de Φ R_t se compara con la fuerza F₁; si la resistencia minorada resulta ser menor que dicha fuerza se debe aumentar el espesor de la plancha extrema.
- 13) Se procede al diseño de la soldadura entre la plancha extrema y el alma de la viga, para esto se debe dividir el corte actuante entre dos y el valor obtenido debe ser nuevamente dividido entre la longitud total disponible para la soldadura de filete (siendo esta la altura del alma

de la viga sin incluir los filetes). Conocido el tipo de electrodo a usar en la soldadura, buscar en la columna ΦR_t/L de la Tabla 13.1 o 13.2 del Capítulo IV la resistencia que mejor se aproxime a dicho valor, tomándose su correspondiente tamaño nominal. Como a dicha resistencia también le corresponde un tamaño mínimo de espesor de plancha especificado en la misma Tabla, se debe verificar que este espesor mínimo sea menor o igual que el espesor del alma de la viga, de igual forma es necesario revisar si el tamaño nominal de la soldadura es el adecuado para la parte más gruesa a unir, según la Tabla 12 de Capítulo IV. En caso que el espesor del alma de la viga sea menor que el especificado en las tablas 13, se debe aumentar el electrodo o aumentar el tamaño de la viga.

- 14) Calcular la resistencia de la soldadura colocada en el punto anterior, como ΦR_t = 0,318 D L F_{EXX}, siendo D el tamaño nominal seleccionado y L dos veces la altura del alma de la viga, y comparar dicha resistencia con el corte actuante (V_u).
- 15) Se deben definir las diferentes distancias a los bordes y las separaciones entre los pernos de la siguiente manera:

- 15.1) La distancia vertical (Le) desde el centro de los pernos exteriores a los bordes de la plancha extrema, tanto de la zona de tracción como la de compresión, debe cumplir con las medidas de la Tabla 2 del Capítulo IV, la distancia a tomar es el mayor valor correspondiente al diámetro nominal del perno seleccionado para la conexión.
- 15.2) La distancia horizontal desde el centro del perno al borde de la plancha extrema se puede calcular con la siguiente expresión:

$$d_h = \frac{2b_p - b_{bf} - t_{hw}}{4}$$

15.3) Se debe verificar que la distancia horizontal entre los centros de los pernos (b_p-2d_h) sea mayor a 3 veces el diámetro nominal, en caso contrario se debe tomar este valor

como nueva separación entre los centros de los pernos y d_h será $\left(\frac{b_p - 3d_b}{2}\right)$ (todas estas medidas deben ser distribuidas de forma simétrica).

- 15.4) La distancia vertical entre los centros de los pernos tanto de la zona de compresión como la de tracción será (s = $2p_f + t_f$), si esta medida es menor que 3 veces el diámetro nominal del perno, se debe volver a calcular el espesor de la plancha extrema tomando como nueva variable p_f al valor dado por $\left(\frac{3d_b t_{bf}}{2}\right)$
- 16) Calcular la resistencia por aplastamiento de la plancha extrema, procediendo con los siguientes pasos:
 - 16.1) Para los agujeros más cercanos al borde superior (primera fila), se debe verificar si L_c ≤ 2d, siendo L_c = L_e 0,5d_a, si esto ocurre, el valor de dicha resistencia se calcula mediante la siguiente expresión: Φ R_t = 0,75*1,2 L_c t F_u, en caso contrario (L_c > 2d) utilizar las Tablas 6.1 o 6.2 del Capítulo IV de acuerdo al diámetro del perno, espesor de la plancha y utilizando el valor correspondiente a la primera condición (cuando las deformaciones en el agujero del perno es una consideración de diseño).
 - 16.2) Para los agujeros siguiente (segunda fila), se debe verificar si L_c ≤ 2d, siendo L_c = s d_a, si esto ocurre, el valor de dicha resistencia se calcula mediante la siguiente expresión: Φ R_t = 0,75 1,2 L_c t F_u, en caso contrario (L_c > 2d) utilizar las Tablas 6.1 o 6.2 del Capítulo IV de acuerdo al diámetro del perno, espesor de la plancha y utilizando el valor correspondiente a la primera condición (cuando las deformaciones en el agujero del perno es una consideración de diseño).
 - 16.3) Para los agujeros ubicados en la tercera fila, ya en la zona de compresión, L_c = d_{viga} 2t_{lof} 2p_f d_a y la resistencia al aplastamiento se calcula utilizando las Tablas 6.1 o 6.2 del Capítulo IV de acuerdo al diámetro del perno, espesor de la plancha y utilizando el valor correspondiente a la primera condición (cuando las deformaciones en el agujero del perno es una consideración de diseño).
 - 16.4) Para la obtención de la resistencia total al aplastamiento se debe multiplicar por 2 la resistencia obtenida en el punto (16.1), por 4 la resistencia obtenida en el punto (16.2) y por 2 la resistencia obtenida en el punto (16.3), siendo posteriormente sumadas. El valor obtenido se debe comparar con el corte actuante (V_u) en la conexión.

- 17) Producto de la acción del par de fuerzas que actúa en la plancha extrema, se genera un posible ligero levantamiento de la plancha, ocasionando una menor superficie de contacto con la columna. Por este motivo se debe verificar cual es esta área de contacto real cumpliendo con los siguientes pasos, siendo éstos, uno de los posibles criterios de revisión de dicha área:
 - 17.1) Tomar la plancha extrema con las dimensiones ya calculadas y disponer la tracción P_{uf} calculada con anterioridad y una fuerza a compresión distribuida P, cuyo valor y longitud no es conocida, se debe tener en cuenta que la fuerza P_{uf} debe ser ubicada en el centro de gravedad de los cuatro agujeros superiores. Con el gráfico presentado a continuación, se procede con los siguientes cálculos:

Puf
$$=$$
 $M_u = P_{uf} \left[d_{plancha} - \left(Lc_{externo} + \frac{Lc_{interno}}{2} \right) \right] - b_p XP \left(\frac{X}{2} \right)$

$$= P_{uf} = b_p X P$$

Siendo:

Lc_{externo} la distancia desde el centro de los pernos exteriores hasta el borde superior de la plancha.

Lc_{interno} la distancia desde el centro de los pernos de la segunda fila hasta el centro de los pernos en la primera fila

- 17.2) Una vez resuelto el sistema de ecuaciones y obtenido el valor de X y P, se debe proceder a verificar la resistencia al deslizamiento de esta zona comprimida mediante la siguiente expresión 0,33 (b_p X - A_g) P, siendo A_g el área de los agujeros que queden dentro de la distancia X.
- 17.3) Verificar que la resistencia calculada en el punto anterior sea mayor que el corte actuante (V_u) en la conexión, en caso contrario, es necesario aumentar el ancho de la plancha a fin de obtener mayor superficie de contacto.
- 17.4) Es necesario repetir los pasos desde el (17.1) al (17.3), pero sustituyendo el valor de P_{uf} en el sistema de ecuaciones, por la máxima resistencia minorada a tracción de la Tabla 5 del Capítulo IV y multiplicando dicho valor por los 4 pernos de la zona a tracción.

Una vez culminado el diseño de la plancha extrema se procede a verificar si dicha conexión necesita el uso de rigidizadores y/o planchas adosadas para controlar los estados límites de agotamiento resistente, para esto se continúa con los siguientes cálculos:

- 18) Falla por flexión local del ala de la columna: Por medio de las Tablas 15.1 a la 15.6 del Capítulo V (para perfiles HEA, HEB o CP con un F_y de 2500 kg/cm² o para un F_y de 3500 Kg/cm²) tomar la resistencia correspondiente al perfil de la columna que se posee, o por medio de la Gráfica 1 (F_y = 2500 kg/cm²) y Gráfica 2 (F_y = 3500 Kg/cm²) del mismo Capítulo (para cualquier tipo de perfil, incluyendo los W) en la cual se entra conociendo el t_f de la columna para así obtener dicha resistencia (de igual forma se pueden utilizar las ecuaciones correspondientes a las gráficas), cualquiera que fuese el caso del tipo de perfil, se debe comparar el valor obtenido de la resistencia minorada con la componente a tracción del par transmitido. Si la resistencia a la flexión local del ala es menor que la fuerza de tracción actuante, es necesario el uso de rigidizadores transversales.
- 19) Falla por cedencia local del alma: Utilizar para el cálculo de esta resistencia las Gráficas 2-a o 2-b del Capítulo V, (si la fuerza concentrada, esté aplicada a una distancia del extremo del miembro mayor que la altura de éste) o las Gráficas 3-a o 3-b (Cuando la fuerza concentrada está aplicada a una distancia del extremo del miembro menor o igual a la altura de éste), para cualquier tipo de perfil, de acuerdo a la longitud de contacto en la conexión (d_R, este valor es igual al ancho de la plancha extrema), la resistencia a la cedencia F_y de los materiales y las medidas de los perfiles a utilizar. Una vez obtenida la resistencia minorada a la cedencia local del alma se debe comparar su valor con las dos componentes del par de fuerzas concentradas actuante, si esta resultase ser menor, es necesario el uso de rigidizadores transversales.
- 20) Falla por aplastamiento local del alma: Se hará necesario el uso de un rigidizador transversal, cuando las solicitaciones mayoradas de compresión, sobre el borde de los filete del alma, exceda su resistencia teórica minorada Φ R_t. Dicha resistencia teórica se determinará como se indica a continuación, de acuerdo al caso que se posea en la conexión:
 - Cuando la carga concentrada de compresión está aplicada a una distancia de mayor o igual a d/2 del extremo de la columna.

$$\Phi R_{r} = 0.75 * 0.8 t_{w}^{2} \left[1 + 3 \left(\frac{d_{R}}{d} \right) \left(\frac{t_{w}}{t_{f}} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_{f}}{t_{w}}}$$

 Si la carga concentrada de compresión está aplicada a una distancia menor a d/2 del extremo de la columna.

Cuando $d_R/d \le 0,2$

$$\Phi R_t = 0.75 * 0.4 t_w^2 \left[1 + 3 \left(\frac{d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

Cuando $d_R/d > 0.2$

$$\Phi R_t = 0.75 * 0.4 t_w^2 \left[1 + \left(\frac{4d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

- 21) Falla por pandeo del alma comprimida: Para el cálculo de la resistencia minorada al pandeo del alma comprimida de la columna se pueden usar las Tablas 16.1 a la 16.6 del Capítulo V (para perfiles HEA, HEB o CP con un F_y de 2500 kg/cm² o para un F_y de 3500 Kg/cm²) o por medio de la Gráfica 4 del mismo Capítulo (para cualquier tipo de perfil, incluyendo los W, para un F_y de 2500 kg/cm² o de 3500 kg/cm²), en la cual se entra con el valor de la longitud del alma de la columna entre las puntas de los filetes (h) y de acuerdo al valor de la resistencia a la cedencia del material de la conexión; de igual forma se puede obtener el valor de la resistencia utilizando las ecuaciones correspondientes indicadas en la gráfica. Si la resistencia minorada al pandeo del alma comprimida obtenida para la columna de la conexión por cualquiera de las tablas o graficas, es menor a la fuerza de compresión que actúa, se debe recurrir al uso de rigidizadores transversales.
- 22) Efecto cortante en el panel de la conexión viga-columna: Se debe proceder primero al cálculo de la fuerza cortante que actúa en el panel de la conexión para esto utilice la siguiente expresión:

$$\Sigma F_u = \frac{M_{u1}}{d_{u1}} + \frac{M_{u2}}{d_{u2}} - V_u$$

Una vez obtenido el corte total actuante en el panel de la conexión, se procede a calcular su resistencia minorada, para esto se debe definir si se considera o no los efectos de la deformación del panel en la estabilidad del pórtico. Si no se consideran las deformaciones, se pueden utilizar Las Tablas 17.1 al 17.6 del Capítulo V, si $N_u \leq 0.4~N_y$

(para perfiles HEA, HEB y CP) de acuerdo a la resistencia a la cedencia de los materiales de la conexión (F_y) o las Tablas 18.1 al 18.6, si $N_u > 0.4$ N_y (para perfiles HEA, HEB y CP); igualmente si no se consideran los efectos de la deformación se puede utilizar el Gráficos 5 del Capítulo V, si $N_u \le 0.4$ N_y o el Gráfico 6 del mismo capítulo, si $N_u > 0.4$ N_y (para cualquier tipo de perfil, incluyendo los W), en dichos gráficos se entra de acuerdo al valor de la altura de la columna (d_c) y al valor de la resistencia a la cedencia de los materiales (F_y) , para así obtener dicha resistencia (de igual forma se pueden utilizar las ecuaciones correspondientes a las gráficas)

Cuando se consideran los efectos de la deformación del panel en la estabilidad del pórtico se debe recurrir al cálculo de la resistencia por medio de las siguientes fórmulas

- Cuando $N_u \le 0.75 N_v$

$$\Phi R_{v} = 0.90 * 0.6 F_{y} d_{c} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{w}} \right]$$

Cuando N_u > 0,75 N_y

$$\Phi R_{v} = 0.90 * 0.6 F_{y} d_{c} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{w}} \right] \left(1.9 - \frac{1.2 N_{u}}{N_{y}} \right)$$

Una vez calculada la resistencia al corte del panel de la conexión, por cualquiera de los casos anteriormente señalados, se debe comparar su valor con la fuerza cortante mayorada total actuante en la conexión (ΣF_u) obtenida al inicio de este punto, si la resistencia minorada al corte es menor que la fuerza cortante mayorada actuante, se debe disponer de planchas adosadas al panel de la conexión.

Si una vez concluido todos los puntos anteriores, no se evidenció la necesidad de colocar rigidizadores para controlar los diferentes estados límites de agotamiento, o de planchas adosadas al panel de la conexión, para controlar el corte, se puede dar por terminado el diseño de la conexión, en caso contrario, se debe proceder a verificar las siguientes pautas para el diseño de los rigidizadores y de las planchas adosadas al panel de corte de la conexión:

23) Si la columna se encuentra conectada por vigas a ambos lados, el rigidizador debe ocupar toda la extensión del alma de la columna. En caso contrario, es decir si la columna posee sólo una viga conectada en un solo lado, el rigidizador es más conveniente que ocupe la mitad del alma de la columna.

24) Calcular el ancho y el espesor mínimo del rigidizador a partir de las siguientes expresiones:

$$b \ge \frac{b_f}{3} - \frac{t_w}{2}$$

$$e \ge \frac{t_f}{2} \delta b * 1.82 \sqrt{\frac{F_y}{E}}$$

Nota: Si el ancho del rigidizador resulta ser mayor que $\frac{b_f - t_w}{2}$, se debe aumentar su espesor.

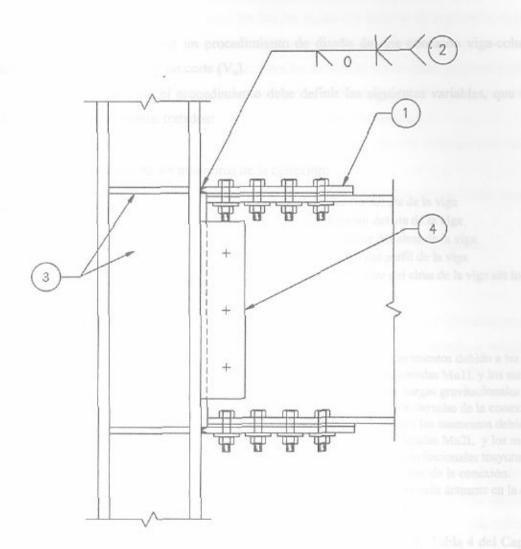
- 25) A partir del ancho y el espesor definido en el punto anterior, se debe calcular la capacidad a compresión y a tracción del rigidizador, la capacidad a tracción se obtiene al multiplicar el área transversal del mismo por 0,90 (F_y), este valor debe ser comparado con el P_{uf} actuante. Si el valor de la resistencia del rigidizador es menor que la fuerza par actuante (P_{uf}) en la conexión se debe aumentar su espesor.
- 26) Una vez seleccionado el rigidizador a usar, se debe revisar su relación ancho/espesor, para eso se divide su ancho entre su espesor $\left(\frac{b_p}{t_p}\right)$ y se compara con el valor obtenido de

 $0,55\sqrt{\frac{E}{F_y}}$. Si la relación es menor que dicho valor, es satisfactoria, en caso contrario se

debe aumentar su espesor.

- 27) Se procede al diseño de la soldadura entre el rigidizador y el perfil de la columna, antes de realizar cualquier cálculo se debe definir primeramente, si el rigidizador va a ocupar toda la extensión del alma de la columna o sólo la mitad de su alma, esto dependerá si dicha columna estará o no conectada a ambos lados con una viga; una vez definido este punto se continua con los siguientes cálculos:
 - 27.1) Definir como (L) a dos veces la longitud (b) calculada en el punto 24) más el alma de la columna, si el rigidizador ocupará toda la extensión del alma de la columna; o definir como (L) a la longitud (b) calculada en el punto 24) más la mitad del alma de la columna, si el rigidizador ocupará solo la mitad del alma de la columna., según fuese el caso a diseñar.
 - 27.2) Se procede a realizar el siguiente cálculo $\frac{P_{nf}}{4L}$, lo cual corresponde a la resistencia por unidad de longitud de los cordones de soldadura ubicados arriba y debajo de los dos rigidizador ubicados a ambos lados del alma de la columna.

- 27.3) Para calcular el tamaño nominal de la soldadura se debe tomar el valor del punto anterior y dividirlo entre 0,318F_{EXX}, donde F_{EXX}, es la resistencia de la soldadura en Kg/cm² (la cual depende del tipo de electrodo a utilizar); es necesario verificar que este tamaño nominal sea mayor o igual al requerido para la parte más gruesa a unir (alma, ala o rigidizador) según la Tabla 12 del Capítulo IV, si esto no ocurre debe llevarse el tamaño nominal de la soldadura al valor indicado en dicha tabla.
- 27.4) Una vez seleccionado el tamaño nominal de la soldadura, es necesario calcular su resistencia como ΦR_t = 0,318 D L F_{EXX} y compararla con la resistencia a corte tanto del alma, ala como del rigidizador, para esto se sede calcular la resistencia de cada uno por medio de la siguiente expresión: 0,90 0,60 F_y A_t, donde A_t es el área transversal del material estudiado. Si la resistencia de la soldadura es mayor que algunas de las tres resistencias a corte calculada, se debe reconsiderar el problema de la conexión, modificando las dimensiones de sus miembros.


Si en el punto (22) (verificación del corte en el panel), se evidenció la necesidad de colocar una plancha adosada se debe continuar con los siguientes pasos:

- 28) Calcular el espesor requerido para resistir el corte en el panel de la conexión con la siguiente expresión t = \frac{\sum_{F_w}}{0.90*0.60*F_y*d_c}, luego restar t_{cw} a este valor, el resultado de la resta debe ser dividido entre dos (debido a que se posee una plancha adosada a cada lado del alma de la columna), obteniéndose así el espesor requerido para las planchas adosada, (recordar que este valor debe ser llevado a un espesor comercial inmediato superior). Se debe calcular la resistencia a corte de la plancha adosada seleccionada mediante la siguiente expresión 0,90 * 0,60 F_y A_t.
- 29) La capacidad resistente por unidad de longitud de la soldadura se obtiene al dividir la resistencia a corte de la plancha adosada calculada en el punto anterior entre (L), siendo (L) la longitud superior e inferior de la plancha. El tamaño nominal de la soldadura se obtiene al dividir la capacidad resistente por unidad de longitud entre 0,318F_{EXX}; es necesario verificar que este tamaño nominal sea mayor o igual al requerido para la parte más gruesa a unir según la Tabla 12 del Capítulo IV.

Una vez concluido todos los puntos anteriores, se puede dar por terminado el diseño de la conexión de plancha extrema para las estructuras de acero.

PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE PLANCHA EMPERNADA AL ALA DE LA VIGA CON PLANCHA DE CORTE

- 1.- Plancha empernada ala de la viga.
- 2.- Soldadura de penetración completa.
- 3.- Rigidizadores transversales y planchas adosadas a la zona del panel.
- 4.- Plancha de corte empernada al alma de la viga y soldada al ala de la viga.

V.4. PROCEDIMIENTO DE DISEÑO PARA CONEXIONES DE PLANCHAS EMPERNADAS AL ALA DE LA VIGA, CON PLANCHAS DE CORTE

A continuación se presenta un procedimiento de diseño de una conexión viga-columna, solicitada por un momento (M_u) y un corte (V_u) .

Antes de comenzar con el procedimiento debe definir las siguientes variables, que serán utilizadas a lo largo de los puntos tratados:

Dimensiones de los miembros de la conexión:

bcf = Ancho del ala de la columna

tef = Espesor del ala de la columna

tcw = Espesor del alma de la columna

de = Altura del perfil de la columna

h_e = altura libre del alma de la columna sin los filetes

bis = Ancho del ala de la viga

tbf = Espesor del ala de la viga

t_{bw} = Espesor del alma de la viga

d_b = Altura del perfil de la viga

h_b = altura libre del alma de la viga sin los filetes

· Tensiones, propiedades y solicitaciones:

F_y = Tensión a la cedencia de los materiales.

F_u = Tensión a rotura de los materiales.

E = Módulo de elasticidad del material

N_y = Resistencia cedente a fuerzas normales de la columna

Mu1 = Suma de los momentos debido a las cargas laterales mayoradas Mu1L y los momentos debidos a las cargas gravitacionales mayoradas Mu1G del lado derecho de la conexión.

Mu2 = Diferencia entre los momentos debidos a las cargas laterales mayoradas Mu2L y los momentos debido a las cargas gravitacionales mayoradas Mu2G en el lado izquierdo de la conexión.

Nu = Fuerza axial mayorada actuante en la columna.

- Seleccionar un diámetro de perno (A325-N o A490-N) y ubicar de la Tabla 4 del Capítulo IV la resistencia a corte por perno cuando la rosca está incluida en el plano de corte.
- 2) Dividir el corte actuante (Vu) entre dos, debido a que se utilizarán dos planchas de corte (una a cada lado del alma de la viga), luego el valor obtenido debe ser dividido entre la resistencia a corte del perno seleccionado en el punto anterior, con esto se obtendrá el número de pernos que serán necesarios para la plancha de corte (recordar que el número de pernos obtenidos deben ser llevados a un número entero inmediato superior, siendo lo máximo 3 y lo mínimo 2).
- De la Tabla 1 del Capítulo IV se debe tomar el diámetro del agujero estándar acorde al perno que fue seleccionado.

- 4) Para las diferentes distancias entre pernos y bordes de las planchas se debe proceder a:
 - 4.1) Utilizar la Tabla 2 del Capítulo IV, para la distancia vertical (L_e) medida desde el centro de los pernos externos a los bordes superior e inferior de la plancha, tomando de la tabla como dicha distancia el mayor valor correspondiente al perno.
 - 4.2) Utilizar la Tabla 2 del Capítulo IV, para las distancias horizontales desde el centro de los pernos a los bordes laterales (esto fijará el ancho de la plancha), debe sumarse una holgura de 1,27 cm. del lado que se va ha conectar a la columna.
 - 4.3) La separación entre los centros de los agujeros de la plancha debe ser tres veces el diámetro nominal de los pernos.
- Una vez ubicadas las distancias, deben ser sumadas y verificar si la longitud total es mayor a la altura del alma de la viga.
- 6) Para el calculo del espesor de la plancha de corte se aplican los siguientes pasos:
 - 6.1) Para el agujero más cercano al borde superior: Calcular L_e = L_e – 0,5d_a.
 - 6.2) Calcular la resistencia al aplastamiento en función del espesor de la plancha, para esto se debe verificar si L_c ≤ 2d_b, si esto ocurre el valor de dicha resistencia se calcula por medio de la siguiente expresión: ΦR_t = 0,75 * 1,2 L_c t F_u, pero si L_c > 2d_b calcular la resistencia mediante la expresión ΦR_t = 0,75 * 2,4d_b t F_u
 - Para los agujeros internos:
 Calcular L_c = 3d_b d_a.
 - 6.4) Calcular la resistencia al aplastamiento en función del espesor de la plancha, para esto se debe verificar si L_c ≤ 2d_b, si esto ocurre el valor de dicha resistencia se calcula por medio de la siguiente expresión: ΦR_t = 0,75 * 1,2 L_c t F_u, pero si L_c > 2d_b calcular la resistencia mediante la expresión ΦR_t = 0,75 * 2,4d_b t F_u.
 - 6.5) Sumar la resistencia al aplastamiento correspondiente al agujero más externo (calculada en el punto 6.2), con la resistencia al aplastamiento de los agujeros internos (calculada en el punto 6.4, nótese que la resistencia al aplastamiento de los agujeros internos debe multiplicarse por tantos agujeros internos se posea).
 - 6.6) Para hallar el espesor requerido de la plancha (t), se debe igualar la resistencia al aplastamiento total calculada en el punto anterior con la fuerza cortante actuante (V_u) y despejar así el valor de (t) requerido.

- 6.7) El valor del espesor obtenido en el punto anterior debe ser llevado a un valor comercial inmediato superior.
- 7) Calcular para la plancha seleccionada la resistencia a la cedencia por corte como 0,9 * 0,6 A_g F_y, siendo A_g igual a la altura de la plancha multiplicada por su espesor, comparar este valor obtenido con el corte actuante (V_u), si la resistencia a la cedencia es menor, es necesario aumentar el espesor de la plancha.
- 8) Verificar la resistencia a la rotura por corte por medio de la siguiente expresión: ΦR_t = 0,75*0,60F_u A_{nv}, siendo A_{ov} = [a p (d_a)] t, siendo a, la longitud desde el borde superior de la plancha hasta el centro del agujero inferior y p el número de agujeros menos 0,5. Si el valor de la resistencia a la rotura por corte es menor que el corte actuante se debe aumentar el espesor de la plancha.
- 9) Calcular la resistencia por rotura en el bloque de corte, para esto se debe proceder a:
 - 9.1) Hallar el valor de A_{nv} = [a p (d_a)] t, siendo a, la longitud desde el borde superior de la plancha hasta el centro del agujero inferior y p el número de agujeros menos 0,5.
 - 9.2) Hallar el valor de A_{nt} = [b 0,5(d_a)] t, siendo b, la longitud desde el centro de los agujeros hasta el borde lateral derecho de la plancha.
 - 9.3) Calcular la resistencia por rotura en el bloque de corte:
 - Cuando $F_u A_{nt} \ge 0.6 F_u A_{nv} \rightarrow \Phi R_{bs} = 0.75 [0.6 F_v A_v + F_u A_{nt}]$
 - Cuando 0,6 $F_u A_{nv} > F_u A_{nt} \rightarrow \Phi R_{bs} = 0,75 [0,6 F_u A_{nv} + F_v A_t]$

Nota: En ambos casos se debe cumplir Φ $R_{bs} \le \Phi$ [0,6 F_u $A_{nv} + F_y$ A_{nt}]

- 9.4) Comparar la resistencia por rotura en el bloque de corte con el corte actuante (V_u), si dicha resistencia es menor, se debe aumentar el espesor de la plancha de corte.
- 10) Se procede al diseño de la soldadura entre la plancha de corte y la columna, para esto se debe dividir el corte actuante entre dos y el valor obtenido debe ser nuevamente dividido entre la longitud total disponible para la soldadura de filete (siendo esta dos veces la altura de la plancha de corte debido a que llevará un cordón de soldadura a cada lado de dicha plancha). Conocido el tipo de electrodo a usar en la soldadura, buscar en la columna ΦR_t/L de la Tabla 13.1 o 13.2 del Capítulo IV la resistencia que mejor se aproxime a dicho valor, tomándose su correspondiente tamaño nominal. Como a dicha resistencia también le corresponde un tamaño mínimo de espesor de plancha especificado en la misma Tabla, se debe verificar que este espesor mínimo sea menor o igual que el espesor de la plancha de

corte, de igual forma es necesario revisar si el tamaño nominal de la soldadura es el adecuado para la parte más gruesa a unir, según la Tabla 12 de Capítulo IV.

Una vez finalizado los diez pasos anteriores, se da por concluido el diseño de la plancha de corte, ahora se procede a diseñar la plancha que van en las alas de la viga:

11) El momento actuante (Mu) en la conexión se sustituye por un par de fuerzas, el cual una actúa a tracción y la otra a compresión en las alas de la viga, dichas fuerzas se calculan por medio de la siguiente expresión:

$$P_{uf} = \frac{Mu}{d_b - t_{bf}}$$

- 12) Seleccionar un diámetro de perno (A325-N ó A490-N) y ubicar de la Tabla 4 del Capítulo IV la resistencia minorada a corte por perno, cuando la rosca está incluida en el plano de corte.
- 13) Dividiendo la fuerza P_{uf} entre la resistencia a corte del punto anterior, se obtienen el número de pernos que serán necesarios para resistir dicha fuerza a corte (recordar que el número de pernos obtenidos deben ser llevados a un número par inmediato superior).
- 14) Se selecciona de la Tabla 1 del Capítulo IV el diámetro del agujero estándar adecuado al diámetro de perno.
- 15) La separación y distribución de los agujeros será de la siguiente forma: Disponer los pernos en dos filas, la separación desde el centro de los agujeros más externos al borde de la plancha perpendicular a la línea de acción de la fuerza, será la mayor longitud indicada en la Tabla 2 del Capítulo IV, de acuerdo al tipo de perno que se posea. La separación entre los centros de los agujeros internos será tres veces el diámetro de los pernos. La separación desde los centros de los agujeros a los bordes paralelos a la línea de acción de la fuerza, será el mayor valor indicado para el tipo de perno, en la Tabla 2 del Capítulo IV
- 16) Para el calculo del espesor de la plancha de las alas se aplican los siguientes pasos:
 - 16.1) Para el agujero más cercano al borde, la longitud L_c desde el centro del agujero al borde perpendicular a la línea de acción se calcula como:

$$L_c = L_e - 0.5d_a$$
.

16.2) Calcular la resistencia al aplastamiento en función del espesor de la plancha, para esto se debe verificar si $L_c \leq 2d_b$, si esto ocurre el valor de dicha resistencia se calcula por medio de la siguiente expresión: $\Phi R_t = 0.75*1.2~L_c~t~F_u$, pero si $L_c > 2d_b$ calcular la resistencia mediante la expresión $\Phi R_t = 0.75*2.4d_b~t~F_u$

16.3) Para el resto de los agujeros la longitud L_c entre los pernos, paralela a la línea de acción de la fuerza será:

$$L_c = 3d_b - d_a$$
.

- 16.4) Calcular la resistencia al aplastamiento en función del espesor de la plancha, para esto se debe verificar si L_c ≤ 2d_b, si esto ocurre el valor de dicha resistencia se calcula por medio de la siguiente expresión: ΦR_t = 0,75 * 1,2 L_c t F_u, pero si L_c > 2d_b calcular la resistencia mediante la expresión ΦR_t = 0,75 * 2,4d_b t F_u.
- 16.5) Sumar la resistencia al aplastamiento correspondiente al agujero más externo (calculada en el punto 16.2, este valor debe ser multiplicado por dos debido a que se posee dos agujeros externos), con la resistencia al aplastamiento del resto de los agujeros (nótese que la resistencia al aplastamiento calculada en el punto 16.4, debe ser multiplicada por tantos agujeros internos como se posea).
- 16.6) Para hallar el espesor requerido de la plancha (t), se debe igualar la resistencia al aplastamiento calculada en el punto anterior con la fuerza P_{uf} y así despejar el valor de (t) requerido.
- 16.7) El valor del espesor obtenido en el punto anterior debe ser llevado a un valor comercial inmediato superior.
- 17) Calcular el área transversal requerida para la resistencia a la cedencia por tracción mediante la siguiente expresión: Ag = \frac{p_{uf}}{0.90 * F_y}, igualar esta área a (bpt), siendo bpel ancho de la plancha seleccionada, despejar de esta igualación el espesor requerido y llevarlo al comercial inmediato superior.
- 18) Calcular el área transversal requerida para la resistencia a la rotura por tracción mediante la siguiente expresión: $A_n = \frac{p_{nf}}{0.75*F_n}$, igualar ésta área con $[(b_p 2d_a) t]$ y despejar el espesor (t) requerido para resistir la rotura por tracción. Llevar el valor obtenido al comercial inmediato superior.
- 19) De los tres espesores calculados en los puntos (16), (17) y (18), seleccionar el mayor como definitivo para el diseño de la conexión.
- 20) Verificar que el área neta (An) de la plancha no exceda a 0,85A, siendo A igual a (t bp) y el An igual a (t [bp-2da]), si esto ocurre tomar como nueva área neta el valor de 0,85A.
- 21) Para el área del ala de la viga se debe verificar:

$$0.75 \text{ F}_{\text{u}} \text{ A}_{\text{fn}} \ge 0.9 \text{ F}_{\text{y}} \text{ A, siendo:}$$

$$A_{fn} = t_f [b_f - 2d_a]$$
$$A = (t_f b_f)$$

Si la inecuación anterior no se satisface, se debe calcular un área efectiva del ala de la viga, utilizando la siguiente expresión:

$$A_{\rm ef} = \frac{5}{6} \frac{F_{\nu}}{F_{\nu}} A_{fn}$$

Con esta A_{ef} se debe calcular, la nueva resistencia a la rotura por tracción y a la flexión del ala de la viga.

22) Se procede al diseño de la soldadura de penetración completa entre la columna y la plancha de las alas de la viga, para esto se debe cumplir con la raíz de 6 mm y un ángulo de bisel de 45°.

Una vez culminado el diseño de la conexión se procede a verificar si se necesita el uso de rigidizadores para controlar los estados límites de agotamiento resistente, para esto se continúa con los siguientes cálculos:

- 23) Falla por flexión local del ala de la columna: Por medio de las Tablas 15.1 a la 15.6 del Capítulo V (para perfiles HEA, HEB o CP con un F_y de 2500 kg/cm² o para un F_y de 3500 Kg/cm²) tomar la resistencia correspondiente al perfil de la columna que se posee, o por medio de la Gráfica 1 (F_y = 2500 kg/cm²) y Gráfica 2 (F_y = 3500 Kg/cm²) del mismo Capítulo (para cualquier tipo de perfil, incluyendo los W) en la cual se entra conociendo el t_f de la columna para así obtener dicha resistencia (de igual forma se pueden utilizar las ecuaciones correspondientes a las gráficas), cualquiera que fuese el caso del tipo de perfil, se debe comparar el valor obtenido de la resistencia minorada con la componente a tracción del par transmitido. Si la resistencia a la flexión local del ala es menor que la fuerza de tracción actuante, es necesario el uso de rigidizadores transversales.
- 24) Falla por cedencia local del alma: Utilizar para el cálculo de esta resistencia las Gráficas 2-a o 2-b del Capítulo V, (si la fuerza concentrada, esté aplicada a una distancia del extremo del miembro mayor que la altura de éste) o las Gráficas 3-a o 3-b (Cuando la fuerza concentrada está aplicada a una distancia del extremo del miembro menor o igual a la altura de éste), para cualquier tipo de perfil, de acuerdo a la longitud de contacto en la conexión (d_R, este valor es igual al ancho de la plancha del alma de la viga), la resistencia a la cedencia F_y de los materiales y las medidas de los perfiles a utilizar. Una vez obtenida la

resistencia minorada a la cedencia local del alma se debe comparar su valor con las dos componentes del par de fuerzas concentradas actuante, si esta resultase ser menor, es necesario el uso de rigidizadores transversales.

- 25) Falla por aplastamiento local del alma: Se hará necesario el uso de un rigidizador transversal, cuando las solicitaciones mayoradas de compresión, sobre el borde de los filete del alma, exceda su resistencia teórica minorada Φ R_t. Dicha resistencia teórica se determinará como se indica a continuación, de acuerdo al caso que se posea en la conexión:
 - Cuando la carga concentrada de compresión está aplicada a una distancia de mayor o igual a d/2 del extremo de la columna.

$$\Phi R_{t} = \Phi \ 0.8 \ t_{w}^{2} \left[1 + 3 \left(\frac{d_{R}}{d} \right) \left(\frac{t_{w}}{t_{f}} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_{f}}{t_{w}}} , \text{ donde}$$

 Si la carga concentrada de compresión está aplicada a una distancia menor a d/2 del extremo de la columna.

Cuando $d_R/d \le 0,2$

$$\Phi R_t = \Phi \ 0.4 \ t_w^2 \left[1 + 3 \left(\frac{d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

Cuando $d_R/d > 0.2$

$$\Phi R_t = \Phi 0.4 t_w^2 \left[1 + \left(\frac{4d_R}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

26) Falla por pandeo del alma comprimida: Para el cálculo de la resistencia minorada al pandeo del alma comprimida de la columna se pueden usar las Tablas 16.1 a la 16.6 del Capítulo V (para perfiles HEA, HEB o CP con un F_y de 2500 kg/cm² o para un Fy de 3500 Kg/cm²) o por medio de la Gráfica 4 del mismo Capítulo (para cualquier tipo de perfil, incluyendo los W, para un F_y de 2500 kg/cm² o de 3500 kg/cm²), en la cual se entra con el valor de la longitud del alma de la columna entre las puntas de los filetes (h) y de acuerdo al valor de la resistencia a la cedencia del material de la conexión; de igual forma se puede obtener el valor de la resistencia utilizando las ecuaciones correspondientes indicadas en la gráfica. Si la resistencia minorada al pandeo del alma comprimida obtenida para la columna de la conexión por cualquiera de las tablas o graficas, es menor a la fuerza de compresión que actúa, se debe recurrir al uso de rigidizadores transversales.

27) Efecto cortante en el panel de la conexión viga-columna: Se debe proceder primero al cálculo de la fuerza cortante que actúa en el panel de la conexión para esto utilice la siguiente expresión:

$$\Sigma F_{u} = \frac{M_{u1}}{d_{m1}} + \frac{M_{u2}}{d_{m2}} - V_{u}$$

Una vez obtenido el corte total actuante en el panel de la conexión, se procede a calcular su resistencia minorada, para esto se debe definir si se considera o no los efectos de la deformación del panel en la estabilidad del pórtico. Si no se consideran las deformaciones, se pueden utilizar Las Tablas 17.1 al 17.6 del Capítulo V, si $N_u \le 0.4 N_y$ (para perfiles HEA, HEB y CP) de acuerdo a la resistencia a la cedencia de los materiales de la conexión (Fy) o las Tablas 18.1 al 18.6, si $N_u > 0.4 N_y$ (para perfiles HEA, HEB y CP); igualmente si no se consideran los efectos de la deformación se puede utilizar el Gráficos 5 del Capítulo V, si $N_u \le 0.4 N_y$ o el Gráfico 6 del mismo capítulo, si $N_u > 0.4 N_y$ (para cualquier tipo de perfil, incluyendo los W), en dichos gráficos se entra de acuerdo al valor de la altura de la columna (d_e) y al valor de la resistencia a la cedencia de los materiales (F_y), para así obtener dicha resistencia (de igual forma se pueden utilizar las ecuaciones correspondientes a las gráficas)

Cuando se consideran los efectos de la deformación del panel en la estabilidad del pórtico se debe recurrir al cálculo de la resistencia por medio de las siguientes fórmulas

- Cuando $N_u \le 0.75 N_y$

$$\Phi R_v = 0.90 * 0.6 F_y d_c t_w \left[1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t} \right]$$

- Cuando $N_u > 0.75 N_y$

$$\Phi R_{\nu} = 0.90 * 0.6 F_{y} d_{c} t_{w} \left[1 + \frac{3b_{cf} t_{cf}^{2}}{d_{b} d_{c} t} \right] \left[1.9 - \frac{1.2 N_{u}}{N_{y}} \right]$$

Una vez calculada la resistencia al corte del panel de la conexión, por cualquiera de los casos anteriormente señalados, se debe comparar su valor con la fuerza cortante mayorada total actuante en la conexión (ΣF_u) obtenida al inicio de este punto, si la resistencia minorada al corte es menor que la fuerza cortante mayorada actuante, se debe disponer de planchas adosadas al panel de la conexión.

Si una vez concluido todos los puntos anteriores, no se evidenció la necesidad de colocar rigidizadores para controlar los diferentes estados límites de agotamiento, o de planchas adosadas al panel de la conexión, para controlar el corte, se puede dar por terminado el diseño de la conexión, en caso contrario, se debe proceder a verificar las siguientes pautas para el diseño de los rigidizadores y de las planchas adosadas al panel de corte de la conexión:

- 28) Si la columna se encuentra conectada por vigas a ambos lados, el rigidizador debe ocupar toda la extensión del alma de la columna. En caso contrario, es decir si la columna posee sólo una viga conectada en un solo lado, el rigidizador es más conveniente que ocupe la mitad del alma de la columna.
- 29) Calcular el ancho y el espesor mínimo del rigidizador a partir de las siguientes expresiones:

$$b \ge \frac{b_f}{3} - \frac{t_w}{2}$$

$$e \ge \frac{t_{hf}}{2} \circ \frac{t_h}{2} \circ b * 1,82 \sqrt{\frac{F_y}{E}}$$

Nota: Si el ancho del rigidizador resulta ser mayor que $\frac{b_f - t_w}{2}$, se debe aumentar su espesor.

- 30) A partir del ancho y el espesor definido en el punto anterior, se debe calcular la capacidad a compresión y a tracción del rigidizador, la capacidad a tracción se obtiene al multiplicar el área transversal del mismo por 0,90 (F_y), este valor debe ser comparado con el P_{uf} actuante. Si el valor de la resistencia del rigidizador es menor que la fuerza par actuante (P_{uf}/2) en la conexión se debe aumentar su espesor.
- 31) Una vez seleccionado el rigidizador a usar, se debe revisar su relación ancho/espesor, para eso se divide su ancho entre su espesor $\left(\frac{b_p}{t_p}\right)$ y se compara con el valor obtenido de $0,55\sqrt{\frac{E}{F_p}}$. Si la relación es menor que dicho valor, es satisfactoria, en caso contrario se debe aumentar su espesor.
- 32) Se procede al diseño de la soldadura entre el rigidizador y el perfil de la columna, antes de realizar cualquier cálculo se debe definir primeramente, si el rigidizador va a ocupar toda la extensión del alma de la columna o sólo la mitad de su alma, esto dependerá si dicha

columna estará o no conectada a ambos lados con una viga; una vez definido este punto se continua con los siguientes cálculos:

- 32.1) Definir como (L) a dos veces la longitud (b) calculada en el punto 29) más el alma de la columna, si el rigidizador ocupará toda la extensión del alma de la columna; o definir como (L) a la longitud (b) calculada en el punto 29) más la mitad del alma de la columna, si el rigidizador ocupará solo la mitad del alma de la columna., según fuese el caso a diseñar.
- 32.2) Se procede a realizar el siguiente cálculo $\frac{P_{uy}}{4L}$, lo cual corresponde a la resistencia por unidad de longitud de los cordones de soldadura ubicados arriba y debajo de los dos rigidizador ubicados a ambos lados del alma de la columna.
- 32.3) Para calcular el tamaño nominal de la soldadura se debe tomar el valor del punto anterior y dividirlo entre 0,318F_{EXX}, donde F_{EXX}, es la resistencia de la soldadura en Kg/cm² (la cual depende del tipo de electrodo a utilizar); es necesario verificar que este tamaño nominal sea mayor o igual al requerido para la parte más gruesa a unir (alma, ala o rigidizador) según la Tabla 12 del Capítulo IV, si esto no ocurre debe llevarse el tamaño nominal de la soldadura al valor indicado en dicha tabla.
- 32.4) Una vez seleccionado el tamaño nominal de la soldadura, es necesario calcular su resistencia como ΦR_t = 0,318 D L F_{EXX} y compararla con la resistencia a corte tanto del alma, ala como del rigidizador, para esto se sede calcular la resistencia de cada uno por medio de la siguiente expresión: 0,90 0,60 F_y A_t, donde A_t es el área transversal del material estudiado. Si la resistencia de la soldadura es mayor que algunas de las tres resistencias a corte calculada, se debe reconsiderar el problema de la conexión, modificando las dimensiones de sus miembros.

Si en el punto (27) (verificación del corte en el panel), se evidenció la necesidad de colocar una plancha adosada se debe continuar con los siguientes pasos:

33) Calcular el espesor requerido para resistir el corte en el panel de la conexión con la siguiente expresión $t = \frac{\sum F_w}{0.90*0.60*F_y*d_c}$, luego restar t_{cw} a este valor, el resultado de la resta debe ser dividido entre dos (debido a que se posee una plancha adosada a cada lado del alma de la columna), obteniéndose así el espesor requerido para las planchas adosada,

- (recordar que este valor debe ser llevado a un espesor comercial inmediato superior). Se debe calcular la resistencia a corte de la plancha adosada seleccionada mediante la siguiente expresión 0,90 * 0,60 F_y A_t.
- 34) La capacidad resistente por unidad de longitud de la soldadura se obtiene al dividir la resistencia a corte de la plancha adosada calculada en el punto anterior entre (L), siendo (L) la longitud superior e inferior de la plancha. El tamaño nominal de la soldadura se obtiene al dividir la capacidad resistente por unidad de longitud entre 0,318F_{EXX}; es necesario verificar que este tamaño nominal sea mayor o igual al requerido para la parte más gruesa a unir según la Tabla 12 del Capítulo IV.

Una vez concluido todos los puntos anteriores, se puede dar por terminado el diseño de la conexión de plancha empernada al ala de la viga con plancha de corte en el alma de la viga para las estructuras de acero.

CAPÍTULO VI

CONSIDERACIONES SÍSMICAS EN EL DISEÑO DE CONEXIONES VIGA-COLUMNA

VI.1. NIVELES DE DISEÑO

1.1. Nivel de Diseño 1 (ND1)

Las estructuras de acero diseñadas y construidas bajo este nivel de diseño, deben ser capaces de soportar limitadas deformaciones inelásticas cuando se encuentren sometidas bajo la acción de cargas sísmicas en combinación con otras acciones.

1.1.1. Conexiones viga-columna

Las conexiones se harán con pernos de alta resistencia o por medio de soldaduras. Dichas conexiones pueden ser de tipo totalmente restringida (conexiones rígidas) o parcialmente restringida (conexiones semi-rígidas).

1.1.2. Conexiones rígidas

El momento flector de diseño (M_u) en las conexiones viga-columna debe ser mayor o igual al menor valor entre: 1,1 R_y M_p, el momento de la viga o el máximo momento que puede ser transmitido por la viga, siendo R_y la relación entre la tensión cedente esperada (F_{ye}) y la tensión cedente mínima especificada (F_y) para el tipo de acero usado y Mp el momento plástico teórico.

Cuando se usen pletinas de respaldo en las conexiones con juntas de alas soldadas, éstas deben ser eliminadas y la zona rasgada de la junta soldada debe ser reparada por medio de un cordón de refuerzo de soldadura de filete. Dado el caso que la pletina utilizada en el ala superior de la viga, esté fijada en su borde inferior al ala de la columna con un filete continuo de soldadura, ésta podrá dejarse en uso.

La capacidad de rotación inelástica en las conexiones viga-columna debe de ser de al menos 0,01 radianes (comprobado mediante ensayos de cargas cíclicas).

1.1.3. Conexiones semi-rígidas

Este tipo de conexión sólo se podrá usar cuando se cumplan los siguientes requisitos:

- Sean capaces de soportar limitadas deformaciones inelásticas cuando se encuentren sometidas bajo la acción de cargas sísmicas en combinación con otras acciones.
- La resistencia teórica a flexión de la conexión sea mayor o igual al menor valor entre la mitad del momento plástico de la viga o la mitad del momento plástico de la columna.
- Se ha diseñado considerando la rigidez y la resistencia de dichas conexiones, incluyendo los efectos sobre la estabilidad del conjunto de la edificación.
- Se haya demostrado que dicha conexión bajo cargas cíclicas tiene una adecuada capacidad de rotación para la deriva del entrepiso calculada conforme a los requisitos de la norma COVENIN-MINDUR 1756-98 Edificaciones Sismorresistentes.

1.1.4. Solicitaciones por fuerza cortante en las conexiones

En las conexiones viga-columna de tipo rígidas, la fuerza cortante mayorada (V_u), se determinará para la combinación de solicitaciones 1,2 CP + γ CV más el corte que resulta del momento flector de diseño (M_u), anteriormente explicado.

En las conexiones viga-columna de tipo semi-rígidas, la fuerza cortante mayorada (V_u), se determinará para la combinación de solicitaciones 1,2 CP + γ CV más el corte que resulta del momento máximo en el extremo de la viga que dicha conexión pueda resistir.

El factor γ que afecta a la CV varía dependiendo de la situación, como se muestra a continuación:

- a) Recipientes de líquidos: cien por ciento (100%) de la carga de servicio, con el recipiente lleno.
- Almacenes y depósitos en general, donde la carga tenga el carácter de permanente tales como bibliotecas o archivos: cien por ciento (100%) de la carga de servicio.
- c) Estacionamientos públicos: el valor que se adopte no será menor que el cincuenta por ciento (50%) de la carga variable de servicio establecida en las normas respectivas, considerando el estacionamiento lleno.
- d) Edificaciones donde pueda haber concentración de público, más de 200 personas, tales como: educacionales, comerciales, cines e industrias, así como escaleras y vías de escape: cincuenta por ciento (50%) de la carga variable de servicio.
- e) Entrepisos de edificaciones, no incluidos en el punto d) tales como: viviendas y estacionamientos distintos del punto c): veinticinco por ciento (25%) de la carga variable de servicio.

f) Techos y terrazas no accesibles: cero por ciento (0%) de la carga variable.

1.1.5. Plancha de continuidad.

Para las conexiones totalmente restringidas diseñadas por medio de soldadura directa de las alas de la viga a la columna o por medio de planchas de conexión a las alas de la columna, se deberán colocar planchas de continuidad a fin de permitir la transmisión de las fuerzas desde las alas de la viga a la columna. El espesor de dicha plancha de continuidad será como mínimo el espesor del ala de la viga o de la plancha de conexión del ala de la viga y deberá unirse a la columna con soldadura de ranura de penetración completa o con soldadura de ranura de penetración parcial por ambas caras de la plancha con refuerzos de soldadura de filete o con soldadura de filete en ambas caras de la plancha.

1.1.5.1 Requisitos de resistencia de la soldadura en planchas de continuidad

La resistencia minorada de la soldadura ubicada entre la plancha y el ala de la columna será al menos igual a la resistencia minorada del área de contacto de la plancha con el ala de la columna.

La resistencia minorada al corte de la soldadura ubicada entre la plancha de continuidad y el alma de la columna será igual al menor valor entre:

- La suma de las resistencias minoradas en las conexiones de la plancha a las alas de la columna.
- La resistencia minorada al corte del área de contacto de la plancha con el alma de la columna.
- La resistencia minorada de la soldadura requerida para desarrollar la resistencia minorada al corte de la zona del panel de la columna.
- La fuerza trasmitida por las planchas de continuidad.

1.2. Nivel de Diseño 2 (ND2)

Las estructuras de acero diseñadas y construidas bajo este nivel de diseño, deben ser capaces de soportar moderadas deformaciones inelásticas cuando se encuentren sometidas bajo la acción de cargas sísmicas en combinación con otras acciones. Las conexiones rígidas serán diseñadas de manera que las deformaciones inelásticas inducidas por el sismo sean por la cedencia

de los miembros del pórtico. Las conexiones semi-rígidas serán diseñadas de manera que las deformaciones inelásticas inducidas por el sismo sean por la cedencia de los elementos de las conexiones.

Los pórticos que estén contemplados en este nivel de diseño cumplirán con todos los requisitos establecidos para pórticos con Nivel de Diseño 3 (ND3), excepto en las siguientes modificaciones:

1.2.1. Relaciones ancho / espesor

Las vigas y columnas cumplirán con los valores límites de ancho / espesor para secciones compactas (λ_p) estipulados en las Tablas 21.

Tabla 21.1
Relaciones ancho/espesor para elementos comprimidos no rigidizados

DESCRIPCIÓN	RELACIÓN	VALORES LÍMITES	
DEL	ANCHO	Sección plástica	Sección compacta
ELEMENTO	ESPESOR	l_{pd}	l _p
Alas de vigas laminadas en forma de I y canales solicitadas por flexión	b/t	$0,30 \sqrt{\frac{E}{F_y}}$	$0,376 \sqrt{\frac{E}{F_y}}$
Alas de vigas híbridas en forma de I, o vigas soldadas solicitadas por flexión	b/t	$0,30 \sqrt{\frac{E}{F_y}}$	0,376 $\sqrt{\frac{E}{F_y}}$
Lados principales de ángulos dobles en contacto continuo; alas de canales en compresión axial; ángulos y planchas que sobresalgan de vigas o miembros comprimidos	b/t	14	0,30 $\sqrt{\frac{E}{F_y}}$
Alas de ángulos sencillos a compresión; alas de ángulos dobles a compresión con separadores; elementos no rigidizados, esto es, con soporte lateral a lo largo de un borde	b/t		$0,30\sqrt{\frac{E}{F_y}}$
Almas de perfiles T	d/t		$0,30\sqrt{\frac{E}{F_y}}$

Tabla 21.2

Relaciones ancho/espesor para elementos comprimidos rigidizados

DESCRIPCIÓN DEL ELEMENTO	RELACIÓN ANCHO ESPESOR	VALORES LÍMITES	
		Sección plástica λ _{pd}	Sección compacta λ _p
Almas en compresión por flexión	h/t _w	$3, 0\sqrt{\frac{E}{F_y}}$	$3,70 \sqrt{\frac{E}{F_y}}$

1.2.2. Arriostramiento lateral de las alas de la viga

Las vigas deberán tener ambas alas arriostradas lateralmente. La longitud máxima no arriostrada entre los apoyos laterales es $0.12 \frac{E}{F_y} r_y$. También se deben colocar dichos arriostramientos en las siguientes partes: en los puntos de aplicación de las cargas concentradas, en los cambios de sección transversal y donde el análisis indique que se formará la rótula plástica durante las deformaciones inelásticas del pórtico dúctil resistente a momentos.

1.2.3. Conexiones viga-columna

La capacidad de rotación inelástica en las conexiones víga-columna debe de ser de al menos 0,02 radianes (comprobado mediante ensayos de cargas cíclicas).

1.3. Nivel de Diseño 3 (ND3)

Las estructuras de acero diseñadas y construidas bajo este nível de diseño, deben ser capaces de soportar significativas deformaciones inelásticas cuando se encuentren sometidas bajo la acción de cargas sísmicas en combinación con otras acciones.

1.3.1. Relaciones ancho / espesor

Las vigas y las columnas cumplirán con los valores límites de ancho / espesor para secciones de diseño plástico (λ_{pd}) y para secciones compactas (λ_p) respectivamente, estipulados en las Tablas 21.

1.3.2. Área de las alas de las vigas

Se permitirá el cambio de sección de las alas de la viga por medio de su recorte, cuando por medio de experimentos se demuestre que en la sección recortada se forme establemente la rótula plástica, en lugar de formarse en la cara de la columna de la conexión.

1.3.3. Arriostramientos lateral de las vigas

Ambas alas de las vigas deberán arriostradas lateralmente. La longitud máxima no arriostrada entre los apoyos laterales es $0.084 \frac{E}{F_y} r_y$. También se deben colocar dichos arriostramientos en las siguientes partes: en los puntos de aplicación de las cargas concentradas, en los cambios de sección transversal y donde el análisis indique que se formará la rótula plástica.

Los arriostramientos laterales adyacentes a la zona de la sección recortada deberán cumplir con una resistencia minorada igual al seis por ciento (6%) de la resistencia teórica del ala de la viga eslabón, calculada como R_yF_y b_f t_f.

1.3.4. Conexiones viga-columna

La capacidad de rotación inelástica en las conexiones viga-columna debe de ser mayor o igual a 0,03 radianes (comprobado mediante ensayos de cargas cíclicas).

1.3.5. Solicitaciones por fuerza cortante en las conexiones

La fuerza cortante mayorada (V_u), en una conexión viga-columna se determinará usando la combinación de solicitaciones 1,2 CP + γ CV más el corte que resulta de aplicar momentos de sentidos opuestos en los extremos de la viga, iguales a 1,1 R, F, Z.

El corte mayorado Vu, no debe exceder al corte que resulta de las combinaciones:

1,2 CP +
$$\gamma$$
 CV $\pm \Omega_o$ S_H, en donde

SH es la componente horizontal de la acción sísmica.

Ω₀ es el factor de sobrerresistencia del sistema estructural resistente a sismos

El factor γ que afecta a la CV varía dependiendo de la situación, como se indicó en las solicitaciones por fuerza cortante en las conexiones para el Nivel de Diseño 1.

El factor de sobrerresistencia del sistema estructural resistente a sismos (Ω_o), para las estructuras de acero, serán los siguientes:

 $\Omega_0 = 3$, para todos los sistemas aporticados.

 Ω_0 = 2,5 para pórticos con diagonales excéntricas y sistemas con muros estructurales.

 $\Omega_0 = 2$ para todos los otros sistemas.

1.3.6. Zona del panel en conexiones viga-columna

En la zona del panel de las conexiones viga-columna, donde las almas de los perfiles son paralelas, se tendrán en cuenta los siguientes requisitos:

· Fuerza cortante

A las vigas que se conectan a la columna en el plano del pórtico, la fuerza cortante mayorada (Vu) en la zona del panel, debe ser calculada aplicando las siguientes combinaciones de solicitaciones:

$$V_u = 1.2 \text{ CP } + \gamma \text{ CV} \pm \Omega_o \text{ S}_H$$
$$V_u = 0.9 \text{ CP } \pm \Omega_o \text{ S}_H$$

El corte actuante (V_u) calculado por las solicitaciones anteriores no debe ser mayor que la fuerza cortante calculada con $0.8 \sum_{ph} M_{ph}^*$ de las vigas conectadas a las alas de la columna, siendo $\sum_{ph} M_{ph}^* = \sum_{ph} (1.1*R_y*M_p+M_y)$, en donde M_y es el momento resultante de trasladar el cortante en la rótula plástica al centro de la columna y el momento plástico ($M_p = Z F_y$) debe ser calculado con el módulo plástico de sección (Z) de la sección de la viga que se posea, bien sea sección completa o sección reducida.

La resistencia minorada al corte de la zona de panel, Φ_v R_v , se determinará mediante las siguientes fórmulas:

a) Cuando
$$N_u \le 0.75 N_y$$
, siendo $(N_y = A F_y)$

$$\Phi R_v = \Phi 0.6 F_y d_c t_p \left[1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_p} \right]$$

b) Cuando N_u > 0,75 N_y

$$\Phi R_{v} = \Phi 0.6 F_{y} d_{e} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{e} t} \right] \left(1.9 - \frac{1.2 N_{u}}{N_{y}} \right)$$

En estas fórmulas

Φ_v es el factor de minoración e igual a 0,75

F_y es la resistencia especificada a la cedencia del acero en la zona de panel.

bef es el ancho del ala de la columna.

db es la altura total de la viga.

de es la altura total de la sección transversal de la columna.

ter es el espesor del ala de la columna.

tp es el espesor total de la zona de panel, incluidas las planchas adosadas.

Espesor de la zona del panel

El espesor del alma de la columna, así como el espesor total de la zona del panel cuando se prevenga el pandeo local del alma de la columna utilizando planchas adosadas, deberán satisfacer la siguiente condición:

$$t \ge (d_z + w_z) / 90$$

donde:

t es el espesor del alma de la columna o del espesor total de la zona del panel.

d_z es la altura de la zona de panel entre las planchas de continuidad.

w_z es el ancho de la zona de panel entre las alas de la columna.

Planchas adosadas en la zona de panel

Cuando las planchas adosadas están unidas a las alas de la columna, se deberán realizar mediante soldadura de ranura de penetración completa o soldadura de filete capaces de desarrollar la resistencia minorada a corte del espesor total de las planchas adosadas, pero si dichas planchas adosadas van a ser colocadas contra el alma de la columna, estas deberán soldarse en su parte superior e inferior a todo su ancho, a fin que la soldadura sea capaz de desarrollar la resistencia a la

fuerza transmitida por las planchas adosadas. Cuando dichas planchas se coloquen alejadas del alma de la columna, se deberán disponer en número par, de forma simétrica y soldadas a las planchas de continuidad a fin de resistir el corte transmitido por la zona del panel.

1.3.7. Relación de momentos en los nodos.

Para los requerimientos sísmicos los momentos actuantes en los nodos deben cumplir con la siguiente relación:

$$\frac{\sum M^*_{pc}}{\sum M^*_{pb}} \ge 1.0$$
, en donde

 $\sum M^*_{pc}$ Es la sumatoria de los momentos plásticos teóricos en el extremo superior e inferior de la columna en la conexión menos la fuerza normal en la columna.

$$\sum M_{\text{tx}}^* = \sum Z_{\text{c}}(F_{\text{yc}} - N_{\text{uc}}/A)$$
, siendo:

Fy es la resistencia a la cedencia de la columna

Nuc es la fuerza axial mayorada a compresión

A es el área de la columna

 $\sum M^*_{ph}$ Es la sumatoria de los momentos plásticos teóricos de las vigas ubicadas en los lados izquierdo y derecho de la conexión.

$$\sum M_{pb}^* = \sum (1.1 * R_y * M_p + M_y)$$
, en donde:

M_y es el momento resultante de trasladar el cortante en la rótula plástica al centro de la columna y el momento plástico (M_p = Z F_y) debe ser calculado con el módulo plástico de sección (Z) de la sección de la viga que se posea, bien sea sección completa o sección reducida.

1.3.8. Arriostramiento lateral de las conexiones viga-columna.

1.3.8.1. Conexiones viga-columna arriostradas lateralmente.

En las conexiones viga-columna las alas de las columnas se arriostrarán solamente en el nivel de las alas superiores de la viga, cuando la columna permanece elástica fuera de la zona del panel de la conexión, bajo las siguientes condiciones:

a) Cuando
$$\frac{\sum M_{pc}^*}{\sum M_{pb}^*} > 1,25$$

b) La columna permanezca elástica bajo la hipótesis de solicitaciones:

1.2 CP +
$$\gamma$$
 CV $\pm \Omega_o$ S_H.

Cuando no se pueda demostrar que fuera del panel de la conexión la columna permanece elástica, se deberá cumplir con las siguientes condiciones:

- Las alas de la columna deben ser soportadas lateralmente al nivel de ambas alas de la viga.
- En los soportes laterales de cada ala de la columna se permitirá una solicitación mayorada igual al dos por ciento de la resistencia teórica del ala de la viga, calculada como (F_y b_f t_f).
- Las alas de las columnas se arriostrarán lateralmente por medio del alma de la columna o de las vigas perpendiculares.

1.3.8.2 Conexiones viga-columna no arriostradas lateralmente.

En el diseño de columnas con conexiones viga-columna no arriostradas lateralmente en la dirección transversal al pórtico sísmico, y bajo requisitos sismorresistentes para pórticos de acero, deberán cumplirse con los siguientes requisitos adicionales:

 Las solicitaciones mayoradas sobre la columna se calcularán para la hipótesis de solicitaciones igual a:

$$1.2 \text{ CP} + \gamma \text{ CV} \pm \text{ S, en donde:}$$

S es la acción sísmica y será el menor valor entre:

- a) La fuerza sísmica amplificada Ω_o S_H.
- b) El ciento veinticinco por ciento de la resistencia minorada del pórtico, calculada como la resistencia minorada a flexión de la viga o la resistencia minorada a corte de la zona del panel.
- La Relación de esbeltez L/r no excederá de 60.

3. En la dirección transversal al pórtico sísmico, el momento mayorado en la columna deberá incluir el momento causado por la fuerza en el ala de la viga calculada por 1,2CP $\pm \gamma$ CV $\pm \Omega_{o}$ S_{H.,} más el momento de segundo orden que resulta del desplazamiento del ala de la columna.

VI.2. PUNTOS QUE DEBEN SER TOMADOS EN CUENTA PARA LOS PROCEDIMIENTOS PRESENTADOS EN EL CAPÍTULO V CUANDO SE ESTÁ EN PRESENCIA DE UN DISEÑO SÍSMICO

Para el diseño de la zona del panel de corte de la conexión, se debe verificar en el punto (21) del procedimiento de diseño de la plancha extrema, y para el punto (28) del procedimiento de diseño de la conexión de plancha empernada al ala de la viga, los siguientes puntos cuando se diseña bajo requerimientos sísmicos:

1) En el diseño de la zona del panel de corte de la conexión, se debe verificar que el corte actuante en la zona del panel $\sum F_u$, no exceda de:

$$0.8\sum (1.1*R_y*M_p+M_y)$$

- 2) Para determinar la resistencia minorada al corte de la zona del panel se deben utilizar bajo requerimientos sísmicos las siguientes expresiones:
 - a) Cuando $N_u \le 0.75 N_y$, siendo (Ny = A Fy)

$$\Phi R_{v} = 0.75 * 0.6 F_{y} d_{c} t_{p} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{p}} \right]$$

b) Cuando $N_u > 0.75 N_y$

$$\Phi R_{v} = 0.75 * 0.6 F_{y} d_{c} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t} \right] \left(1.9 - \frac{1.2 N_{u}}{N_{y}} \right)$$

3) Se debe verificar que el espesor del alma de la columna o el espesor total del alma de la columna más las planchas adosadas cuando, estas sean requeridas, cumplan con la siguiente inecuación:

$$t \ge \left(d_z + w_z \right) / 90$$

Como otros de los puntos que deben ser estudiados cuando se diseñan la conexiones vigacolumna bajo requerimientos sísmicos, es el comportamiento de los momentos plásticos en el nodo de la conexión, para esto se debe verificar que en dicho nodo la sumatoria del momento plástico teórico actuante en el extremo superior e inferior de la columna sea mayor o igual al momento plástico teórico actuante de la viga en el extremo izquierdo y derecho de la conexión, por medio de la siguiente expresión

$$\frac{\sum Z_{c} \left(F_{yc} - \frac{N_{nc}}{A} \right)}{\sum \left(1, 1R_{yb} Z_{b} F_{yb} + M_{y} \right)} \ge 1,0$$

Para determinar la necesidad de arriostramientos laterales en las alas de la columna Se deben estudiar los siguientes puntos:

 Se deben colocar arriostramientos laterales en las alas de la columna, sólo a nivel de las alas superiores de la viga cuando se demuestre que fuera de la zona del panel la columna permanece elástica bajo la siguiente condición:

$$\frac{\sum Z_c \left(F_{yc} - \frac{N_{uc}}{A} \right)}{\sum \left(1.1 R_{yb} Z_b F_{yb} + M_y \right)} \ge 1.25$$

2) En caso contrario, es decir, cuando no se demuestre que fuera de la zona del panel la columna permanece elástica, se debe disponer de arriostramientos laterales en las alas de la columna a nivel de ambas alas de la viga, y dichos arriostramientos deben diseñarse bajo solicitaciones mayoradas igual al dos por ciento de (F_y b_{bf} t_{bf}).

CAPÍTULO VII CONCLUSIONES Y RECOMENDACIONES

A continuación se enumeran los hechos más resaltantes presentados durante esta investigación:

- 1. A la hora del diseño de conexiones viga-columna, es de gran importancia la verificación de la resistencia de los diferentes elementos conectores, que puedan afectar el comportamiento de la estructura, tales como: pernos, planchas, rigidizadores, planchas adosadas y de corte, entre otros, debido a que cada uno de ellos puede representar un eslabón débil en la estructura.
- La gran importancia de los procedimientos de diseño de las conexiones viga-columna realizados, es que permiten sintetizar de manera explícita y detallada, los cálculos de dos de las conexiones más usadas en la construcción de edificaciones de acero con perfiles de alma abierta (IPN, IPE, HEA, HEB, CP, W).
- 3. Con la realización de gráficos, se logró condensar la información pertinente al uso de rigidizadores, para poder utilizarse con mayor facilidad a la hora del diseño, debido a la gran variedad de perfiles americanos W que existen en el mercado; aunque dichos gráficos son aplicables para cualquier tipo de perfiles de alma abierta.
- 4. Para mayor facilidad al momento de la selección de pernos, tamaños de soldaduras, resistencias minoradas de los pernos a corte, a tracción, a corte/tracción, a aplastamiento, se crearon una serie de tablas prácticas que permiten optimizar el procedimiento de diseño para las conexiones viga-columna resistentes a corte y momento.
- 5. Se debe estudiar de forma detallada en las conexiones de plancha extrema, el par que transmite las alas de la viga por la acción del momento actuante, debido a que esta tiende a separar la plancha en la zona de tracción, ocasionando una menor superficie de

contacto y por ende menos resistencia al deslizamiento, pudiendo así la plancha extrema deslizar y quedar sometida al aplastamiento.

- En las conexiones de plancha extrema, sólo se necesita verificar la interacción cortetracción de los pernos, cuando el corte actuante posee un valor muy elevado.
- 7. En las soldaduras de penetración completa, se debe tener cuidado de realizar un biselado de 45° y una separación entre los miembros conectados o raíz de 6 mm, para así crear un comportamiento de la soldadura similar al de los miembros conectados.
- 8. Al momento del diseño de las soldaduras de filete en las conexiones viga-columna, se debe verificar que el diámetro seleccionado sea el adecuado tanto al tamaño de la pieza más gruesa a unir como a la resistencia a cedencia por corte de la pieza más delgada a unir.
- 9. En el diseño sísmicos de conexiones viga-columna existen requisitos adicionales que se deben cumplir para resistir dichas cargas horizontales, pero los puntos de enfoques primordiales son: 1) la zona del panel, debe cumplir con un requisito de espesor mínimo y 2) el nodo, en donde, por medio de una relación de los momentos plásticos de la columna y de la viga, se trata de cumplir con el criterio de diseño columna fuerteviga débil.

Finalmente, esta investigación busca sentar las bases para la consolidación de diferentes procedimientos o pasos de diseños de conexiones viga-columna, a fin de crear una recopilación detallada de cada una de las conexiones existentes y sus variantes, en base a esto se han generado las siguientes recomendaciones:

- a. Continuar con el estudio detallado de otros tipos de conexiones viga-columna sometidas a corte y momento a fin de determinar su adecuado procedimiento de diseño, utilizando las diferentes tablas y gráficas realizadas para este trabajo especial de grado.
- Para hacer de estos procedimientos una herramienta más práctica para el ingeniero que tenga como función el diseño de una conexión viga-columna sometida a corte y momento,

sería recomendable, realizar un programa de fácil manejo que contenga como base de datos procedimientos realizados manualmente y de forma detallada, así como las ecuaciones y gráficas realizadas en este trabajo especial de grado, esto a fin de crear un sistema automatizado de diseño de conexiones viga—columna sometidas a corte y momento.

- c. Ampliar el estudio de conexiones viga-columna sometidas a corte, momento, fuerza axial y torsión así como variaciones de temperatura, a fin de crear un procedimiento de diseño mucho más detallado.
- d. Una vez estudiados todo el conjunto de conexiones existentes sometidas a las diferentes solicitaciones actuantes y fijado sus procedimientos de diseño acorde a La Norma Covenin Mindur 1618-98, realizar un compendio y generar una herramienta práctica para el ingeniero calculista de estructuras de acero.

BIBLIOGRAFÍA

BALESTRINI ACUÑA, Mirian: Como se elabora el Proyecto de Investigación, Venezuela, Editorial BL Consultores Asociados, Sexta Edición, 2002.

FEMA; Recommended Seimic Design Criterial For New Steel Moment-Frame Buildings, USA, Editorial U.S. Government printing office, 2000.

FORTOUL, Celso; Gutiérrez R. Arnaldo; Coca A. Miguel A.; Sivocrynski Juan y Caballero Hector: Manual de Proyectos Estructuras de Acero, Tomo II, Venezuela, Editor SIDOR, Tercera Edición, 1990.

GALAMBOS, Theodore V.; F. J. Lin y Bruce G. Johnston: *Diseño de Estructuras de Acero con LRFD*, México, Editorial Prentice Hall, Primera Edición, 1999.

MCCORMAC, Jack C.: Diseño de Estructuras Metálicas, Método ASD, México, Editorial Alfaomega, Cuarta Edición, 1999.

MINDUR, Comisión Permanente de Normas para Edificaciones: COVENIN-MINDUR 1618-98 Estructuras de Acero para Edificaciones. Método de los Estados Límites, Venezuela, Fondonorma, 1998.

MURRAY, Thomas M.: Extended End-Plate Moment Connections, USA, American Institute of Steel Construction, 2001.

SEGUI, William T.: *Diseño de Estructuras de Acero con LRFD*, México, Internacional Thomson Editores, Segunda Edición, 2000.

UPEL (Universidad Pedagógica Experimental Libertador): *Manual de Trabajos de Grado de Especialización y Maestría y Tesis Doctorales*, Venezuela, Editorial Fedupel, Tercera Edición, 2003.

VELÁSQUEZ, José M.: Diseño de Estructuras en Acero, Norma LRFD de AISC, Manual de adiestramiento de excelencia.

REFERENCIAS ELECTRÓNICAS:

UNIVERSIDAD DE LAS AMÉRICAS, PUEBLA: *Introducción al Diseño de Conexiones*, México. http://www.pue.udlap.mx/~tesis/lic/gatica_g_jc/capitulo8.pdf

CONSTRUAPRENDE: Estructuras Metálicas, México, 2004. http://www.construaprende.com/Trabajos/Apuntes1/

ANEXOS

CRITERIOS PARTICULARES DE LA FEMA-350 (FEDERAL EMERGENCY MANAGEMENT AGENCY)

Los criterios para el diseño de pórticos de acero sometidos a corte y a momento y resistentes a fuerzas sísmicas que parecen en el reporte de la FEMA-350, son recomendaciones basadas en la experiencia y juicio de profesionales, así como de ensayos de laboratorio. Por medio de este reporte se pretende crear un documento para los profesionales, que contenga procesos adecuados en el diseño de conexiones a fin de poder obtener procedimientos estándar de construcción y con los requisitos acordes a las normas. A continuación se presenta una serie de recomendaciones básicas para el diseño de miembros de las estructuras de acero

1. REQUISITOS Y RECOMENDACIONES DE LA FEMA

1.1. Recomendaciones básicas

Las recomendaciones provistas en esta sección son criterios básicos de diseño de conexiones, que incluyen la selección de un tipo apropiada de conexión, una estimación de la localización del comportamiento inelástico, determinación del momento plástico probable y del corte en las rótulas, así como la determinación de las demandas de fuerzas en las secciones críticas. Estos criterios para el detalle del diseño de conexiones son recomendaciones dadas por la FEMA y que son aplicables en el comportamiento sísmico de las estructuras.

I.1.1. Ubicación de la rótula plástica

Según la FEMA la ubicación de las rótulas plásticas (S_h), como se muestra en la Figura 23, para conexiones precalificadas bajo diversos ensayos, únicamente es válido para vigas en donde sus cargas gravitacionales representen una pequeña porción de la demanda total de flexión. En cambio cuando las cargas gravitacionales generan una significante tensión a flexión en los miembros, la ubicación de dicha rótula debería determinarse mediante métodos de análisis plástico.

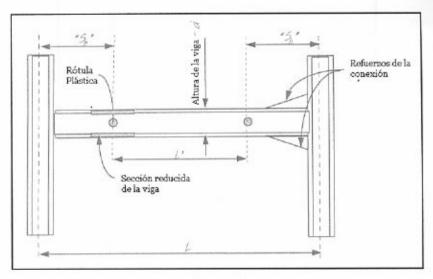


Figura 23

1.1.2. Determinación del momento plástico probable en las rótulas

Para conexiones totalmente restringidas el momento plástico a desarrollarse en la rótula de la viga se puede determinar mediante la siguiente expresión:

 $M_{pr} = C_{pr} R_y Ze F_y$, donde:

$$C_{\it pr} = \frac{F_{\it y} + F_{\it u}}{2F_{\it y}}$$
 , usualmente se utiliza un valor igual a 1,2.

 R_y es la relación entre la tensión cedente esperada (F_{ye}), y la tensión cedente mínima especificada (F_y), para el tipo de acero utilizado.

Ze es el modulo plástico efectivo de la sección o de la conexión en el lugar de la rótula plástica.

1.1.3. Determinación del corte en la rótula plástica

El corte en la rótula plástica debería ser determinado mediante métodos estáticos, considerando cargas gravitacionales actuando en la viga. Se debe realizar un diagrama de cuerpo libre de la porción de la viga ubicada entre las rótulas plásticas, siendo ésta una de las herramientas más prácticas para obtener dicho corte, como se muestra en la Figura 24.

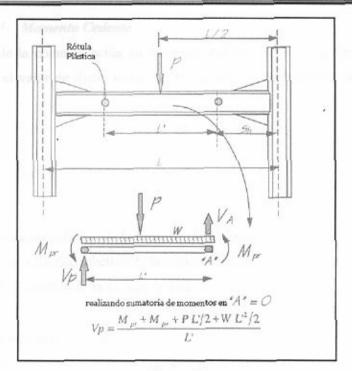


Figura 24

1.1.4. Determinación del momento en cada sección crítica

En toda conexión es necesario determinar el corte y la flexión demandada en cada zona crítica de la sección, ésta demanda puede ser calculada tomando un diagrama de cuerpo libre de la porción de la conexión localizada entre la sección crítica y la zona de la rótula plástica.

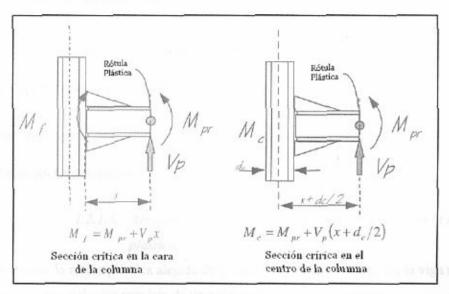


Figura 25

1.1.5. Momento Cedente

En la cara de la columna actúa un momento cedente debido a la formación de la rótula plástica en la viga, el valor de dicho momento M_{yf} puede ser determinado mediante la siguiente expresión:

$$M_{yf} = C_y M_f$$
, donde:

$$C_y = \frac{1}{C_{pr} \frac{Z_{be}}{S_b}}$$
, siendo:

Cpr es el coeficiente máximo de la fuerza de la conexión.

Z_{be} es el módulo plástico efectivo de la viga en la zona de la junta plástica.

S_b es el módulo elástico de la viga en la zona de la junta plástica.

1.2. Requerimientos generales

1.2.1. Requisitos generales para el diseño de vigas

1.2.1.1. Estabilidad del ala de la viga

La relación ancho espesor del ala de la viga $(\frac{b_f}{2t_f})$ debe estar limitado a un valor máximo

de $\frac{52}{\sqrt{F_y}}$. En las vigas de sección reducida el b_f de la relación ancho espesor, que debe ser utilizada,

es 4/3 del ancho total del ala de la viga.

1.2.1.2. Estabilidad del alma de la viga

La relación altura espesor del alma de la viga $\frac{h_c}{t_w}$ no debe exceder a $\frac{418}{\sqrt{F_y}}$, pero de acuerdo a la AISC para provisiones sísmicas, dicha relación puede tener un valor de hasta $\frac{520}{\sqrt{F_y}}$ para vigas sin cargas axiales.

1.2.1.3. Arriostramiento lateral en las alas de las vigas en la rótula plástica

Al formarse la rótula plástica alejada de la cara de columna el tramo de la viga no puede ser soportada, por lo tanto debe ser provista de un arriostramiento suplementario.

1.2.1.4. Conectores soldados de corte

Los conectores de corte o cualquier otro conector no deben instalarse en la zona de formación de las rótulas en las vigas, a fin de no disminuir la probabilidad de formación de la rótula alejada de la cara de la conexión. La zona de la rótula, está definida como d_b/2 a cada lado del punto de ubicación teórico de la rótula plástica en la dirección de la viga.

1.2.2. Requisitos generales para juntas soldadas

1.2.2.1. Propiedades de las áreas para soldar en perfiles laminados

Es probable que los perfiles laminados tengan una baja dureza en las zonas cercanas al filete, producto de su laminación, por lo tanto es recomendable que la soldadura utilizada para unir cualquier objeto al alma de la columna esté ubicada a partir de una distancia $d_f + (1 \text{ ó } 1^1/2 \text{ plg})$, siendo d_f la distancia desde la cara exterior del ala de la columna hasta el final del filete en el alma; y para la soldadura utilizada para unir cualquier objeto al ala de la columna, se recomienda que ésta empieza a una distancia k_1 , siendo ésta, la longitud que hay entre el centro del alma de la columna a la punta del filete de su ala.

1.2.2.2. Resistencia de la soldadura

No es recomendado el uso de soldaduras que resistan una fuerza máxima significativamente menor a la fuerza esperada en la base conectada. Los electrodos empleados en las soldaduras de ranura de penetración completa, usadas en las alas de las vigas y refuerzos de alas, deberían de tener una fuerza de cedencia y una fuerza máxima aproximadamente igual, o escasamente mayor, que a la fuerza máxima o a la fuerza de cedencia, esperada en dicha viga. No se debe realizar una soldadura con mucha mayor resistencia que la viga, a menos que se especifique para la conexión.

1.2.3. Otros puntos para el diseño de conexiones soldadas

1.2.3.1. Planchas de continuidad

Las conexiones resistentes a momento deben ser provistas de planchas de continuidad entre las alas y el alma de la columna, cuando el espesor del ala de la columna es menor que el valor obtenido por medio de la siguiente expresión:

argularite expresion:
$$t_{fc} < 0.4 \sqrt{1.8b_f t_f \frac{F_{yb} R_{yb}}{F_{yc} R_{yc}}}, \text{ en donde}$$

$$t_{fc} < \frac{b_f}{6}$$

b_f es el ancho de la viga

t_f es el espesor del ala de la viga

 \mathbf{R}_{y} es la relación entre la tensión cedente esperada (F_{ye}) y la tensión cedente mínima especificada (F_{y}), para el tipo de acero utilizado.

1.2.3.2. Zona del panel

Se debe verificar, si en la zona del panel de las conexiones resistente a momento donde actúan fuerzas de cedencia por corte que provienen de la transmisión del momento de la viga a la columna y del corte de entrepiso, es necesaria la colocación de planchas adosadas a dicho panel, para esto es recomendable seguir los siguientes pasos:

 Calcular el espesor requerido de la zona del panel que resulta de la cedencia de dicha zona y de la viga en la conexión, por medio de la siguiente expresión:

$$t = \frac{C_y M_c \frac{h - d_b}{h}}{(0.9)0.6 F_{yc} R_{yc} d_c (d_b - t_{fb})}, \text{ donde:}$$

h es la altura promedio de los pisos que están arriba y debajo de la zona del panel.

R_{ye} es la relación entre la tensión cedente esperada, F_{ye}, y la tensión cedente mínima especificada, F_y, para el tipo de acero utilizado en la columna.

M_c y C_y fueron definidos anteriormente.

2) Si el valor calculado en la expresión anterior es mayor que el espesor del alma de la viga, se debe proveer de una plancha doble, es decir una a cada lado del alma de la viga, con un espesor igual a la diferencia del valor calculado por la fórmula y el espesor del alma, dividiendo posteriormente el resultado entre dos.

1.2.3.3. Partes secundarias y otras construcciones

Las partes secundarias que van a ser soldadas o empernadas, tales como las fachadas exteriores, canalizaciones, cañerías o cualquier otra construcción, no deben ser ubicados en las zonas de formación de la rótula plástica de las vigas, definiéndose la zona de la rótula, como d_b/2 a cada lado del punto de ubicación teórico de la rótula plástica en la dirección de la viga. Es recomendable que los agujeros de los pernos para este tipo de construcción no estén ubicados entre la cara de la columna y 15,30 cm., como mínimo, más haya del final de la zona de la rotula plástica.

Las soldaduras que van ha ser colocadas entre la cara de la columna y el borde de la zona de la rótula plástica, debe ser cuidadosamente controlada para así evitar la creación de concentraciones de tensión y aplicaciones excesivas de calor.

1.3. Propiedades de conexiones particulares

1.3.1 Conexiones con planchas laterales

La configuración de este tipo de conexión se puede observar en la Figura 26 mostrada a continuación.

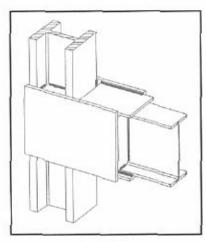


Figura 26

La separación física entre la cara del ala de la columna y el final de la viga, elimina las máximas concentraciones de tensión triaxial, esta separación física es lograda al colocar unas planchas como se muestra en la Figura 26 a lo largo de toda la altura de la viga, a fin de lograr una continuidad plena entre los elementos, al conectar la viga a la columna por medio de planchas. El incremento de la rigidez producto de las planchas ubicadas a los lados, genera una rigidez global al pórtico de la estructura y elimina las deformaciones de la zona del panel debido a que se crean tres nuevas zonas de panel. Debido, que por lo general el ancho de las alas de la viga es menor que el ancho de las alas de la columna, es necesario igualar las dimensiones, de dichas alas, colocando planchas soldadas en las alas de la viga.

En este tipo de conexión el momento es transferido desde la viga a las planchas ubicadas a los lados de la conexión y desde estas planchas a la columna, por medio de rigidizadores y soldaduras de filete. El corte de la viga es transferido desde el alma de la viga a las planchas ubicadas a los lados de la conexión, por medio de planchas verticales y soldaduras de filete. Las

planchas ubicadas a los lados de la conexión son diseñadas con la suficiente rigidez y resistencia para así ocasionar que el comportamiento plástico se genere en la viga y no afecte a la conexión

1.3.2. Conexiones de almas ranuradas

La configuración de este tipo de conexión se puede observar en la Figura 27 mostrada a continuación.

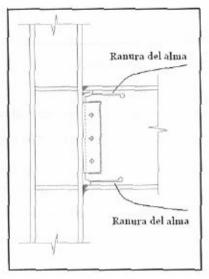


Figura 27

Las separaciones entre las alas y el alma de la viga, reducen las grandes tensiones y los gradientes de tensión, debido a que dichas alas pueden flexionarse fuera de su plano sin afectar con gran importancia su alma; de esta forma se logra que se aumente la vida por fatiga de la conexión.

Dicha separación produce una especie de independencia al doblarse en los diferentes modos producto de la acción de la torsión, esto es de particular importancia para las vigas que están ubicadas en los perímetros de las edificaciones.

1.3.4. Conexiones con cartelas empernadas

La configuración de este tipo de conexión se puede observar en la Figura 28 mostrada a continuación.

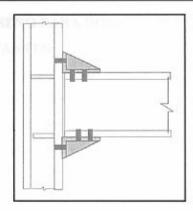


Figura 28

El corte y la flexión de la viga son transmitidos por medio de unas parejas de cartelas empernadas, localizadas en las alas superiores e inferiores de la viga.

1.3.5. Almas agujereadas de las vigas

La configuración de este tipo de conexión se puede observar en la Figura 29 mostrada a continuación.

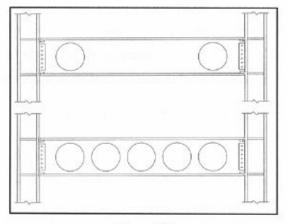


Figura 29

La sección de alma reducida utiliza principalmente su capacidad de diseño protegiendo la conexión viga-columna de las grandes tensiones, al introducir agujeros en las almas de las vigas. Las aberturas son bastante grandes a fin de permitir la cedencia a lo largo del alma de la viga, admitiendo de esta forma que la región de la conexión permanezca teóricamente elástica.

2. PROCEDIMIENTO DE DISEÑO PARA DOS DE LAS CONEXIONES VIGA-COLUMNA MÁS IMPORTANTES

2.1. Conexiones de plancha de extremo

Según la FEMA los requisitos adicionales de diseño para una conexión de plancha de extremo son los siguientes:

1) Calcular Mf y Mc como:

$$M_f = M_{pr} + V_p X$$
, siendo:

 V_p es el corte actuante en el punto de formación de la rótula plástica.

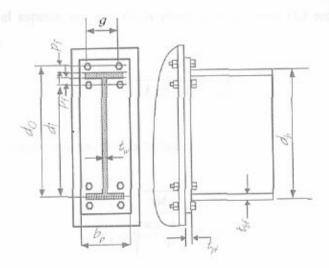
X es la distancia desde la cara de la columna de la conexión hasta el punto donde está ubicada la rótula plástica.

 M_{pr} es el momento probable que ocurre en el punto de la rótula plástica y se puede calcular como: $M_{pr} = C_{pr} R_y Ze F_y$, donde

$$C_{pr} = \frac{F_y + F_u}{2F_y}$$
, usualmente se utiliza un valor igual a 1,2.

 \mathbf{R}_{y} es la relación entre la tensión cedente esperada (\mathbf{F}_{ye}) y la tensión cedente mínima especificada (\mathbf{F}_{y}), para el tipo de acero utilizado.

Ze es el modulo plástico efectivo de la sección o de la conexión en el lugar de la rótula plástica.


$$M_c = M_{pr} + V_p \left(X + \frac{d_c}{2} \right)$$
, donde

de es la altura de la columna.

 V_p es el corte actuante en el punto de formación de la rótula plástica.

 Una vez definido el diámetro y tipo de perno, así como las diferentes distancias indicadas a continuación.

Se debe cumplir con la siguiente inecuación:

$$M_f < 2T_{ub}(d_0 + d_t)$$
, en donde

Tub es igual a 90Ab para pernos A325.

Tub es igual a 113Ab para pernos A490.

do y di están definidos en la Figura anterior.

3) Verificar que el diámetro del perno seleccionado sea el adecuado para resistir el corte actuante, para esto se debe cumplir que:

$$A_b \ge \frac{2M_f}{L - d_c} + V_g$$
, donde

 $V_{\rm g}$ es el corte actuante en la cara de la columna producto de la acción de cargas gravitacionales.

4) Determinar el espesor mínimo de la plancha de extremo (t_p) requerida para evitar la cedencia por flexión:

$$t_{p} = \sqrt{\frac{M_{f}}{0.8F_{yp} \left\{ \left(d_{b} - p_{t}\right) \left[\frac{b_{p}}{2} \left(\frac{1}{p_{f}} + \frac{1}{s}\right) + \left(p_{f} + s\right) \frac{2}{g}\right] + \frac{b_{p}}{2} \left(\frac{d_{b}}{p_{f}} + \frac{1}{2}\right) \right\}}}, \text{ donde:}$$

 $S = \sqrt{b_p * g}$, siendo g la distancia horizontal entre los centro de los pernos.

5) Determinar el espesor mínimo de la plancha de extremo (t_p) requerida para evitar la cedencia por corte:

$$t_p = \frac{M_f}{1,1F_{yp}b_p(d_b - t_{bf})}$$

6) Determinar el espesor mínimo del ala de la columna requerido para resistir la tensión del ala de la viga:

$$t_{fc} = \sqrt{\frac{\frac{M_f}{d_b - t_{fb}} C_1}{2F_{yc}c}}, \text{ donde:}$$

$$C_1 = \frac{g}{2} - k_1$$

ki es la distancia que hay entre el centro del alma a la punta del filete del ala de la columna.

Si el espesor del ala de la columna es menor que el calculado, se requiere el uso de planchas de continuidad, igualmente se requiere de planchas de continuidad cuando el espesor del ala de la columna posea un valor menor al calculado por:

$$\begin{split} t_{fc} &< 0.4 \sqrt{1.8 b_f t_f \, \frac{F_{yb} R_{yb}}{F_{yc} R_{yc}}} \\ t_{fc} &< \frac{b_f}{6} \end{split} , \label{eq:tfc}$$

Donde:

bf es el ancho de la viga

t_f es el espesor del ala de la viga

 \mathbf{R}_{y} es la relación entre la tensión cedente esperada (F_{ye}) y la tensión cedente mínima especificada (F_{y}), para el tipo de acero utilizado.

7) Si las planchas de continuidad son requeridas, el espesor del ala de la columna debe cumplir el siguiente requisito adicional:

$$t_{fc} > \sqrt{\frac{\frac{M_f}{2(d_b - t_{fb})}}{0.8F_{yc}Y_c}}$$
, donde:

$$Y_{c} = \left(\frac{c}{2} + s\right) \left(\frac{1}{C_{2}} + \frac{2}{C_{1}}\right) + \left(C_{2} + C_{1}\right) \left(\frac{4}{c} + \frac{2}{s}\right)$$

$$C_{1} = \frac{g}{2} - k_{1}$$

$$C_{2} = \frac{b_{fc} - g}{2}$$

$$s = \sqrt{\frac{C_{1}C_{2}}{C_{2} + 2C_{1}}} \left(2b_{fc} 4k_{1}\right)$$

Si t_{fc} es menor que el valor calculado, se debe seleccionar otra columna con un espesor mayor de ala.

 Chequear el espesor del ala de la columna para evitar fallas por compresión del ala de la viga:

$$t_{fe} > \frac{M_f}{(d_b - t_{fb})(6d_f + 2t_{pi} + t_{bf})F_{ye}}$$
, donde:

d_f es la distancia de la superficie exterior del ala de la columna a la punta del filete en el alma (como se observó en la Figura 21).

Si la inecuación anterior no se cumple, se requiere el uso de planchas de continuidad en el ala de la viga y deben cumplirse con los requisitos para planchas de continuidad referidos en el paso 6.

- 9) Chequeo del corte en la zona del panel, tomar como d_b la distancia que hay desde un borde de la plancha de extremo hasta el centro del ala de la viga del lado opuesto:
 - 9.1) Calcular el espesor (t) requerido de la zona del panel:

$$t = \frac{C_y M_c \frac{h - d_b}{h}}{(0.9)0.6 F_{yc} R_{yc} d_c (d_b - t_{fb})}, \text{ donde:}$$

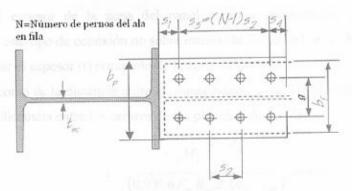
h es la altura promedio de los pisos que están arriba y debajo de la zona del panel.

R_y es la relación entre la tensión cedente esperada (F_{ye}) y la tensión cedente mínima especificada (F_y), para el tipo de acero utilizado.

 M_c (calculado en el punto 1)

$$C_y = \frac{1}{C_{pr} \frac{Z_{be}}{S_b}}$$
, donde:

C_{pr} definido en el punto 1.


Z_{be} es el módulo plástico efectivo de la viga en la zona de la junta plástica.

Sh es el módulo elástico de la viga en la zona de la junta plástica.

9.2) Si la t calculada es mayor que el espesor del alma de la columna, se debe proporcionar planchas dobles o incrementar el tamaño de la columna.

2.2. Conexiones de plancha empernada al ala de la viga con plancha de corte

Según la FEMA los requisitos adicionales de diseño para una conexión de plancha empernada al ala de la viga son los siguientes, se debe considerar la figura anexa:

Calcular M_f y M_c con las siguientes fórmulas:

$$M_f = M_{pr} + V_p X$$
, siendo:

V_p es el corte actuante en el punto de formación de la rótula plástica.

X es la distancia desde la cara de la columna de la conexión hasta el punto donde está ubicada la rótula plástica.

 M_{pr} es el momento probable que ocurre en el punto de la rótula plástica y se puede calcular como: $M_{pr} = C_{pr} R_y$ Ze F_y , donde

$$C_{pr} = \frac{F_y + F_u}{2F_y}$$
, usualmente se utiliza un valor igual a 1,2.

 $\mathbf{R}_{\mathbf{y}}$ es la relación entre la tensión cedente esperada ($\mathbf{F}_{\mathbf{ye}}$) y la tensión cedente mínima especificada ($\mathbf{F}_{\mathbf{y}}$), para el tipo de acero utilizado.

Ze es el modulo plástico efectivo de la sección o de la conexión en el lugar de la rótula plástica.

$$M_c = M_{pr} + V_p \left(X + \frac{d_c}{2} \right)$$
, donde

de es la altura de la columna.

V_p es el corte actuante en el punto de formación de la rótula plástica.

2) Calcular el momento en la cara de la columna Mys.

$$M_{yf} = C_y M_f$$
, donde:

$$C_y = \frac{1}{C_{pr} \frac{Z_{be}}{S_b}}$$
, siendo:

Cpr definido en el punto 1.

Z_{be} es el módulo plástico efectivo de la viga en la zona de la junta plástica.

S_b es el módulo elástico de la viga en la zona de la junta plástica.

- 3) Calcular el espesor de la zona del panel como a continuación de describe, (como recomendación para este tipo de conexión no sobre estimar la fuerza del panel de la conexión):
 - 3.1) Calcular el espesor (t) requerido de la zona del panel:

Usar como d_b la distancia entre las caras exteriores de las planchas de las alas y, (d_b-t_b) la distancia entre los centros de las planchas de las alas.

$$t = \frac{C_{y}M_{c}\frac{h - d_{b}}{h}}{(0.9)0.6F_{yc}R_{yc}d_{c}(d_{b} - t_{fb})}, \text{ donde:}$$

h es la altura promedio de los pisos que están arriba y debajo de la zona del panel.

 \mathbf{R}_{yc} es la relación entre la tensión cedente esperada, \mathbf{F}_{ye} , y la tensión cedente mínima especificada, \mathbf{F}_{y} , para el tipo de acero utilizado en la columna.

Me (calculado en el punto 1)

Cy (calculado en el punto 1)

3.2) Si la t calculada es mayor que el espesor del alma de la columna, se debe proporcionar planchas dobles o incrementar el tamaño de la columna.

Si el espesor de la zona del panel es mayor que 1,5 veces el requerido, se recomienda utilizar una combinación diferente de tamaño de viga y columna.

- 4) Establecer el ancho de la plancha del ala, en base a la geometría de la viga y de la columna.
- Calcular el espesor requerido para las planchas del ala (t_{pl}) por medio de la siguiente expresión:

$$t_{pl} = \frac{d_b - \sqrt{d_b^2 - \frac{4,4M_{yf}}{F_y b_p}}}{2}$$

6) Seleccionar el número, tamaño y tipo de perno que se requiere para unir la plancha con el ala de la viga, verificando el cumplimiento de la siguiente inecuación:

$$1,2M_{yf} < M_{falla}$$
, donde:

Myf es el momento en la cara de la columna, calculado en el punto (2).

 M_{falla} es el momento en la cara de la columna para las fallas que serán calculadas entre los puntos (7) y (10).

 Determinar el momento en la cara de la columna para falla por corte de los pernos y verificar si se cumple la inecuación del punto 6).

$$Mfalla_{pernos} = 2NA_b (F_{typernos}) d_b L_{TF1}$$
, donde:

Ab es el área de los pernos.

Ftv pernos es la fuerza nominal a corte de los pernos, indicada en la Tabla 4.

N es el número de pernos.

$$L_{TF1} = \frac{L - d_c}{L - d_c - (2S_1 + S_3)}$$

8) Determinar el momento en la cara de la columna para la falla por rotura de las planchas del ala y verificar si se cumple la inecuación del punto 6).

$$Mfalla_{plancha} = 0.85 F_{u-pl} \left(b_p - 2 \left(d_a + 0.062 \right) \right) t_{pl} \left(d_b + t_{pl} \right) L_{TF2}, \text{ donde:}$$

 $\mathbf{F}_{u\text{-pl}}$ es la tensión de rotura de la plancha.

d_a es el diámetro del agujero de la plancha.

 t_{pl} es el espesor de la plancha.

$$L_{TF2} = \frac{L - d_c}{L - d_c - 2S_1}$$

 Determinar el momento en la cara de la columna para la falla por rotura del ala de la viga y verificar si se cumple la inecuación del punto 6).

$$Mfalla_{ala} = F_{u-b} (Z_b - 2(d_a + 0.062)t_{fb} (d_b - t_{fb}))L_{TF3}$$
, donde

F_{u-b} es la tensión a rotura de la viga.

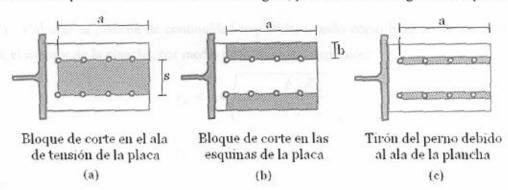
da es diámetro del agujero de la viga.

Z_b es el módulo plástico de la viga.

$$L_{TF3} = \frac{L - d_c}{L - d_c - 2(S_1 + S_3)}$$

10) Determinar el momento en la cara de la columna por aplastamiento de los agujeros y verificar si se cumple la inecuación del punto 6).

$$Mfalla_{aplastamiento} = T_n \left(d_b + \frac{t_{pl-j} + t_{pl-b}}{2} \right) L_{TF1}, \text{ donde:}$$


Tn es el menor valor entre las siguientes ecuaciones:

$$T_n = 2.4F_{u-b}(S_3 + S_1 - c)t_{fb}$$

$$T_n = 2.4F_{u-pl}(S_3 + S_4)t_{pl}$$

11) Chequear el bloque de corte

Se deben chequear las fallas mostradas en la figura, por medio de las siguientes expresiones:

· Para la figura (a), se deben calcular los siguientes parámetros:

$$A_{nv} = 2[a - p(d_a)]t$$

$$A_{nt} = (s - d_a)t$$
, siendo **p** el número de pernos de una fila menos 0,5.

· Para la figura (b), se deben calcular los siguientes parámetros:

$$A_{nv} = 2[a - p(d_a)]t$$

 $A_{nt} = 2[b - 0.5d_a]t$, siendo **p** el número de pernos de una fila menos 0.5.

La resistencia a la rotura del bloque de las figuras (a) y (b) se calculan como:

- Si F_u $A_{nt} \ge 0.6$ F_u A_{nv} , el mecanismo de falla es de cedencia por corte y fractura por tracción $\Phi R_{bs} = \Phi \left[0.6 F_y A_v + F_u A_{nt}\right] \le \Phi \left[0.6 F_u A_{nv} + F_y A_{nt}\right]$
- Si 0,6 F_u $A_{nv} > F_u$ A_{nt} , el mecanismo de falla es de cedencia por tracción y fractura por corte $\Phi R_{bs} = \Phi \left[0,6 \ F_u \ A_{nv} + F_y \ A_t \right] \le \Phi \left[0,6 \ F_u \ A_{nv} + F_y \ A_{nt} \right]$
- Para la figura (c), $A_{nv} = 4(a 0.5d_a)t$ y la resistencia se calcula:

$$\Phi R_i = \Phi (0.60F_u A_{nv})$$

Se debe comparar la fuerza a corte actuante en las planchas del ala de la viga con las resistencias de los diferentes modos de falla presentados anteriormente, si dicha fuerza cortante es mayor que alguna de las resistencias calculadas, se debe aumentar el espesor de la plancha.

12) Diseñar la plancha de corte empernada a fin de resistir el corte dado por la siguiente expresión:

$$V_{alma} = \frac{2M_f}{L - d_c} + V_g$$
, donde

Vg es el corte en la cara de la columna debido a la acción de las cargas gravitacionales.

13) Calcular la plancha de continuidad requerida, usando como b_f el ancho de la plancha y como t_f el espesor de la plancha, por medio de la siguiente expresión:

$$\begin{split} t_{fc} < 0.4 \sqrt{1.8 b_f t_f \frac{F_{yb} R_{yb}}{F_{yc} R_{yc}}} \\ t_{fc} < \frac{b_f}{6} \end{split} , \label{eq:tfc}$$

Donde:

bf es el ancho de la viga

t_f es el espesor del ala de la viga

R_y es la relación entre la tensión cedente esperada (F_{ye}) y la tensión cedente mínima especificada (F_y), para el tipo de acero utilizado.

DISEÑO DE CONEXIÓN EN NIVEL DE DISEÑO I

Diseñe una conexión resistente a momento de tipo plancha extrema, para conectar una viga W18 x 35 a una columna W14 x 99. La conexión debe transmitir un momento último de 23940 Kgf - m y una fuerza cortante última igual a 15436 Kgf. Los electrodos usados para las soldaduras son E70XX y los pernos son A325-N. Todo el acero usado es Fy=2500 Kg/cm².

Cálculo del par de fuerzas

$$P_{uf} = M_u/(d - t_f) \implies 23940/(0.45 - 0.00108) \implies 54508 \text{ Kgf}.$$

- Se colocarán 8 pernos en total para unir la plancha a la columna, 4 en la zona de tracción y 4 en la zona de compresión.
- 3) Para seleccionar el diámetro de perno a usar, primero se divide la fuerza P_{uf} entre cuatro obteniéndose 13627 Kgf y luego se compara dicho valor con la resistencia a corte de la Tabla 5 que más se aproxime, siendo el caso de pernos de 7/8".
- 4) En la zona de compresión se colocan 4 pernos.
- 5) Seleccionando el diámetro de agujero para el tipo de perno según tabla, da = 23,8 mm.
- 6) Cálculo de la resistencia por corte bajo cargas de servicio.
 Por Tabla 8, la resistencia de un perno por corte bajo cargas de servicio es 4636 Kgf.
 La resistencia total es 8 * 4636 = 37088 Kgf. Dicho valor se compara con el corte sin mayorar y si es menor se debe aumentar el diámetro nominal de los pernos.
- Cálculo de la resistencia minorada al deslizamiento bajo cargas mayoradas.

Por Tabla 10, $\Phi R_{str} = 6600 \text{ Kgf}$.

 $\Phi R_{\text{str TOTAL}} = 6600 * 8 = 52800 \text{ Kgf.}$

 $\Phi R_{\text{str TOTAL}} > V_u \text{ OK.}$

8) Cálculo de la resistencia minorada al corte.

Por Tabla 4, $\Phi R_v = 9805 \text{ Kgf}$.

$$\Phi R_{v \text{ TOTAL}} = 9805 * 8 = 78440 \text{ Kgf.}$$

 $\Phi R_{v \text{ TOTAL}} > V_u \text{ OK.}$

9) Cálculo del ancho de la plancha.

$$b_p = b_{bf} + 2,54 \implies 15,2 + 2,54 \implies 17,74 \text{ cm}.$$

- 10) Se realiza una soldadura de ranura de penetración completa con raíz de 6 mm y un biselado de 45°.
- 11) Para determinar el espesor de la plancha extrema.

11.1)
$$p_f = d_b + 1,27 \implies 22,2 + 12,7 \implies 34,9 \text{ mm}.$$

$$p_e = p_f - 0.25 d_b \implies 34.9 - 0.25 * 22.2 \implies 29.35 mm.$$

$$F_1 = P_{uf}/2 \implies 54508/2 \implies 27254 \text{ Kgf.}$$

$$M_t = F_1 * s \rightarrow (P_{uf}/2) * (p_d/2) \rightarrow 27254 * (2,935/2) \rightarrow 39995 \text{ Kgf.}$$

11.2)
$$\alpha_m = C_a C_b (A_f/A_w)^{1/3} (p_c/d_b)^{1/4}$$

Por Tabla 20.1,
$$C_a = 1,36$$

$$C_b = (b_p/b_p)^{1/2} \implies (15,2/17,74) \implies 0,857$$

Por Tabla 19.1,
$$A_f/A_w = 1,859$$

$$\alpha_{\rm m} = 1.36 * 0.857 * (1.859)^{1/3} * (29.35/22.2)^{1/4} \rightarrow 1.537$$

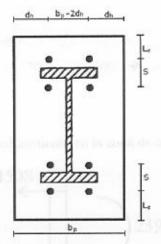
$$M_{eu} = \alpha_m M_t \rightarrow 1,537 * 39,995 \rightarrow 61472 \text{ Kgf} - m.$$

11.3)
$$t_{preq} = (4*M_{eu})/(0.90 * b_p * F_y) \rightarrow 2.48 \text{ cm} \rightarrow 25 \text{ mm}.$$

Cálculo de la resistencia a la cedencia por corte.

$$\Phi R_v = 0.90*0.60 \text{ F}_y \text{ A } 0.90*0.60*2500*(2.5*17.74) \rightarrow 59873 \text{ Kgf.}$$

Como 59873 < F₁ OK.



13) Se procede al cálculo de la soldadura de filete entre el alma de la viga y la plancha extrema. Se divide el corte V_u entre 2 y el resultado se divide entre la altura del alma de la viga quedando: 15436 / 2 = 7718 → 7718 / 0,4284 = 18016 Kgf/m → 18,02 Ton/m.

Con este valor se entra en la Tabla 13.1 y el tamaño nominal adecuado son 4mm. El t_{mín} requerido (5 mm) se adecua al espesor del alma de la viga (7,62 mm). Verificando en la Tabla 12 (tamaño mínimo de soldadura de filete según la pieza más gruesa a unir), el tamaño nominal es 8 mm.

14) Comprobando que la resistencia de filete resiste la fuerza cortante. $\Phi R_v = 0.318 \ D \ L \ F_{EXX} \implies 0.318 * 0.8 * (2*42,84) * (4900) \implies 106805 \ Kgf.$ Como $\Phi R_v > V_u \ OK$.

15) Se deben definir las diferentes distancias a los bordes y las separaciones entre los pernos de la siguiente manera:

- 15.1) Le es igual a 38 mm según Tabla 2
- 15.2) La distancia dh se halla:

$$d_h = \frac{2b_p - b_{hf} - t_{hw}}{4} \rightarrow (2*17,74 - 15,2 - 0,762) / 4 \rightarrow 4,88 \text{ cm}$$

15.3) Se debe verificar que la distancia horizontal entre los centros de los pernos sea mayor a tres veces el diámetro del perno.

$$b_p - 2d_h \rightarrow 17,74 - 2*4,88 \rightarrow 7,98 \text{ cm}$$

3d_b → 6,67 cm

$$b_p - 2d_h > 3d_b$$
 OK.

15.4) La distancia vertical entre los centros de los pernos debe ser mayor a tres veces el diámetro.

$$s = 2*p_f + t_f \implies 2*3,49 + 1,08 \implies 8,06 \text{ cm}$$

 $s > 3d_b \text{ OK}.$

- 16) Cálculo de la resistencia al aplastamiento.
 - 16.1) $L_c = L_e 0.5*d_a \implies 3.8 0.5*2.38 \implies 2.61 \text{ cm}$ Como $L_c < 2d_b$ $\Phi R_t = 0.75*1.2 L_c t F_u \implies 0.75*1.2*2.61*2.5*3700 \implies 21728 Kgf$
 - 16.2) $L_c = s d_a \rightarrow 8,06 2,38 \rightarrow 5,68 \text{ cm}$ Como $L_c \ge 2d_b$

$$\Phi R_t = 0.75*2.4 \text{ d t } F_u \implies 0.75*2.4 * 2.2225*2.5*3700 \implies 37005 \text{ Kgf}$$

16 3) $L = d = 2*t_0 = 2*t_0 = 2*t_0 = 2*1.08 = 2*3.49 = 2.38 \implies 33.48 \text{ cm}$

16.3) $L_c = d - 2*t_f - 2*p_f - d_a \implies 45 - 2*1,08 - 2*3,49 - 2,38 \implies 33,48 \text{ cm}$ Como $L_c \ge 2d_b$ $\Phi R_t = 0.75*2.4 d t F_u \implies 0.75*2.4*2.2225*2.5*3700 \implies 37005 Kgf$

16.4)
$$\Phi R_{\text{tTOTAL}} = 2*21728 + 4*37005 + 2*37005 \implies 265486 \text{ Kgf}$$

 $\Phi R_{rTOTAL} {>V_u~OK}.$

- 17) Revisión de la posible falla al deslizamiento en la zona de compresión.
 - 17.1) 54508 P X 23940

Altura de la plancha = 45 + 2*3,49 + 2*3,8 → 59,58 cm

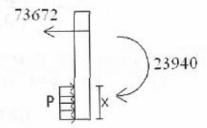
$$\mathbf{M_{u}} = P_{uf} \left[d_{plancha} - \left(Lc_{externo} + \frac{Lc_{int\,erno}}{2} \right) \right] - b_{p} X P \left(\frac{X}{2} \right)$$

$$2394000 = 54508 * (59,58 - (2,61 + 5,68/2)) - 17,74 * P * X^{2}$$
$$2394000 = 2950518 - 17,74 * P * X^{2}$$
 (1)

$$P_{uf} = b_p \times P$$

$$54508 = 17,74 * P * X \rightarrow P = 3072,60 / X$$
 (2)

Sustituyendo (2) en (1) se obtiene:


X = 10,21 cm

 $P = 300 \text{ Kgf/cm}^2$

17.2) Deslizamiento = 0,33 (b_p X - A_g) P → 0,33*(17,74*10,21 - 2*4,45)*300,94 → 17104 Kgf.

17.3) 17104 > V_u OK.

17.4) Ahora se sustituye el valor de P_{uf} en el sistema de ecuaciones anterior, por la máxima resistencia minorada a tracción.

$$2394000 = 73672 * (59,58 - (2,61 + 5,68/2)) - 17,74 * P * X^2$$

 $17,74 * P * X^2 = 6381865$ (1)

$$73672 = 17,74 * X * P \rightarrow P = 4152,87 / X$$
 (2)

Sustituyendo (2) en (1) se obtiene:

X = 86,62 cm

 $P \approx 47.94 \text{ Kgf/cm}^2$

Se procede a la verificación de la resistencia para los estados límites de agotamientos en la columna.

18) Falla por flexión local del ala de la columna

De la ecuación de la Gráfica 1, para un F_y de 2500 Kg/cm² se obtiene:

$$\Phi R_t = 140,63 t_f^3 - 3E-11 * t_f - 3E-11$$

$$\Phi R_t = 140,63 * (19,8)^3 - 3E-11 * (19,8) - 3E-11 \Rightarrow 55133 \text{ Kgf} > P_{uf} = 56383$$

No se necesita el uso de rigidizadores.

19) Falla por cedencia local del alma de la columna

Haciendo uso de la Gráfica 2-a, para un $d_R = 17,74$ cm y un $d_f = 37$ mm, se interpola y se obtiene:

$$\Phi R_t/t_w = 92 \text{ Ton/cm} \rightarrow 92*1,23 \rightarrow 113160 \text{ Kgf} > P_{uf} = 56383$$

No se necesita el uso de rigidizadores.

20) Falla por aplastamiento local del alma de la columna

Cuando la carga concentrada de compresión está aplicada a una distancia de mayor o igual a d/2 del extremo de la columna.

$$\Phi R_{t} = 0.75 * 0.8 t_{w}^{2} \left[1 + 3 \left(\frac{d_{R}}{d} \right) \left(\frac{t_{w}}{t_{f}} \right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_{f}}{t_{w}}},$$

$$\Phi R_r = 0.75 * 0.8 * 1.23^2 \left[1 + 3 \left(\frac{17.74}{36} \right) \left(\frac{1.23}{1.98} \right)^{1.5} \right] \sqrt{\frac{2.1 \times 10^6 * 2500 * 1.98}{1.23}}$$

$$\Phi R_t = 143851 \text{ Kgf} > P_{uf} = 56383 \text{ Kgf}$$

No se necesita el uso de rigidizadores.

21) Falla por pandeo del alma comprimida

De la ecuación de la Gráfica 4, para un F_v de 2500 Kg/cm² se obtiene:

$$\Phi R_4/t_w^3 = 15651*h^{-1} \implies 15651*287^{-1}$$

$$\Phi R_t/t_w^3 = 54,53 \text{ Ton/cm}^3 \implies 54,53*1000*1,23^3 \implies 101479 \text{ Kgf} > P_{uf} = 56383 \text{ Kgf}$$

No se necesita el uso de rigidizadores.

22) Debido a que no se posee un corte de entrepiso se supone un corte igual al 10% de la capacidad a compresión de la columna, siendo este igual a 30000 Kgf.

Se obtiene el corte total actuante en la zona del panel, para esto:

$$\Sigma F_u = M_u/d + V_{entrepiso} \implies \Sigma F_u = 23940/0,45 + 30000 \implies 83200 \text{ Kgf.}$$

Se procede a verificar si se necesita planchas adosadas en la zona del panel, para esto se supone que se consideran las deformaciones en la zona del panel y una fuerza axial actuante N_u= 200000 Kgf.

Cuando
$$N_u \le 0.75 N_y \implies 200000 \le 0.75*188*2500 \implies 200000 \le 352500$$

$$\Phi R_v = \Phi 0.6 F_y d_c t_w \left[1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_w} \right]$$

$$\Phi R_{\nu} = 0.90 * 0.6 * 2500 * 36 * 1.23 \left[1 + \frac{3*37 * 1.98^2}{45 * 36 * 1.23} \right]$$
 78035,28 Kgf

Debido a que Φ $R_v < \Sigma F_u$ se necesitan colocar planchas adosadas en la zona del panel.

Debido a que no se evidenció la necesidad de colocar rigidizadores, se omiten los pasos 23) al 27) y se procede a diseñar las planchas adosadas:

28) Cálculo del espesor requerido para resistir el corte en el panel de la conexión.

$$t = \frac{\sum F_{u}}{0.90*0.60*F_{y}*d_{c}} \implies t = \frac{83200}{0.90*0.60*2500*36} \implies 1,71 \text{ cm}$$

$$t_{\text{cada plancha}} = (1,71 - 1,23)/2 \rightarrow 0,24 \text{ cm} \rightarrow 2,4 \text{ mm}$$

$$\Phi R_v = 0.90 * 0.60 F_y A_t \implies 0.90 * 0.60 * 2500 * (0.3 * 28.7) \implies 11623.5 \text{ Kgf.}$$

29) Diseño de la soldadura

11623,5 / 57,4 → 202,5 Kgf/cm

Comparando con el espesor de la pieza más gruesa a unir (12,3 mm) en la Tabla 12, el tamaño nominal de la soldadura es 5 mm, por lo que se tomará dicho valor en lugar de 1,3 mm.

Adicionalmente se aumentará el espesor de la plancha adosada a 5 mm, para cumplir con todos los requisitos.

Una vez concluido todos los puntos anteriores, se puede dar por terminado el diseño de la conexión de plancha empernada al ala de la viga con plancha de corte en el alma de la viga para las estructuras de acero.

DISEÑO DE CONEXIÓN EN NIVEL DE DISEÑO 3

Para el diseño de la conexión anterior bajo requerimientos sísmicos se deben cumplir con los siguientes puntos:

1) En el diseño de la zona del panel de corte de la conexión, se debe verificar que el corte actuante en la zona del panel, calculado en el punto 22), no exceda de $0.8\sum (1.1*R_y*M_p+M_y)$.

$$0.8(1.1*1.25*1120*2500+(965*2500)) \rightarrow 5010000 \text{ Kgf}$$

Como la ΣF_u = 83200 Kgf es menor que el valor calculado, OK.

2) Para determinar la resistencia minorada al corte de la zona del panel se deben utilizar bajo requerimientos sísmicos las siguientes expresiones:

Cuando $N_u \le 0,75 N_y$

$$\Phi R_v = 0.75*0.6F_y d_c t_p \left[1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_p} \right]$$

$$\Phi R_{\nu} = 0.75 * 0.6 * 2500 * 36 * 1.23 \left[1 + \frac{3*37 * 1.98^2}{45*36*1.23} \right] \rightarrow 60694.11 \text{ Kgf}$$

Se necesita el uso de planchas adosadas en la zona del panel.

Se procede al diseño de las planchas adosadas como en los puntos 28) y 29).

3) Se debe verificar que el espesor de la zona del panel, cumpla con la siguiente inecuación:

$$t \ge (d_z + w_z) / 90$$

$$t \ge (28,7+43,92)/90 \implies 0,807 \text{ cm}$$

Debido a que el espesor total de la zona del panel es 22,3 mm y el requerido es 8,07 mm, está OK.

4) Cálculo del comportamiento de los momentos plásticos en el nodo de la conexión.

$$\frac{\sum Z_{c} \left(F_{yc} - \frac{N_{uc}}{A} \right)}{\sum \left(1, 1R_{yb} Z_{b} F_{yb} + M_{y} \right)} \ge 1,0$$

$$\frac{2*2840\left(2500 - \frac{200000}{188}\right)}{1,1*1,25*1120*2500 + 965*2500} \ge 1,0 \implies 1,3 \ge 1,0 \text{ OK.}$$

5) Para determinar la necesidad de arriostramientos laterales en las alas de la columna se debe estudiar el siguiente caso:

Se deben colocar arriostramientos laterales en las alas de la columna, sólo a nivel de las alas superiores de la viga cuando se demuestre que fuera de la zona del panel, la columna permanece elástica bajo la siguiente condición:

$$\frac{\sum Z_c \left(F_{yc} - \frac{N_{uc}}{A} \right)}{\sum \left(1, 1 R_{yb} Z_b F_{yb} + M_y \right)} \ge 1,25 \implies 1,3 \ge 1,25, \text{ fa columna requiere de arriostramientos sólo a nivel superior del ala de la viga.}$$

Se da por terminado el diseño de la conexión.

Diseñe una conexión resistente a momento de tipo de planchas empernadas al ala de la viga y planchas de corte empernadas en el alma de la viga, para conectar una viga W21 x 50 a una columna W14 x 99. La conexión debe transmitir un momento último de 29060 Kgf - m y una fuerza cortante última igual a 14980 Kgf. Los electrodos usados para las soldaduras son E70XX y los pernos son A325-N. Todo el acero usado es Fy=2500 Kg/cm².

- 1) Para pernos A325-N, diámetro de 3/4" → la resistencia a corte es 7204 Kgf.
- 2) Para obtener el número de pernos $V_u/2 \Rightarrow 14980/2 = 7490$ Kgf, este valor debe dividirse entre la resistencia a corte de los pernos $\Rightarrow 7490/7204 = 1,03 \approx 2$ pernos.
- Seleccionando el diámetro de agujero d_a= 20,6 mm.
- 4) Para fijar las distancias se procede:
 - 4.1) Le vertical según Tabla es igual a 32 mm.
 - 4.2) Le horizontal según Tabla es igual a 32 mm.
 - 4.3) Separación entre agujeros s=3d_b, s = 57,3 mm.
- 5) Una vez ubicadas las distancias, se suman y se verificó que la longitud total no es mayor a la altura del alma de la viga.
- 6) Cálculo de espesor de la plancha de corte
 - 6.1) Cálculo de L_c para agujeros externos

$$L_c = 32 - 0.5d_a \implies 32 - 0.5 (20.6) = 21.7 \text{ mm}$$

6.2) Como L_e ≤2d_b, entonces:

$$\Phi R_t = 0.75*1.2 L_c t F_u \rightarrow 0.75*1.2*2.17*t*3700 \rightarrow 7226 t$$

6.3) Calculo de Le para los agujeros internos

$$L_c = 3d_b - d_a \rightarrow 3*19,1 - 20,6 = 36,7 \text{ mm}$$

6.4) Como L_c ≤2d_b, entonces:

$$\Phi R_t = 0.75*1.2 L_c t F_u \rightarrow 0.75*1.2*3.67*t*3700 \rightarrow 12221 t$$

6.5) Para la resistencia al aplastamiento total

$$\Phi R_{tTOTAL} = 7226 t + 12221 t \rightarrow 19447 t$$

6.6) Igualando la fuerza cortante a la resistencia total al aplastamiento:

$$19447 t = 14980 \Rightarrow t = 0.77 cm$$

6.7) Aproximando el espesor anterior a uno comercial

$$t = 8 \text{ mm}$$

7) Cálculo de la resistencia a la cedencia por corte de la plancha

$$\Phi R_v = 0.90*0.60 \text{ A}_g F_y \rightarrow 0.90*0.60 (12.13*0.8) 2500 \rightarrow 13100 \text{ Kgf}$$

Como $\Phi R_v < V_u$ se debe aumentar el espesor de la plancha hasta un t = 10 mm.

Calculando la nueva resistencia a la cedencia por corte de la plancha:

$$\Phi Rv = 0.90*0.60 (12.13*1) 2500 \rightarrow 16375 \text{ Kgf} > V_u \text{ OK}.$$

8) Cálculo de la resistencia a la rotura por corte de la plancha.

$$A_{nv} = (a - 1.5d_a) t \rightarrow (8.93 - 1.5(2.06))1 \rightarrow 5.84 \text{ cm}^2$$

$$\Phi R_v = 0.75*0.60 \text{ A}_{nv} F_u \rightarrow 0.75*0.60*5.84*3700 \rightarrow 9724 \text{ Kgf}$$

Como $\Phi R_v < V_u$ se debe aumentar el espesor de la plancha hasta un t = 16 mm.

Calculando la nueva resistencia a la rotura por corte de la plancha:

$$\Phi Rv = 0.75*0.60 (5.84*1.6) 3700 \rightarrow 15558 \text{ Kgf} > V_u \text{ OK}.$$

Cálculo de la rotura en el bloque de corte.

9.1)
$$A_{nv} = (a - p*d_a) t \rightarrow (8.93 - 1.5(2.06))*1.6 \rightarrow 9.34 \text{ cm}^2$$

9.2)
$$A_{nt} = (b - 0.5 d_a) t \rightarrow (3.2 - 0.5*2.06)*1.6 \rightarrow 3.47 cm^2$$

9.3) Como 0,6 $F_u A_{nv} > F_u A_{nt}$

$$A_t$$
 (área neta a tracción) = 3,2 * 1,6 = 5,12 cm²

$$\Phi R_{bs} = 0.75 (0.6*F_u*A_{nv} + F_y*A_t) \le 0.75 (0.6*F_u*A_{nv} + F_y*A_{nt})$$

$$\Phi R_{bs} = 0.75 (0.6*3700*9.34 + 2500*5.12) \le 0.75 (0.6*3700*9.34 + 2500*3.47)$$

$$\Phi R_{bs} = 25151 \le 22057$$
, tomando como $\Phi R_{bs} = 22057 \text{ Kgf}$

9.4)
$$\Phi R_{bs} = 22057 \text{ Kgf} > V_u \text{ OK}.$$

10) Cálculo de la soldadura de filete de la plancha de corte.

 $V_u/2 \rightarrow 14980/2 = 7490 \text{ Kgf}$, este valor debe dividirse entre dos veces la altura de la plancha \rightarrow 7490/(12,13*2) \rightarrow 3008,74 Kgf/cm \rightarrow 30,87 Ton/m

De la tabla 13.1 para un electrodo de E70XX con una resistencia requerida de 30,87 Ton/m se obtiene \rightarrow D = 4mm. Y se comprueba que el espesor mínimo requerido de plancha t = 5mm. Es menor que el espesor de la plancha de corte que se posee (t = 16 mm.)

Verificando el tamaño nominal de la soldadura para la pieza más gruesa a unir, según la Tabla 12, siendo la pieza más gruesa el ala de la columna (19,8 mm.), se debe colocar un tamaño nominal de soldadura de 8 mm.

11) Cálculo del par de fuerzas

$$P_{uf} = M_u/(d - t_f)$$
 \rightarrow 29060/(0,529 - 0,00136) \rightarrow 56383 Kgf

- 12) Se selecciona los pernos para la plancha empernada al ala de la viga de tipo A325-N, diámetro ³√" → la resistencia a corte de cada perno es 7204 Kgf.
- 13) Para obtener el número de pernos $P_{\rm uf}/\Phi R_{\rm v} \rightarrow 56383/7204 = 7,83 \approx 8$ pernos.
- 14) Seleccionando el diámetro de agujero para el tipo de perno según tabla, da = 20,6 mm.
- 15) Para fijar las distancias se procede:

 $L_{\rm e}$ de los pernos externos a los bordes paralelos al ala de la columna, según Tabla es igual a 32 mm.

 L_e horizontal desde los pernos hasta los bordes laterales, según Tabla es igual a 32 mm. Separación entre agujeros s=3 d_b , s = 57,3 mm.

Espesor de la plancha.

16.2) Como L_c < 2d_b

$$\Phi R_t = 0.75*1.2 \text{ L}_c \text{ t } F_u \rightarrow 0.75*1.2*2.17*t*3700 \rightarrow 7226 \text{ t}$$

$$\Phi$$
R_t = 0.75*1,2 L_c t F_u → 0.75 * 1.2 * 3.67 * t * 3700 → 12221 t

16.5) Para la resistencia al aplastamiento total

16.6) Igualando la fuerza Puf a la resistencia total al aplastamiento:

$$87778 t = 56383 \Rightarrow t = 0.64 cm$$

16.7) Aproximando el espesor anterior a uno comercial t = 7 mm.

17) Calculando el área requerida para la cedencia a tracción.

$$A_g = P_{uf} / 0.90 F_y \implies 56383/(0.90*2500) \implies 25.06 \text{ cm}^2$$

 $25,06 = b_p * t$, siendo b_p el ancho de la plancha e igual a 12,13 cm. Despejando t se obtiene t= 2,07 cm. Se Ileva al espesor inmediato superior comercial siendo t= 21 mm.

Calculando el área requerida para la rotura por tracción.

$$A_g = P_{uf} / 0.75 F_u \rightarrow 56383/(0.75*3700) \rightarrow 20.32 \text{ cm}^2$$

 $20,32 = (b_p - 2d_a)^* t \implies 20,32 = (12,13 - 2*2,06)^* t$. Despejando t se obtiene t = 2,54 cm. Se lleva al espesor inmediato superior comercial siendo t = 26 mm.

- 19) Tomando como espesor de la plancha el mayor de los tres anteriores, t= 26 mm.
- 20) Se debe verificar que A_n ≤ 0,85 A

$$A = b_p * t \rightarrow 12,13 * 2,6 \rightarrow 31,538 \text{ cm}^2$$

$$A_n = (b_p - 2d_a)^* t \rightarrow (12,13 - 2^2,06)^* 2,6 \rightarrow 20,826 \text{ cm}^2$$

$$A_n \le 0.85 A$$
 OK.

21) Verificando el área del ala de la viga

$$A_{fn} = t_f * (b_f - 2*d_a) \rightarrow 1,36 * (16,6 - 2 * 2,06) \rightarrow 16,97 \text{ cm}^2$$

 $A = b_f * t_f \rightarrow 1,36 * 16,6 \rightarrow 22,58 \text{ cm}^2$

$$0,75 \text{ F}_{\text{u}} \text{ A}_{\text{fn}} \ge 0,90 \text{ F}_{\text{y}} \text{ A}$$

47092 < 50805 No Ok.

Debido a que no se cumple la inecuación se debe calcular la siguiente área efectiva:

$$A_{ef} = 5/6 F_u/F_y A_{fn} \implies 20.93 \text{ cm}^2$$

22) Se realiza una soldadura de ranura de penetración completa con raíz de 6 mm y un biselado de 45°.

Se procede a la verificación de la resistencia para los estados límites de agotamientos en la columna.

23) Falla por flexión local del ala de la columna

De la ecuación de la Gráfica 1, para un F_y de 2500 Kg/cm² se obtiene:

$$\Phi R_t = 140,63 t_f^3 - 3E-11 * t_f - 3E-11$$

$$\Phi R_t = 140,63 * (19,8)^3 - 3E-11 * (19,8) - 3E-11 \Rightarrow 55133 \text{ Kgf} < P_{uf} = 56383$$

Se necesita el uso de rigidizadores y se omiten los pasos 24), 25) y 26).

27) Debido a que no se posee un corte de entrepiso se supone un corte igual al 10% de la capacidad a compresión de la columna, siendo este igual a 30000 Kgf.

Se obtiene el corte total actuante en la zona del panel, para esto:

$$\Sigma F_u = M_u/d + V_{entrepiso} \implies \Sigma F_u = 29060/0,529 + 30000 \implies 84034 \text{ Kgf.}$$

Se procede a verificar si se necesita planchas adosadas en la zona del panel, para esto se supone que se consideran las deformaciones en la zona del panel y una fuerza axial actuante Nu= 200000 Kgf.

Cuando $N_u \le 0.75 \ N_y \implies 200000 \le 0.75*188*2500 \implies 200000 \le 352500$

$$\Phi R_{v} = \Phi 0.6 F_{v} d_{c} t_{w} \left[1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{w}} \right]$$

$$\Phi R_v = 0.90 * 0.6 * 2500 * 36 * 1.23 \left[1 + \frac{3*37*1.98^2}{52.9*36*1.23} \right] \implies 70883.33 \text{ Kgf}$$

Debido a que Φ R_v < ΣF_u se necesitan colocar planchas adosadas en la zona del panel.

Se procede al diseño de los rigidizadores:

- 28) La columna posee una sola viga conectada en un lado y el rigidizador va a ocupar la mitad del alma de la columna.
- 29) Cálculo del ancho y el espesor mínimo del rigidizador.

$$b \ge \frac{b_{hf}}{3} - \frac{t_{civ}}{2} \implies 16,6/3 - 1,23/2 \implies 4,92$$
 cm, se tomará como ancho del rigidizador toda la longitud

disponible en el ala de la columna, siendo esta igual a: 16,3 cm

$$e \ge \frac{t_b}{2} \circ \frac{t_{bf}}{2} \circ b * 1,82 \sqrt{\frac{F_y}{E}} \implies 2,6/2 = 1,3 \circ 1,36/2 = 0,68 \circ 16,3 * 1,82 \sqrt{\frac{2500}{2,1E6}} = 1,02$$

30) Cálculo de la capacidad resistente a tracción

$$\Phi R_t = 0.90 * F_v * A \rightarrow 0.90 * 2500 * (1.3*16.3) \rightarrow 47678 \text{ Kgf.}$$

Como Φ R_t = 47678 > Puf/2 = 28192 OK.

31) Revisión del ancho espesor del rigidizador.

$$b/e = 16,3/1,3 = 12,54$$

$$0,55\sqrt{\frac{E}{F_y}} \rightarrow 0,55\sqrt{\frac{2,1E6}{2500}} \rightarrow 15,94$$

Como 12,54 es menor que 15,94 OK.

32) Cálculo de la soldadura de filete.

32.1) Se define la longitud L como:
$$b + h_c/2 \rightarrow 16,3 + 28,7/2 \rightarrow 30,65 \text{ cm}$$

32.3) Calculando el tamaño nominal requerido:

$$D = 460 / (0.318 * 4900) \rightarrow 0.3 \text{ cm} \rightarrow 3 \text{ mm}$$

Verificando en la Tabla 12 y comparando con el espesor de la parte más gruesa a unir (19,8 mm) se debe colocar un tamaño nominal de soldadura de 8 mm.

32.4) Verificación de la resistencia a corte de los materiales base:

$$\Phi R_v = 0.318 \text{ D L } F_{EXX} \Rightarrow 0.318 * 0.5 * 30.65 * 4900 \Rightarrow 23879,42 \text{ Kgf}$$

$$\Phi R_v = 0.90*0.60 F_v * A_t$$

Ala:
$$\Phi R_v = 0.90 * 0.60 * 2500 * (1.23 * 16.3) \rightarrow 27066.15 \text{ Kgf}$$

Alma: $\Phi R_v = 0.90 * 0.60 * 2500 * (1.98 * 28.7) \rightarrow 76715.1 \text{ Kgf}$ Rigidizador: $\Phi R_v = 0.90 * 0.60 * 2500 * (1.3 * 16.3) \rightarrow 28606.5 \text{ Kgf}$ Como la resistencia a la cedencia a corte de los materiales son mayores que la resistencia a la soldadura el diseño está OK.

Debido a que se evidenció la necesidad de colocar planchas adosadas en la zona del panel, se procede a su diseño:

33) Cálculo del espesor requerido para resistir el corte en el panel de la conexión.

$$t = \frac{\sum F_u}{0.90*0.60*F_v*d_c} \implies t = \frac{84034}{0.90*0.60*2500*36} \implies 1.73 \text{ cm}$$

$$t_{\text{cada plancha}} = (1,73 - 1,23)/2 \rightarrow 0,25 \text{ cm} \rightarrow 2,5 \text{ mm}$$

$$t_{comercial} = 3 \text{ mm}$$

$$\Phi R_v = 0.90 * 0.60 F_y A_t \rightarrow 0.90 * 0.60 * 2500 * (0.3 * 28.7) \rightarrow 11623.5 \text{ Kgf.}$$

34) Diseño de la soldadura

11623,5 / 57,4 → 202,5 Kgf/cm

 $202,5 / (0,318*4900) \rightarrow 0,13 \text{ cm} \rightarrow 1,3 \text{ mm}.$

Comparando con el espesor de la pieza más gruesa a unir (12,3 mm) en la Tabla 12, el tamaño nominal de la soldadura es 5 mm, por lo que se tomará dicho valor en lugar de 1,3 mm.

Adicionalmente se aumentará el espesor de la plancha adosada a 5 mm, para cumplir con todos los requisitos.

Una vez concluido todos los puntos anteriores, se puede dar por terminado el diseño de la conexión de plancha empernada al ala de la viga con plancha de corte en el alma de la viga para las estructuras de acero.

DISEÑO DE CONEXIÓN EN NIVEL DE DISEÑO 3

Para el diseño de la conexión anterior bajo requerimientos sísmicos se deben cumplir con los siguientes puntos:

1) En el diseño de la zona del panel de corte de la conexión, se debe verificar que el corte actuante en la zona del panel, calculado en el punto 27), no exceda de $0.8\sum (1.1*R_y*M_p+M_y)$

 $0.8(1.1*1.25*1840*2500+(1370*2500)) \rightarrow 7800000 \text{ Kgf}$

Como la \(\Sigma F_u = 84034 \) Kgf es menor que el valor calculado, OK.

2) Para determinar la resistencia minorada al corte de la zona del panel se deben utilizar bajo requerimientos sísmicos las siguientes expresiones:

Cuando N_u ≤ 0,75 N_y

$$\Phi R_{v} = 0.75*0.6F_{y}d_{c}t_{p}\left[1 + \frac{3b_{cf}t_{cf}^{2}}{d_{b}d_{c}t_{p}}\right]$$

$$\Phi R_v = 0.75 * 0.6 * 2500 * 36 * 1.23 \left[1 + \frac{3*37 * 1.98^2}{52.9 * 36 * 1.23} \right] \implies 59069,44 \text{ Kgf}$$

Se necesita el uso de planchas adosadas en la zona del panel.

Se procede al diseño de las planchas adosadas como en los puntos 33) y 34).

3) Se debe verificar que el espesor del alma de la columna o el espesor total del alma de la columna más las planchas adosadas cuando, estas sean requeridas, cumplan con la siguiente inecuación:

$$t \ge \left(d_z + w_z \right) / 90$$

$$t \ge (28,7 + 54,2) / 90 \implies 0,92 \text{ cm}$$

Debido a que el espesor total de la zona del panel es 22,3 mm y el requerido es 9,2 mm, está OK.

4) Cálculo del comportamiento de los momentos plásticos en el nodo de la conexión.

$$\begin{split} &\frac{\sum Z_c \left(F_{yc} - \frac{N_{uc}}{A}\right)}{\sum \left(1,1R_{yb}Z_bF_{yb} + M_y\right)} \ge 1,0\\ &\frac{2*2840 \left(2500 - \frac{200000}{188}\right)}{1,1*1,25*1840*2500 + 1580*2500} \ge 1,0 \implies 0,79 \ge 1,0 \text{ NO OK.} \end{split}$$

Se debe aumentar la columna de la conexión y volver a repetir el procedimiento.

TABLAS DE PERFILES HEA, HEB, CP Y W

Sección	Área	ď	tw	bf	tf	h	r _x	r _y	Z _y	Z_{x}
America ocuse	cm ²	(mm)	(mm)	(mm)	(mm)	(mm)	cm	em	cm ³	cm ³
HEA 100	21,20	96	5,0	100	8	80	4,05	2,51	84	43,6
HEA 120	25,30	114	5,0	120	8	98	4,89	3,02	120	61,9
HEA 140	31,40	133	5,5	140	8,5	116	5,73	3,52	17.4	88,5
HEA 160	38,80	152	6,0 .	160	9	134	6,57	3,98	247	124
HEA 180	45,30	171	6,0	180	9,5	152	7,45	4,52	326	164
HEA 200	53,80	190	6,5	200	10	170	8,28	4,98	432	216
HEA 220	64,30	210	7,0	220	11	188	9,17	5,51	571	284
HEA 240	76.80	230	7,5	240	12	206	10,10	6,00	749	371
HEA 260	86,80	250	7,5	260	12,5	225	11,00	6,50	926	458
HEA 280	97,30	270	8,0	280	13	244	11,90	7,00	1120	548
HEA 300	112,50	290	8,5	300	14	262	12,70	7,49	1390	682
HEA 320	124,40	310	9,0	300	15,5	279	13,60	7,49	1640	750
HEA 340	133,50	330	9,5	300	16,5	297	14,40	7,46	1860	796
HEA 360	142,80	350	10,0	300	17,5	315	15,20	7,43	2100	842
HEA 400	159,00	390	11,0	300	19	352	16,80	7,34	2570	913
HEA 450	178,00	440	11,5	300	21	398	18,90	7,29	3230	1010
HEA 500	197,50	490	12,0	300	23	444	21,00	7,24	3960	1100
HEA 550	211,80	540	12,5	300	24	492	23,00	7,15	4630	1150
HEA 600	226,50	590	13.0	300	25	540	25,00	7,05	5360	1190

Sección	Area	d	iw	bf	tf .	h	r _x	r _y	Z_{x}	Z,
-14	cm ²	(mm)	mm	mm	mm	mm	cm	cm	cm ³	cm ³
HEB 100	26,0	100,0	6	100	10,0	80	4,15	2,53	105	53,8
HEB 120	34,0	120,0	6,5	120	11,0	98	5,04	3,05	166	83,9
HEB 140	43,0	140,0	7	140	12,0	116	5,93	3,58	246	123
HEB 160	54,3	160,0	8	160	13,0	134	6,78	4,05	356	176
HEB 180	65,3	180,0	8,5	180	14,0	152	7,66	4,57	483	238
HEB 200	78,1	200,0	9	200	15,0	170	8,54	5,06	646	317
HEB 220	91,0	220,0	9,5	220	16,0	188	9,43	5,59	830	407
HEB 240	106,0	240,0	10	240	17,0	206	10,30	6,08	1060	517
HEB 260	118,4	260,0	10	260	17,5	225	11,20	6,58	1290	629
HEB 280	131,4	280,0	10,5	280	18,0	244	12,10	7,08	1540	747
HEB 300	149,1	300,0	11	300	19,0	262	13,00	7,58	1880	910
HEB 320	161,3	320,0	11,5	300	20,5	279	13,80	-7,57	2160	979
HEB 340	170,9	340,0	12	300	21,5	297	14,60	7,53	2420	1030
HEB 360	180,6	360,0	12,5	300	22,5	315	15,50	7,49	2690	1070
HEB 400	197,8	400,0	13,5	300	24,0	352	17,10	7,39	3240	1140
HEB 450	218,0	450,0	14	300	26,0	398	19,10	7,33	3990	1240
HEB 500	238,6	500,0	14,5	300	28,0	444	21,20	7,27	4830	1330
HEB 550	254,1	550,0	15	300	29,0	492	23,20	7,17	5600	1380
HEB 600	270,0	600,0	15,5	300	30,0	540	25,50	7.08	6440	1430

Sección	Area	tw	bf	tf	r _x	r _y	$Z_{\rm x}$	Z_{y}
d (mm) x peso (Kgf/m)	cm ²	mm	mm	mm	cm	cm	cm ³	cm ³
CP 140X25,5	32,5	6	140	9	6,00	3,56	187	89,3
CP 160X29,3	37,3	6	160	9	6,92	4,06	248	117
CP 180X33,1	.42,1	6	180	9	7,83	4,56	316	147
CP 200X50,1	63,8	9	200	12	8,54	5,01	521	244
CP 220X55,3	70,4	9	220	12	9,44	5,50	636	294
CP 240X60,4	77,0	9	240	12	10,40	6,00	762	350
CP 260X65,7	83,6	9	260	12	11,30	6,48	900	410

Sección	Peso	Area		Dime	nsiones	a vers	Radios	de giro	Módulos plásticos		
d x peso	P	A	d	b _f	t _f	t _w	rx	r _v	Zx	Z _v	
plg x lb/ft Kgf/m	Kgf/m	cm ²	mm	mm	mm	mm	cm	cm	cm ³	cm ³	
W36x300	448,0	570,0	933	423	42,70	24,00	38,60	9,73	20700	4000,0	
x280	418,0	533,0	928	422	39,90	22,50	38,40	9,67	19200	3710,0	
x260	388,0	495,0	921	420	36,60	21,30	38,20	9,57	17700	3400,0	
x245	366,0	466,0	916	419	34,30	20,30	38,00	9,52	16600	3170,0	
x230	344,0	438,0	912	418	32,00	19,30	37,90	9,45	15500	2940,0	
x210	314,0	400,0	932	309	34,50	21,10	37,10	6,55	13700	1780,0	
x194	289,0	368,0	927	308	32,00	19,40	37,00	6,51	12600	1620,0	
x182	272,0	347,0	923	397	30,00	18,40	36,90	6,46	11800	1510,0	
x170	254,0	324,0	919	306	27,90	17,30	36,80	6,42	11000	1400,0	
x160	239,0	304,0	915	305	25,90	16,50	36,60	6,35	10200	1290,0	
x150	224,0	286,0	911	304	23,90	15,90	36,30	6,27	9560	1190,0	
x135	202,0	257,0	903	304	29,10	15,20	35,60	6,04	8380	1000,0	
W33x241	359,0	458,0	868	403	35,60	21,10	35,90	9,21	15400	3010,0	
x221	330,0	420,0	862	401	32,40	19,70	35,70	9,12	14100	2720,0	
x201	300,0	382,0	855	400	29,20	18,20	35,50	9,04	12700	2430,0	
x152	227,0	290,0	851	294	26,80	16,10	34,30	6,26	9200	1230,0	
x141	211,0	269,0	846	293	24,40	15,40	34,00	6,18	8440	1120,0	
x130	194,0	248,0	840	292	21,70	14,70	33,60	6,05	7670	995,0	
x118	176,0	224,0	835	292	18,80	14,00	33,20	5,89	6830	863,0	
W30x211	315,0	401,0	786	384	33,40	19,70	32,70	8,86	12300	2560,0	
x191	284,0	362,0	779	382	30,10	18,00	32,50	8,79	11000	2280,0	
x173	258,0	329,0	773	381	27,10	16,60	32,30	8,70	9940	2040,	
x132	197,0	252,0	770	268	25,40	15,60	31,00	5,70	7200	976,0	
x124	185,0	236,0	766	267	23,60	14,90	30,80	5,65	6710	901,0	
x116	174,0	221,0	762	267	21,60	14,40	30,50	5,56	6220	823,0	
x108	161,0	205,0	758	266	19,30	13,80	30,20	5,44	5690	737,0	
x 99	148,0	188,0	753	265	17,00	13,20	29,80	4,31	5140	651,0	

Sección	Peso	Área		Dimer	siones		Radios	de giro	Módulos plásticos		
d x peso	P	A	d	b _f	t _f	t _w	r _x	r _y	Z _x	Z	
plg x lb/ft	Kgf/m	cm ²	mm	mm	mm	mm	cm	cm	cm ³	cm ³	
W16x100	150,0	191,0	431	265	25,00	14,90	18,00	6,36	3280	913,0	
x 89	133,0	.170,0	425	263	22,20	13,30	17,90	6,31	2890	801,0	
x 77	116,0	147,0	420	261	19,30	11,60	17,80	6,25	2490	688,0	
x 67	101,0	128,0	415	260	16,90	10,00	17,70	6,22	2150	594,0	
x 57	86,1	110,0	417	181	18,20	10,90	17,10	4,05	1760	319,0	
x 50	75,7	96,4	413	180	16,00	9,65	17,00	4,01	1530	277,0	
x 45	68,3	86,9	410	179	14,40	8,76	16,90	3,97	1380	247,0	
x 40	60,8	77,5	407	178	12,80	7,75	16,90	3,94	1230	219,0	
x 36	54,4	69,3	403	177	10,90	7,49	16,60	3,83	1070	186,0	
x 31	47,1	60,1	403	140	11,20	6,99	16,30	2,93	909	122,0	
x 26	39,9	50,8	399	140	8,76	6,35	16,00	2,80	750	96,9	
W14x120	179,0	228,0	368	373	23,90	15,00	15,90	9,50	3480	1700,	
x109	162,0	207,0	364	371	21,80	13,30	15,80	9,48	3150	1540,	
x 99	148,0	188,0	360	370	19,80	12,30	15,70	9,43	2840	1390,	
x 90	134,0	171,0	356	369	18,00	11,20	15,60	9,39	2580	1260,	
x 82	123,0	156,0	363	257	21,70	13,00	15,40	6,28	2290	752,0	
x 74	111,0	141,0	360	256	19,90	11,40	15,30	6,27	2070	681,0	
x 68	102,0	130,0	357	255	18,30	10,50	15,30	6,24	1900	622,0	
x 61	91,7	117,0	353	254	16,40	9,53	15,20	6,19	1700	555,0	
x 53	80,0	102,0	354	205	16,80	9,40	15,00	4,86	1450	374,0	
x 48	72,3	92,0	350	204	15,10	8,64	14,90	4,82	1300	334,0	
x 43	64,7	82,4	347	203	13,50	7,75	14,80	4,78	1160	297,0	
x 38	56,8	72,4	358	172	13,10	7,87	14,90	3,92	1010	204,0	
x 34	51,0	64,9	355	171	11,60	7,24	14,80	3,87	902	179,0	
x 30	45,2	57,5	352	171	9,78	6,86	14,60	3,76	783	152,0	
x 26	39,1	49,8	353	128	10,70	6,48	14,30	2,73	663	93,7	
x 22	33,1	42,1	349	127	8,51	5,84	14,10	2,63	548	75,0	
W12x 87	130,0	165,0	318	308	20,60	13,10	13,70	7,79	2170	1000,	
x 79	118,0	150,0	314	307	18,70	11,90	13,60	7,75	1960	906,0	
x 72	107,0	137,0	311	306	17,00	10,90	13,50	7,70	1780	822,0	
x 65	96,7	123,0	308	305	15,40	9,91	13,40	7,67	1590	737,0	
x 58	86,5	110,0	310	254	16,30	9,14	13,40	6,36	1420	545,0	
x 53	79,1	101,0	306	254	14,60	8,76	13,30	6,29	1280	490,0	
x 50	74,5	94,9	310	205	16,30	9,40	13,20	4,97	1190	360,0	
x 45	67,2	85,6	306	204	14,60	8,51	13,10	4,93	1070	322,0	
x 40	59,6	76,0	303	203	13,10	7,49	13,00	4,91	945	285,0	
x 35	52,7	67,1	318	167	13,20	7,62	13,30	3,90	845	192,0	
x 30	44,7	57,0	313	166	11,20	6,60	13,20	3,85	711	160,0	
x 26	39,0	49,6	310	165	9,65	5,84	13,10	3,81	615	137,0	
x 22	33,0	42,1	313	102	10,80	6,60	12,50	2,15	485	61,7	
x 19	28,5	36,3	309	102	8,89	5,97	12,30	2,08	410	50,7	
x 16	24,1	30,8	305	101	6,73	5,59	11,90	1,95	334	39,0	
x 14	21,4	27,2	303	101	5,72	5,08	11,80	1,90	292	33,2	

Sección	Peso	Area		Dimer	siones		Radios	de giro	Módulos plásticos		
d x peso	P	A	d	b _f	t _f	t _{sv}	r _x	r _y	Zx	$\mathbf{Z}_{\mathbf{y}}$	
plg x lb/ft	Kgf/m	cm ²	mm	mm	mm	mm	cm	em	cm ³	cm ³	
W10x 60	89,5	114,0	260	256	17,30	10,70	11,20	6,51	1230	583,0	
x 54	80,2	102,0	256	255	15,60	9,40	11,10	6,49	1090	521,0	
x 49	73,1	93,2	253	254	14,20	8,64	11,00	6,46	992	472,0	
x 45	67,2	85,6	257	204	15,70	8,89	11,00	5,09	903	339,0	
x 39	58,2	74,2	252	203	13,50	8,00	10,80	5,03	771	288,0	
x 33	49,4	62,9	247	202	11,00	7,37	10,60	4,92	640	267,0	
x 30	44,9	57,2	266	148	13,00	7,62	01,11	3,49	602	147,0	
x 26	38,8	49,4	262	147	11,20	6,60	11,10	3,45	516	125,0	
x 22	33,1	42,1	258	146	9,14	6,10	10,90	3,36	431	103,0	
x 19	28,7	36,5	260	102	10,00	6,35	10,50	2,21	357	56,7	
x 17	25,5	32,5	257	102	8,38	6,10	10,30	2,14	310	47,7	
x 15	22,4	28,5	254	102	6,86	5,84	10,00	2,05	263	38,9	
x 12	18,0	23,0	251	101	5,33	4,83	10,92	1,99	209	30,0	
W 8x 35	52,1	66,4	206	204	12,60	7,87	8,91	5,17	570	268,0	
x 31	46,3	59,0	203	203	11,00	7,24	8,81	5,12	500	235,0	
x 28	41,8	53,3	205	166	11,80	7,24	8,76	4,11	474	169,0	
x 24	36,0	45,9	201	165	10,20	6,22	8,69	4,07	382	144,0	
x 21	31,4	40,0	210	134	10,20	6,35	8,88	3,19	387	95,5	
x 18	26,7	34,0	207	133	8,38	5,84	8,71	3,12	280	78,1	
x 15	22,7	28,9	206	102	8,00	6,22	8,36	2,21	226	45,5	
x 13	19,5	24,8	203	102	6,48	5,84	8,16	2,14	188	36,5	
x 10	15,2	19,3	200	100	5,21	4,32	8,20	2,12	147	28,7	
W 6x 25	37,2	47,4	162	154	11,60	8,13	6,85	3,87	311	142,0	
x 20	29,9	38,1	157	153	9,27	6,60	6,74	3,81	246	112,0	
x 15	22,4	28,6	152	152	6,60	5,84	6,51	3,68	177	79,0	
x 16	24,1	30,8	160	102	10,30	6,60	6,61	2,45	193	56,7	
x 12	18,0	22,9	153	102	7,11	5,84	6,33	2,33	136	38,8	
x 9	13,7	17,4	150	100	5,46	4,32	6,29	2,29	103	29,2	
W 5x 19	28,2	35,9	131	128	10,90	6,86	5,52	3,25	191	92,0	
x 16	23,9	30,4	127	127	9,14	6,10	5,42	3,20	159	76,5	
W 4x 13	19,5	24,8	106	103	8,76	7,11	4,37	2,54	104	49,0	